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This short note provides an illustration of the concave-convex procedure (CCCP) [Yuille and Rangarajan, 2003].
I also briefly discuss the majorisation-minimisation (MM) algorithm, where CCCP is a special case.

1 Concave-convex procedure

Consider the case that we want to fit a model parametrized by θ. Often we obtain the point estimate θ∗ by
minimising some energy function

θ∗ = arg min
θ

E(θ). (1)

For convex energy functions there exists a unique global optimum, which can be easily found. However for most
interesting problems E(θ) is non-convex, and it remains a challenge on developing fast optimisation algorithms
that is guaranteed to converged to a local optimum.

As non-convex optimisation is challenging in general, people have tried to simplify the problem and proposed
algorithms on it. A special case that has been discussed in the literature is the difference of convex functions
programming (DC programming): the energy function is constrained to be the difference between two convex
functions:

E(θ) = Evex(θ) + Ecave(θ), (2)

where Evex(θ) and −Ecave(θ) denote two arbitrary convex functions. It is a weaker constraint than convexity
as in the original CCCP paper [Yuille and Rangarajan, 2003] the author proved the following algorithm using
linear algebra.

Theorem 1 For a twice-differentiable function E(θ), if the eigenvalues of the Hessian ∇2E(θ) are lower-
bounded, then there exist a convex function Evex(θ) and a concave function Ecave(θ) where E(θ) can be decom-
posed as eq. (2).

Remember for a twice-differentiable function to be convex, the eigenvalues of its Hessian should be lower-bounded
by zero.

Next I show a cartoon illustration of the concave-convex procedure developed in the same paper. In one
sentence, it computes the gradients of the concave and convex part separately, and obtains the next updates by
matching the convex part gradient to the concave part gradient:

θt+1 satisfies ∇Evex(θt+1) = −∇Ecave(θt). (3)

As shown in Figure 1, this procedure always decreases the energy function: ∆ = Lvex(θ) − Lcave(θ) denotes
the distance along the function value axis between the two lines that are tangent to the curve of Ecave (Evex)
at θt (θt+1), respectively, and from convexity we have E(θt) ≥ ∆ (Evex is convex) and ∆ ≥ E(θt+1) (−Ecave
is convex). Since the functions in the form of (2) are lower-bounded, the CCCP procedure is guaranteed to
converge to a local optimum.

2 Quick link to the majorisation-minimisation algorithm

In this section I show that CCCP is a special case of the majorisation-minimisation (MM) algorithm, which is
a surrogate type optimisation method. Figure 2 illustrate the update procedure of the MM algorithm, where
at each iteration we first find a surrogate objective Et(θ) that majorises the original objective at the current
solution θt, then apply any optimisation algorithm to the surrogate for the next update θt+1. To see why this
procedure also guarantees non-increasing energy, we first formulate the definition of majorisation:

Definition 1 A function E′(θ) is said to majorise another function E(θ) at location θ′, if for all θ we have
E′(θ) ≥ E(θ) and the equality is achieved at θ′.
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Figure 1: An illustration of the concave-convex procedure.

Figure 2: An illustration of the majorisation-minimisation method.

Now assume we apply some optimisation method to Et(θ) to obtain the next update θt+1. If this computation
achieves Et(θt) ≥ Et(θt+1), then by definition we have E(θt) = Et(θt) ≥ Et(θt+1) ≥ E(θt+1), thus proves the
guarantee.

We now prove that CCCP is also an MM-type algorithm. At each iteration we construct a surrogate objective
Et(θ) = Evex(θ)− Lcave(θ). Notice that Lcave(θ) depends on Ecave(θ) and θt, and more importantly the slope
of this linear function is given by the negative gradient of the concave part −∇Ecave(θt). From convexity of
−Ecave(θ) it is straightforward to see Et(θ) is a convex function that majorises E(θ) at θt. Next we obtain the
update by zeroing the gradient of Et(θ), which means

∇Et(θt+1) = ∇Evex(θt+1) +∇Ecave(θt) = 0, (4)

an equivalent procedure as described in eq. (3). To summarise, CCCP is a majorisation-minimisation algorithm
that partially linearises the objective function and zeros the gradients on the surrogate.

Apparently there exist infinite number of functions that majorises the objective at the given location, and
it is still an open question that how to design the heuristic which returns the one that provides good next-step
updates and is easy to compute. CCCP is problematic in this sense because we still do not have satisfactory
answers in general to 1) how to decompose the energy function and 2) how to efficiently search the point θt+1

that satisfies eq. (3).
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