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1 Background

1.1 Exponential Families

A random variable θ ∈ Θ is said to have an exponential family distribution if its distribution can be written as

p(θ|λ) = h(θ) exp [〈λ,φ(θ)〉 − logZ(λ)] . (1)

Here h(θ) is the base measure, λ is called the natural parameters or canonical parameters, φ(θ) is the sufficient
statistic, 〈·, ·〉 denote the inner product and

Z(λ) =

∫
θ

h(θ) exp [〈λ,φ(θ)〉] dθ

is the partition function or normalising constant of the distribution. In the following we define λ in Λ =
{Z(λ) < +∞} and assume this set is open (so the family is regular). We also say the exponential family is
minimal if the coefficients of the sufficient statistic φ(·) are linear independent. Otherwise there exists λ such
that 〈λ,φ(θ)〉 is constant, then the distribution family is overcomplete.

Here are some properties of exponential family distributions.

• logZ(λ) as a function of λ is convex on Λ, strictly so if the family is minimal.

• ∇λ logZ(λ) = Ep[φ(θ)] := µ. This is easily seen by differentiating the log partition function:

∇λ logZ(λ) =
1

Z(λ)

∫
θ

h(θ)∇λ exp [〈λ,φ(θ)〉] dθ

=
1

Z(λ)

∫
θ

h(θ) exp [〈λ,φ(θ)〉]φ(θ)dθ

= Ep[φ(θ)] := µ.

(2)

The expectation of the sufficient statistic µ is called the mean parameter.

• The convex dual of logZ(λ) is −H(µ), where H(µ) is the entropy of distribution p(θ|λ) with moments
Ep[φ(θ)] = µ. Also −∇µH(µ) = λ = (∇λ logZ(λ))−1.

• In general logZ(λ) = maxµ〈λ,µ〉+H(µ) where the optimum is attained at µ = µ(λ) = Ep[φ(θ)].

For convenience in the following derivations we assume the base measure h(θ) = 1.

1.2 Divergence measure between exponential family distributions

Now we assume two distributions p(θ) and q(θ) belongs to the same exponential family1 with natural parameters
λp and λq, respectively. In the following we present some useful divergence measure to describe the “closeness”
of these two distributions.

• Kullback-Leibler (KL) divergence:

KL[p||q] = Ep
[
log

p(θ)

q(θ)

]
= 〈λp − λq,µp〉 − logZ(λp) + logZ(λq). (3)

1WLOG we can define φ = φp ∪ φq if φp 6= φq .
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– Moment matching: if we minimise the inclusive KL[p||q] w.r.t. λq:

∇λqKL[p||q] = µq − µp = 0⇒ µq ← µp. (4)

We write the corresponding natural parameter of a given moment µ as λ(µ), and this means the
update of the natural parameter is λq ← λ(µp).

– Natural parameter matching: if we minimise the exclusive KL[q||p] w.r.t. λq:

∇λq
KL[q||p] = 〈λq − λp,∇λq

µq〉 = 0⇒ λq ← λp. (5)

– SVI is natural gradient descent: for exponential families, the Fisher information can also be defined as
I(λ) = ∇2

λ log z(λ) = ∇λµ. So applying Amari’s natural gradient descent algorithm to the exclusive
KL divergence minimisation returns λq ← λq − γ(λq − λp).

• Amari’s α-divergence: for α 6= 0, 1,

Dα[p||q] =
1

α(1− α)

(
1−

∫
θ

p(θ)αq(θ)1−αdθ

)
=

1

α(1− α)

(
1− Z(αλp + (1− α)λq)

Z(λp)αZ(λq)1−α

)
.

(6)

– By L’Hopital’s rule it’s easy to show that

lim
α→0

Dα[p||q] = KL[q||p],

lim
α→1

Dα[p||q] = KL[p||q].

– Moment matching: when α 6= 0, if we minimise Dα[p||q] w.r.t. λq

∇λqDα[p||q] =
1

α

Z(λα)

Z(λp)αZ(λq)1−α
(µq − µα) = 0⇒ µq ← µα, (7)

where we short-hand λα = αλp + (1− α)λq and µα is the corresponding moment parameter. Note
that we cannot recover the fixed point conditions for VI by limiting α→ 0, although for the gradients
limα→0∇λq

Dα[p||q] = ∇λq
KL[q||p].

1.3 Factor Graph

2 Expectation Propagation

Consider for simplicity observing a dataset comprising N i.i.d. samples D = {xn}Nn=1 from a probabilistic model
p(x|θ) parametrised by an unknown D-dimensional vector θ that is drawn from a prior p0(θ). Exact Bayesian
inference involves computing the (typically intractable) posterior distribution of the parameters given the data,

p(θ|D) =
1

Z
p0(θ)

N∏
n=1

p(xn|θ). (8)

Now assume the prior distribution p0(θ) has an exponential family form as in section 1.1 with natural pa-
rameter λ0 and sufficient statistic φ(θ). Also we denote ψn(θ) = log p(xn|θ) and write the collection as
Φ = (ψ1,ψ2, ...,ψN ,φ). Then if we write η = (1,1, ...,1,λ0), we can formulate the true posterior in an
exponential family

p(θ|D) =
1

Z̃(η)
exp [〈η,Φ(θ)〉] . (9)

Note that the way we define the sufficient statistic Φ also indicates the factor graph we select for representation.
In this case we treat each likelihood term and the prior as factors, and later we shall see using different
factorisation returns different update equations.

We approximate the true posterior with the following distribution

q(θ) =
1

Zq
p0(θ)

∏
n

fn(θ), (10)

where we define fn(θ) = exp [〈λn,φ(θ)〉]. So if we define λq = λ0 +
∑
n λn, then the approximate posterior

distribution also belongs to the same exponential family as p0:

q(θ) =
1

Z(λq)
exp [〈λq,φ(θ)〉] . (11)
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2.1 The algorithm

The goal of EP is to refine the approximate factors so that they capture the contribution of each of the likelihood
terms to the posterior i.e. fn(θ) ≈ p(xn|θ).

• An idealised approach would be to minimise KL[p(θ|D)||p(θ|D)fn(θ)/p(xn|θ)]. Unfortunately this is still
intractable as it involves computing the full posterior.

• Instead, EP approximates this procedure by replacing the exact leave-one-out posterior p−n(θ) ∝ p(θ|D)/p(xn|θ)
on both sides of the KL by the approximate leave-one-out posterior (called the cavity distribution)
q−n(θ) ∝ q(θ)/fn(θ). Since this couples the updates for the approximating factors, the updates must now
be iterated.

• This EP iteration contains four simple steps.

1) Compute cavity: q−n(θ) ∝ q(θ)/fn(θ);
For exponential families the cavity is q−n(θ) ∝ exp [〈λ−n,φ(θ)〉] with λ−n = λq − λn.

2) Compute the tilted distribution p̃n(θ) ∝ q−n(θ)p(xn|θ);
For exponential families we can represent the tilted distribution as

p̃n(θ) =
1

Z̃(ηn)
exp [〈ηn,Φ(θ)〉] ,

with ηn = (0, ...,1, ...,0,λ−n) where 1 appears at the nth element.

3) Update fn(θ) by minimising KL[p̃n(θ)||q−n(θ)fn(θ)];
For exponential families this is done by first minimising KL[p̃n(θ)||q(θ)] w.r.t. ηq = (0, ...,0,λ).
Using the results in section 1.2 and noticing that λ only associates with the sufficient statistic φ, we
have

µ̃n := Ep̃n [φ(θ)], λ← λ(µ̃n) ⇒ λn ← λ(µ̃n)− λ−n.

We often perform partial update to improve convergence. That is, with step-size γ, the update is
specified as λn ← λn + γ(λ(µ̃n)− λ−n − λn) = λn + γ(λ(µ̃n)− λq).

4) Include the new factor: q(θ)← q−n(θ)fn(θ).
For exponential families this means

λq ← λ−n + λn = λq + γ(λ(µ̃n)− λq).

2.2 The Energy function

There are mainly three different forms of the EP energy function. First we notice that ηn only depends on
λq − λn and ψn so we rewrite Z̃(ηn) = Z̃(λq − λn). Using local natural parameters {λn} we write

logZEP =

N∑
n=1

log Z̃(λq − λn)− logZ(λ0)− (N − 1) logZ(λq). (12)

We show the EP algorithm above, if converges, returns the fixed point of logZEP . By differentiating logZEP
we have

∇λn logZEP =
∑
m6=n

µ̃m − (N − 1)µq, n = 1, ..., N. (13)

So zeroing all the gradients we have all the moments matched: µq = µ̃n,∀n. This is also the fixed point equation
of the EP updates where it iterates µq ← µ̃n for all datapoints.

We also note that there is an equivalent representation of the local natural parameters {λn = λq −λ−n}. If
we treat {λ−n} as free parameters, then we need to add in the constraint

∑
n λ−n = (N − 1)λq + λ0. Now we

have the minimax problem

max
λq

min
{λ−n}

logZEP =

N∑
n=1

log Z̃(λ−n)− logZ(λ0)− (N − 1) logZ(λq) subject to
∑
n

λ−n = (N − 1)λq + λ0.

(14)
Now we show the connection to the Bethe free energy. Recall from section 1.1 that we can write the log-

partition function as logZ(λ) = maxµ〈λ,µ〉 + H(µ). This means we can optimise the moment parameters
instead and replace the log-partition functions with the one containing entropy terms:

logZ(λ) ≥ 〈λ,µ〉+H(µ), equality holds iff.µ = Ep(θ|λ)[φ] = µ. (15)
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So we define the corresponding representation as µq = µ(λq) and νn = Ep̃n [ψn(θ)]. Recall the fixed point
equations µq = Ep̃n [φ(θ)],∀n, and the constraint

∑
n λ−n = (N − 1)λq +λ0. Then the EP energy function can

be viewed as a generalisation of the Bethe free energy:

logZEP = − logZ(λ0) + 〈λ0,µq〉+

N∑
n=1

〈1,νn〉+

N∑
n=1

H(µq,νn)− (N − 1)H(µq). (16)

The connection to Bethe can be seen by denoting µ̃n = Ep̃n [φ] and rewriting the energy

−FBethe(q, {p̃n}) = logZEP = (N − 1)

∫
θ

q(θ) log
q(θ)

p0(θ)
dθ −

N∑
n=1

∫
θ

p̃n(θ) log
p̃n(θ)

p0(θ)p(xn|θ)
dθ (17)

subject to µ̃n = µq for all n, and p̃n, q are valid distributions.

The double loop algorithm

The double loop algorithm in [Heskes and Zoeter, 2002] relaxes the Bethe free energy optimisation by

−FBethe(q, {p̃n}, q′) = (N − 1)

∫
θ

q(θ) log
q′(θ)

p0(θ)
dθ −

N∑
n=1

∫
θ

p̃n(θ) log
p̃n(θ)

p0(θ)p(xn|θ)
dθ (18)

subject to the same constraints as before: µ̃n = µq. If we write down this relaxation explicitly in terms of
natural/moment parameters, this is

−FBethe(µq, {µ̃n,νn},λq′) = − logZ(λ0)+〈λ0,µq〉+
N∑
n=1

〈1,νn〉+
N∑
n=1

H(µ̃n,νn)−(N−1)(logZ(λq′)−〈λq′ ,µq〉).

(19)
In [Teh et al. 2015] the relaxation is slightly different:

−FBethe(µq, {µ̃n,νn},λq′) = − logZ(λ0)+〈λ0,µq〉+
N∑
n=1

〈1,νn〉+
N∑
n=1

H(µ̃n,νn)−N(logZ(λq′)−〈λq′ ,µq〉)+H(µq).

(20)
But for both cases it is easily seen that −FBethe(q, {p̃n}, q′) ≤ −FBethe(q, {p̃n}) because logZ(λq′)−〈λq′ ,µq〉 ≥
H(µq) by convex duality. Now the optimisation contains two steps:

1) maximise −FBethe over µq, {µ̃n,νn} under constraints µ̃n = µq;
For both types of relaxations we can do reverse computations, i.e. finding the corresponding natural
parameters ηn given (µq,νn). Or, we can introduce Lagrange multipliers {λn} and minimise w.r.t. them.
Zeroing the gradient w.r.t. {λn} shows that they are the natural parameters of the local approximation
fn(θ). In [Teh et al. 2015] the Lagrange multipliers are further parametrised with the corresponding
moment parameters µn = µ(λn) and perform natural gradient descent on them.
(This assumes µn should always be in the marginal polytope, however for general EP this is not required?)

2) minimise −FBethe over λq′ ;
this yields update λq′ ← λ(µq).

EP as a fixed point iteration method to a relaxed Bethe free energy optimisation

The EP algorithm discussed in section 2.1 is derived following these steps:

1) Relax the problem: rewrite H(µq,νn) = H(µ̃n,νn) and add the constraint µ̃n = µq for all n;

2) Define the Lagrange multiplier {λn} for all these constraints;

3) Write down the Lagrangian

L(µq, {µ̃n,νn,λn}) = − logZ(λ0)+〈λ0,µq〉+
N∑
n=1

〈1,νn〉+
N∑
n=1

(H(µ̃n,νn)−H(µ̃n))+H(µq)+

N∑
n=1

〈λn,µq−µ̃n〉;
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4) Zeroing all the gradients. This returns the following fixed point equations:

λ(µq) = λ0 +

N∑
n=1

λn, (21)

λ(µ̃n) = λ(µ̃n,νn) + λn, (22)

µq = µ̃n,∀n. (23)

5) EP finds the fixed point by ensuring the first two conditions and iterating until the third one is satisfied
for all indices.

The minimax problem derivation

We note that maximising the energy function (16) directly is hard even now we have no constraint on this
problem. Here we provide derivations of a double loop algorithm starting from this Bethe-like objective. First
using convex duality

H(µ) ≤ logZ(λ)− 〈λ,µ〉, equality holds iff. λ satisfies µ = Ep(θ|λ)[φ] = µ. (24)

This means we can add in free parameters λq, {λ−n, ξn} to the objective (defining ηn = (0, ..., ξn, ...,0,λ−n)):

logZEP ≈ − logZ(λ0)+〈λ0+(N−1)λq−
∑
n

λ−n,µq〉+
N∑
n=1

〈1−ξn,νn〉+
N∑
n=1

log Z̃(ηn)−(N−1) logZ(λq), (25)

where equality holds iff. the RHS is minimised over {λ−n,ηn} AND maximised over λq. Importantly we note
that we have NOT introduced any constraint yet, and the notations λ−n at this stage should NOT be interpreted
as “cavity parameters” or something similar. Also there’s NO coupling between λq and µq, etc. However readers
shall see later why we use these notation. In summary, if we denote (25) as L(µq, {νn},λq, {λ−n}, {ξn}), then
the optimisation problem turns out to be

max
µq,{νn}

max
λq

min
{λ−n,ξn}

L(µq, {νn},λq, {λ−n}, {ξn}). (26)

Now we shall eliminate the moment parameters and {ξn}. Zeroing the gradients w.r.t. νn and ξn returns ξn = 1
and νn = Ep(θ|λ−n,ξn)[ψn]. We can always assume these two conditions holds because there is no need to keep
tracking of them. Then zeroing the gradient w.r.t µq yields λ0 + (N − 1)λq =

∑
n λ−n. Substituting these

conditions recovers the optimisation problem (14).

Comparing EP and the double loop algorithm

In summary, EP and the double loop convergent algorithm optimises (25) by assuming some of the fixed point
conditions are always satisfied and running until the rest of them to hold. These conditions are:

1) for all n, ξn = 1, νn = Ep(θ|λ−n,ξn)[ψn];

this removes the term
∑N
n=1〈1− ξn,νn〉 in (25);

2) (N − 1)λq + λ0 =
∑N
n=1 λ−n, µq = Ep(θ|λq)[φ];

if we parameterise λn = λq − λ−n then the first constraint changes to λq = λ0 +
∑N
n=1 λn;

this removes the term 〈λ0 + (N − 1)λq −
∑
n λ−n,µq〉 in (25);

3) for all n, µ̃n := Ep(θ|λ−n,ξn)[φ] = µq.
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