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Bayesian Inference

𝑃 𝜃| 𝑑𝑎𝑡𝑎 =
𝑃 𝜃 𝑃 𝑑𝑎𝑡𝑎 𝜃)

𝑃 𝑑𝑎𝑡𝑎

• 𝑃 𝜃 : prior distribution 
• 𝑃 𝑑𝑎𝑡𝑎 𝜃): likelihood of 𝜃 given 𝑑𝑎𝑡𝑎
• 𝑃 𝜃| 𝑑𝑎𝑡𝑎 : posterior distribution of 𝜃 given 𝑑𝑎𝑡𝑎
• 𝑃 𝑑𝑎𝑡𝑎 : marginal likelihood/model evidence

𝑃 𝑑𝑎𝑡𝑎 = ∫ 𝑃 𝜃 𝑃 𝑑𝑎𝑡𝑎 𝜃)

𝜋 𝜃 = 𝑝(𝜃|𝑑𝑎𝑡𝑎)

Image courtesy of Sebastian Nowozin
Re-use of the image for any other purpose is not allowed 4



Bayesian Inference
• The central equation for Bayesian inference:

∫ 𝐹 𝜃 𝑝(𝜃|𝐷)𝑑𝜃

“What is the prediction 
distribution of the test output 

given a test input?”

𝐹 𝜃 = 𝑝(𝑦|𝑥, 𝜃),
𝐷 = observed datapoints
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Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• 𝑥: input image; 𝑦: output label
• Build a neural network with parameters 𝜃:

𝑝 𝑦 𝑥, 𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓!(𝑥))
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Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• 𝑥: input image; 𝑦: output label
• Build a neural network with parameters 𝜃:

𝑝 𝑦 𝑥, 𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓!(𝑥))

A typical neural network (with non-linearity 𝑔(⋅)):

𝑓! 𝑥 = 𝑊"𝑔 𝑊"#$ 𝑔 …𝑔 𝑊$ 𝑥 + 𝑏$ + 𝑏"#$ + 𝑏",

ℎ% = 𝑔(𝑊% ℎ%#$ + 𝑏%), ℎ$ = 𝑔 𝑊$ 𝑥 + 𝑏$ .

Neural network parameters: 𝜃 = 𝑊% , 𝑏% %&$"
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Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• 𝑥: input image; 𝑦: output label
• Build a neural network with parameters 𝜃:

𝑝 𝑦 𝑥, 𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓!(𝑥))

Typical deep learning solution: 
• Optimize 𝜃 to obtain a point estimates (MLE):

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 log 𝑝 𝐷 𝜃) ,  
log 𝑝 𝐷 𝜃) = ∑(&$) log 𝑝 𝑦( 𝑥(, 𝜃) , 𝐷 = 𝑥(, 𝑦( (&$

)

• Prediction: using 𝑝 𝑦∗ 𝑥∗, 𝜃∗)
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Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• 𝑥: input image; 𝑦: output label
• Build a neural network with parameters 𝜃:

𝑝 𝑦 𝑥, 𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓!(𝑥))

Bayesian solution: 
• Put a prior 𝑝(𝜃) on network parameters 𝜃, e.g. Gaussian prior

𝑝 𝜃 = 𝑁(𝜃; 0, 𝜎* 𝐼)
• Compute the posterior distribution 𝑝 𝜃 𝐷):

𝑝 𝜃 𝐷) ∝ 𝑝 𝐷 𝜃) 𝑝(𝜃)
• Bayesian predictive inference:

𝑝 𝑦∗ 𝑥∗, 𝐷) = 𝐸+ ! ,)[𝑝 𝑦∗ 𝑥∗, 𝜃)]
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Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• 𝑥: input image; 𝑦: output label
• Build a neural network with parameters 𝜃:

𝑝 𝑦 𝑥, 𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓!(𝑥))

Approximate (Bayesian) inference solution: 
• Exact posterior intractable, use approximate posterior:

𝑞 𝜃 ≈ 𝑝 𝜃 𝐷)
• Approximate Bayesian predictive inference:

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ 𝐸.(!)[𝑝 𝑦∗ 𝑥∗, 𝜃)]
• Monte Carlo approximation:

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ $
0
∑1&$0 𝑝 𝑦∗ 𝑥∗, 𝜃1),     𝜃1 ∼ 𝑞(𝜃)
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Bayesian Neural Network (BNN) 101

Prediction on in-distribution data: 
ensemble over networks, using weights sampled from 𝑞(𝜃)
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Bayesian Neural Network (BNN) 101

Prediction on OOD/noisy/adversarial data: 
Disagreement (i.e. uncertainty) exists over networks sampled from 𝑞(𝜃)
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Bayesian Neural Network (BNN) 101

Prediction on OOD/noisy/adversarial data when 𝑞 𝜃 is over-confident: 
Return confidently wrong answers (close to point estimate)
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Bayesian Neural Network (BNN) 101

Prediction on in-distribution data when 𝑞(𝜃) is under-confident: 
Low accuracy in prediction tasks (less desirable)
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Approximate Inference in BNNs
• Key steps of approximate inference in BNNs

1. Construct the 𝑞 𝜃 ≈ 𝑝 𝜃 𝐷) distribution
• Simple distributions: e.g. Mean-field Gaussian
• Structured approximations, e.g. low-rank Gaussians
• Others (non-Gaussian)

See my NeurIPS 2020 tutorial on approximate inference 15
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Approximate Inference in BNNs
• Key steps of approximate inference in BNNs

1. Construct the 𝑞 𝜃 ≈ 𝑝 𝜃 𝐷) distribution
• Simple distributions: e.g. Mean-field Gaussian
• Structured approximations, e.g. low-rank Gaussians
• Others (non-Gaussian)

2. Fit the 𝑞 𝜃 distribution 
• E.g. with variational inference

3. Compute prediction with Monte Carlo 
approximations

See my NeurIPS 2020 tutorial on approximate inference 17



Today’s agenda

• Lecture on Basics: MFVI for BNNs
• Hands-on tutorial on BNNs
• i.e., programming exercises
• Also some case studies
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Part I: Basics
• Variational inference

• Bayes-by-backprop
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Bayesian Inference

𝑃 𝜃 | 𝐷 =
𝑃 𝜃 𝑃 𝐷 𝜃)

𝑃 𝐷

• 𝑃 𝜃 : prior
• 𝑃 𝐷 𝜃): likelihood
• 𝑃 𝜃| 𝐷 : posterior
• 𝑃 𝐷 : marginal

Image courtesy of Sebastian Nowozin
Re-use of the image for any other purpose is not allowed 20



Variational Inference (VI)

The posterior The variational distribution 

𝑝 𝜃 𝐷) = 𝑝 𝐷 𝜃)𝑝(𝜃)/𝑝 𝐷 𝑞.(𝜃)
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Inference as Optimization

Kullback-Leibler (KL) divergence

𝑝 𝜃 𝐷) 𝑞.(𝜃)
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Kullback-Leibler Divergence

𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃)] = ∫ 𝑞 𝜃 log
𝑞(𝜃)
𝑝(𝜃)

𝑑𝜃 = 𝐸0 1 [log
𝑞 𝜃
𝑝 𝜃

]

• When 𝑝 = 𝑞, KL is 0
• Otherwise, KL > 0
• It measures how similar are these two distributions
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Let’s Derive the Objective of VI
• Minimize 𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)]

𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)] = −E2 1 log
𝑝 𝜃 𝐷
𝑞 𝜃
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Let’s Derive the Objective of VI
• Minimize 𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)]

𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)] = −𝐸0 1 log
𝑝 𝜃 𝐷
𝑞 𝜃

= −𝐸0 1 log 3 1,4
5 4 0 1

= −𝐸0 1 log 3 1,4
0 1

− log 𝑝(𝐷)
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Let’s Derive the Objective of VI
• Minimize 𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)]

𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)] = −𝐸0 1 log
𝑝 𝜃 𝐷
𝑞 𝜃

= −𝐸0 1 log 3 1,4
5 4 0 1

= −𝐸0 1 log 3 1,4
0 1

− log 𝑝(𝐷)

= log 𝑝(𝐷) − 𝐸0 1 log
𝑝 𝜃, 𝐷
𝑞 𝜃

Model Evidence
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Let’s Derive the Objective of VI
• Minimize 𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)]

𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)] = log 𝑝(𝐷) − 𝐸0 1 log
𝑝 𝜃, 𝐷
𝑞 𝜃

Maximize 𝐸! " log # ",%
! "

27



Let’s Derive the Objective of VI
• Minimize 𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)]

𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)] = log 𝑝(𝐷) − 𝐸0 1 log
𝑝 𝜃, 𝐷
𝑞 𝜃

Maximize 𝐿 = 𝐸! " log # ",%
! "

Evidence Lower Bound (ELBO)

log 𝑝(𝐷)

𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)]

ELBO

“Model Evidence = ELBO + KL”

Model Evidence

28



Variational Inference (VI)
The posterior The variational distribution 

𝑝 𝜃 𝐷) = 𝑝 𝐷 𝜃)𝑝(𝜃)/𝑝 𝐷 𝑞.(𝜃)

𝐿 = 𝐸7!(#) log
p D, 𝜃
𝑞. 𝜃

= log 𝑝 𝐷 − 𝐾𝐿[ 𝑞.(𝜃)||𝑝 𝜃 ]

𝑝 𝜃 𝐷)
𝑞 ∈ 𝑄

𝑞∗(𝜃)
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Variational Inference (VI)

• Rewriting the ELBO:

log 𝑝(𝐷) ≥ 𝐿 = 𝐸7! # log 𝑝 𝐷 𝜃 − 𝐾𝐿[𝑞. 𝜃 ‖𝑝 𝜃 ]

Data fitting term KL regulariser

(Negative) Data fitting term:
- Like the usual DL loss you’ll use for training neural networks
- …except that now the network’s weights are sampled from 𝑞

KL regulariser:
- Make the 𝑞 distribution closer to the prior
- Regularises the approximate posterior, especially when using e.g., Gaussian prior 

30



Approximate Inference in BNNs
• Key steps of approximate inference in BNNs

1. Construct the 𝑞 𝜃 ≈ 𝑝 𝜃 𝐷) distribution
• Simple distributions: e.g. Mean-field Gaussian
• Structured approximations, e.g. low-rank Gaussians
• Others (non-Gaussian)

2. Fit the 𝑞 𝜃 distribution 
• E.g. with variational inference

3. Compute prediction with Monte Carlo 
approximations

See my NeurIPS 2020 tutorial on approximate inference 31



Approximate Inference in BNNs
• Step 1: construct the 𝑞 𝜃 ≈ 𝑝 𝜃 𝐷) distribution
• Example: Mean-field Gaussian distribution:

𝑞 𝜃 =;
9:;

<

𝑞 𝑊9 𝑞(𝑏9)

𝑞 𝑊9 =;
=>

𝑞(𝑊=>
9 ) , 𝑞 𝑊=>

9 = 𝑁(𝑊=>
9 ; 𝑀=>

9 , 𝑉=>9 )

𝑞 𝑏9 = ∏= 𝑞 𝑏=9 , 𝑞 𝑏=9 = 𝑁(𝑏=9; 𝑚=
9, 𝑣=9)

• Variational parameters: 𝜙 = 𝑀=>
9 , log 𝑉=>9 , 𝑚=

9, log 𝑣=9 9:;
<

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 32



Approximate Inference in BNNs
• Step 2: fit the 𝑞 𝜃 distribution:
• Variational inference: 𝜙∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐿(𝜙)

𝐿 𝜙 = 𝐸7!(?) log 𝑝 𝐷 𝜃) − 𝐾𝐿 𝑞. 𝜃 𝑝(𝜃)]

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 33



Approximate Inference in BNNs
• Step 2: fit the 𝑞 𝜃 distribution:
• Variational inference: 𝜙∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐿(𝜙)

𝐿 𝜙 = 𝐸7!(?) log 𝑝 𝐷 𝜃) − 𝐾𝐿 𝑞. 𝜃 𝑝(𝜃)]
• First scalable technique: Stochastic optimization

• i.i.d. assumption of data: log 𝑝 𝐷 𝜃) = ∑!"#$ log 𝑝 𝑦! 𝑥!, 𝜃)
• Enable mini-batch training with 𝑥%, 𝑦% ∼ 𝐷& :

𝐿 𝜙 ≈
𝑁
𝑀
J
@:;

A

𝐸7 ? log 𝑝 𝑦@ 𝑥@, 𝜃) − 𝐾𝐿 𝑞 𝜃 𝑝 𝜃

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 34



Approximate Inference in BNNs
• Step 2: fit the 𝑞 𝜃 distribution:
• Variational inference: 𝜙∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐿(𝜙)

𝐿 𝜙 = 𝐸7!(?) log 𝑝 𝐷 𝜃) − 𝐾𝐿 𝑞. 𝜃 𝑝(𝜃)]
• First scalable technique: Stochastic optimization

• i.i.d. assumption of data: log 𝑝 𝐷 𝜃) = ∑!"#$ log 𝑝 𝑦! 𝑥!, 𝜃)
• Enable mini-batch training with 𝑥%, 𝑦% ∼ 𝐷& :

𝐿 𝜙 ≈
𝑁
𝑀
J
@:;

A

𝐸7 ? log 𝑝 𝑦@ 𝑥@, 𝜃) − 𝐾𝐿 𝑞 𝜃 𝑝 𝜃

reweighting to ensure calibrated 
posterior concentration

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 35



Approximate Inference in BNNs
• Step 2: fit the 𝑞 𝜃 distribution:
• 2nd scalable technique: Monte Carlo sampling

• 𝐸'())[log 𝑝 𝑦 𝑥, 𝜃)] intractable even with Gaussian 𝑞 𝜃
• Solution: Monte Carlo estimate:

𝐸'()) log 𝑝 𝑦 𝑥, 𝜃) ≈
1
𝐾 B

+

,

log 𝑝 𝑦 𝑥, 𝜃+) , 𝜃+ ∼ 𝑞(𝜃)

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 36



Approximate Inference in BNNs
• Step 2: fit the 𝑞 𝜃 distribution:
• 2nd scalable technique: Monte Carlo sampling

• 𝐸'())[log 𝑝 𝑦 𝑥, 𝜃)] intractable even with Gaussian 𝑞 𝜃
• Solution: Monte Carlo estimate:

𝐸'()) log 𝑝 𝑦 𝑥, 𝜃) ≈
1
𝐾 B

+

,

log 𝑝 𝑦 𝑥, 𝜃+) , 𝜃+ ∼ 𝑞(𝜃)

• Reparameterization trick to sample mean-field Gaussians:
𝜃! ∼ 𝑞 𝜃 ⇔ 𝜃! = 𝑚" + 𝜎" ⊙ 𝜖! , 𝜖! ∼ 𝑁(0, 𝐼)

𝜇 𝜎 𝜖

𝜃

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 37



Approximate Inference in BNNs
• Step 2: fit the 𝑞 𝜃 distribution:
• 2nd scalable technique: Monte Carlo sampling

• 𝐸'())[log 𝑝 𝑦 𝑥, 𝜃)] intractable even with Gaussian 𝑞 𝜃
• Solution: Monte Carlo estimate:

𝐸'()) log 𝑝 𝑦 𝑥, 𝜃) ≈
1
𝐾 B

+

,

log 𝑝 𝑦 𝑥, 𝜃+) , 𝜃+ ∼ 𝑞(𝜃)

⇒ 𝐸#(") log 𝑝 𝑦 𝑥, 𝜃) ≈
1
𝐾 T

!

&

log 𝑝 𝑦 𝑥, 𝜃! = 𝑚" + 𝜎"𝜖!) , 𝜖! ∼ 𝑁(0, 𝐼)

• Reparameterization trick to sample mean-field Gaussians:
𝜃! ∼ 𝑞 𝜃 ⇔ 𝜃! = 𝑚" + 𝜎" ⊙ 𝜖! , 𝜖! ∼ 𝑁(0, 𝐼)

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

𝜇 𝜎 𝜖

𝜃

…

𝐿

backprop

38



Approximate Inference in BNNs
• Combining both steps:

𝐿 𝜙 ≈
𝑁
𝑀
J
@:;

A
1
𝐾
J
U:;

V

log 𝑝 𝑦@ 𝑥@, 𝜃U) − 𝐾𝐿 𝑞 𝜃 𝑝 𝜃 , 𝜃U ∼ 𝑞 𝜃
analytic between two Gaussians

(if not, can also be estimated with Monte Carlo)

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

In regression:
𝑝 𝑦 𝑥, 𝜃) = 𝑁(𝑓" 𝑥 , 𝜎')

In classification:
𝑝 𝑦 𝑥, 𝜃) = 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝑙𝑜𝑔𝑖𝑡 = 𝑓"(𝑥))

39



Approximate Inference in BNNs
• Step 3: compute prediction with Monte Carlo approximations:

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ D
E
∑FGDE 𝑝 𝑦∗ 𝑥∗, 𝜃F),     𝜃F ∼ 𝑞(𝜃)

Mean-field Gaussian case: 
𝜃! = 𝑚" + 𝜎"⊙ 𝜖!, 𝜖! ∼ 𝑁(0, 𝐼)

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 40
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Part II: Bayesian MLPs
• Implement various BNN methods for MLP architectures

• Regression example test

• Case study 1: Bayesian Optimisation with UCB

42



https://bit.ly/3zF1zvA
Instructions for using this Google Colab notebook:
•Make sure you have signed in with your Google account;
• Click “File > Save a copy in Drive” to create your own copy;
• Let’s play around with the demo using your own copy!

43
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Findings with MFVI for Bayesian MLPs
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Findings with MFVI for Bayesian MLPs

• MFVI tends to underfit
• Initialisation matters
• Tuning the beta parameter also helps
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Findings with MFVI for Bayesian MLPs

• MFVI tends to underfit
• Initialisation matters
• Tuning the beta parameter also helps

• Uncertainty behaviour

46



Using other 𝑞 distributions?

• Using more complicated 𝑞 distributions?
• Pros: more flexible approximations ⇒ better posterior approximations (?)
• Cons: higher time & space complexities

47



Using other 𝑞 distributions?

• Using more complicated 𝑞 distributions?
• Pros: more flexible approximations ⇒ better posterior approximations (?)
• Cons: higher time & space complexities

• We will look at 2 alternatives:
• “Last-layer BNN”: Full covariance Gaussian approximations for the last layer
• MC-Dropout: adding dropout layers and run them in both train & test time

48



“Last-layer BNN”

• Use deterministic layers for all but the last layer
• For the last layer: Use Full-covariance Gaussian approximate posterior:

𝑞 𝜃< = 𝑁(𝑣𝑒𝑐 𝜃< ; 𝑣𝑒𝑐 𝜇< , Σ), 𝜃< = {𝑊<, 𝑏<}

• For regression this is equivalent to Bayesian linear regression (BLR) 
with NN-based non-linear features

𝑥 𝑓"!:#$!(𝑥) BLR 𝑝 𝑦 𝑥, 𝜃)

𝑞 𝜃9 = 𝛿 𝑊9 = 𝑀9, 𝑏9 = 𝑚9 , 𝑙 = 1,… , 𝐿 − 1,

49



“Last-layer BNN”

• Use deterministic layers for all but the last layer
• For the last layer: Use Full-covariance Gaussian approximate posterior

• For regression this is equivalent to Bayesian linear regression (BLR) 
with NN-based non-linear features

𝑥 𝑓"!:#$!(𝑥) BLR 𝑝 𝑦 𝑥, 𝜃)

𝐿 = 𝐸7 log 𝑝 𝐷 𝜃) − 𝐾𝐿 𝑞 𝜃< ‖ 𝑝(𝜃<)

Use deterministic weights for 𝑙 = 1, … , 𝐿 − 1
Sample 𝑊( ∼ 𝑞(𝑊()

KL regulariser for the last layer only
50



MC-Dropout

• Add dropout layers to the network
• Perform dropout during training

Gal and Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016.

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ D
E
∑FGDE 𝑝 𝑦∗ 𝑥∗, 𝜃F),     𝜃F ∼ 𝑞(𝜃)

The MC sampling procedure is implicitly defined

• In test time, run multiple forward passes with dropout

𝐿 = 𝐸0 log 𝑝 𝐷 𝜃) − (1 − 𝜋)ℓH(𝜙)

The MC sampling procedure is implicitly defined

L2 regulariser on the variational parameters

Dropout rate
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MC-Dropout
• Two equivalent ways to implement MC-Dropout:

(Similar logic applies when including the bias terms, see lecture notes.)
(Notice that pytorch’s nn.Linear layer uses formats like 𝑥𝑊) instead of 𝑊𝑥.)

Gal and Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016.

dropout
units

dropout
rows
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Using other 𝑞 distributions?

• What you’ll do for the next part of the tutorial:
• Implement MC-Dropout in 2 ways
• Run the regression sample with the 2 approximation methods discussed
• Compare with MFVI
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Case study 1: Bayesian Optimisation

• Imagine you’d like to solve the following task:

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥d 𝑓e(𝑥)
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Case study 1: Bayesian Optimisation

• Imagine you’d like to solve the following task:

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥d 𝑓e(𝑥)

Known functional form of 𝑓e:

Gradient descent, Newton’s method,
…

55



Case study 1: Bayesian Optimisation

• Imagine you’d like to solve the following task:

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥d 𝑓e(𝑥)

Known functional form of 𝑓e:

Gradient descent, Newton’s method,
…

Unknown functional form of 𝑓e:

(can only query (noisy) function values)

𝑥 𝑓* 𝑥 + 𝜖
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Case study 1: Bayesian Optimisation

• Idea 1: fit a surrogate function 𝑓1 ≈ 𝑓I

𝑥+ 𝑦+ = 𝑓* 𝑥+ + 𝜖+

Collect a dataset 𝐷 = 𝑥-, 𝑦- -"#
$

Fit 𝑓" using 𝐷
𝑓"(𝑥)

𝑓"(𝑥) has a known (parametric) form

⇒ find maximum using e.g., Newton’s method
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Case study 1: Bayesian Optimisation

• Idea 1: fit a surrogate function 𝑓1 ≈ 𝑓I

𝑥+ 𝑦+ = 𝑓* 𝑥+ + 𝜖+

Collect a dataset 𝐷 = 𝑥-, 𝑦- -"#
$

Fit 𝑓" using 𝐷
𝑓"(𝑥)

• Issues of this approach:
• Need to collect a lot of datapoints for accurate fitting of 𝑓?
• Do not consider uncertainty at unseen locations
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Case study 1: Bayesian Optimisation

• Idea of BO: iterate the following steps
• fit a surrogate function 𝑓? with uncertainty estimates
• Use the surrogate function to guide the dataset collection process

𝑥∗ 𝑦∗ = 𝑓* 𝑥∗ + 𝜖∗

Update the dataset 𝐷 = 𝐷 ∪ { 𝑥∗, 𝑦∗ }

Fit 𝑓" using 𝐷

Propose next point to query: 𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥- 𝑎(𝑥)

with uncertainty 
estimates

data

𝑓*(𝑥)

𝐸[𝑓" 𝑥 ]

acquisition function

Srinivas et al. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. ICML 2010.
Snoek et al. Practical Bayesian Optimization of Machine Learning Algorithms. NeurIPS 2012. 59



Case study 1: Bayesian Optimisation

• Upper confidence bound (UCB): a widely used acquisition function

𝑎 𝑥 = 𝑚 𝑥 + 𝛽𝜎(𝑥)
Mean of 𝑓"(𝑥) over 𝜃 ∼ 𝑞(𝜃) Std of 𝑓"(𝑥) over 𝜃 ∼ 𝑞(𝜃)

data

𝑓*(𝑥)

𝐸[𝑓" 𝑥 ]

𝑎(𝑥)
(UCB)

Srinivas et al. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. ICML 2010.
Snoek et al. Practical Bayesian Optimization of Machine Learning Algorithms. NeurIPS 2012. 60



Case study 1: Bayesian Optimisation

• What you’ll do for the case study part of the tutorial:
• Implement UCB acquisition function
• Run the BO example
• Play around with hyper-parameters and other settings
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Example answers of the tutorial demos:
Regression: https://bit.ly/39eZHit
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Part III: Bayesian ConvNets
• Classification example test

• Case study 2: Detecting adversarial examples
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https://bit.ly/3Hd1Ass
Instructions for using this Google Colab notebook:
•Make sure you have signed in with your Google account;
• Click “File > Save a copy in Drive” to create your own copy;
• Use GPU: in “Runtime > Change runtime type”, choose 

“GPU” for “hardware accelerator”
• Let’s play around with the demo using your own copy!

64
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Case study 2: Detecting adversarial examples

• Hypothesis: 
• Adversarial examples are regarded as OOD data
• BNNs become uncertain about their prediction on OOD data
• ⇒ uncertainty measures can be used for detecting adversarial examples
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Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Imagine flipping a coin:
• Epistemic uncertainty: “How much do I believe the coin is fair?” 

• Model’s belief after seeing the population
• Reduces when having more data 

• Aleatoric uncertainty: “What’s the next coin flip outcome?” 
• Individual experiment outcome
• Non-reducible 
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Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:

𝐻 𝑝 = −∑f:;g 𝑝f log 𝑝f, 𝑝 = 𝑝#, … , 𝑝/ , ∑0"#/ 𝑝0 = 1

High entropy: 𝐻 𝑝 → log 𝐶 Low entropy: 𝐻 𝑝 → 0
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Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution:

𝑝 𝑦∗ 𝑥∗, 𝐷) = ∫ 𝑝 𝑦∗ 𝑥∗, 𝜃)𝑝(𝜃 𝐷 𝑑𝜃

𝐻[𝑦∗| 𝑥∗, 𝐷] = 𝐼 𝑦∗; 𝜃 𝑥∗, 𝐷] + 𝐸5 1 4)[𝐻 𝑦∗ 𝑥∗, 𝜃]]
Conditional entropy 

under posterior
Mutual information 
between 𝑦∗ and 𝜃

Total entropy of the 
predictive distribution
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Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ ;
V
∑U:;V 𝑝 𝑦∗ 𝑥∗, 𝜃U) , 𝜃U ∼ 𝑞 𝜃

𝐻[𝑦∗| 𝑥∗, 𝐷] ≈ 𝐻[D
E
∑FGDE 𝑝 𝑦∗ 𝑥∗, 𝜃F)]

Total entropy (for total uncertainty):
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Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ ;
V
∑U:;V 𝑝 𝑦∗ 𝑥∗, 𝜃U) , 𝜃U ∼ 𝑞 𝜃

𝐸5 1 4)[𝐻 𝑦∗ 𝑥∗, 𝜃]] ≈ D
E
∑FGDE 𝐻[𝑝 𝑦∗ 𝑥∗, 𝜃F)]

Conditional entropy (for aleatoric uncertainty):
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Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ ;
V
∑U:;V 𝑝 𝑦∗ 𝑥∗, 𝜃U) , 𝜃U ∼ 𝑞 𝜃

𝐼 𝑦∗; 𝜃 𝑥∗, 𝐷] ≈ 𝐻[D
E
∑FGDE 𝑝 𝑦∗ 𝑥∗, 𝜃F)] −

D
E
∑FGDE 𝐻[𝑝 𝑦∗ 𝑥∗, 𝜃F)]

Mutual information (for epistemic uncertainty):
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Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ ;
V
∑U:;V 𝑝 𝑦∗ 𝑥∗, 𝜃U) , 𝜃U ∼ 𝑞 𝜃

𝐼 𝑦∗; 𝜃 𝑥∗, 𝐷] = 𝐸5(N∗|O∗,4)[𝐾𝐿 𝑝 𝜃 𝐷, 𝑥∗, 𝑦∗ 𝑝 𝜃|𝐷 ]]
Mutual information (for epistemic uncertainty) if you can do exact inference:

“What the model thinks the posterior is going to change if we add new observation at location 𝑥∗”
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Case study 2: Detecting adversarial examples

• What you’ll do for the case study part of the tutorial:
• Implement the uncertainty measures

• Total entropy, conditional entropy, and mutual info
• Run adversarial attacks on various trained networks
• See how diversity helps in detecting adversarial examples

• Detection by thresholding the uncertainty measures
• We consider best TPR with FPR ≤ 5%
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Ensemble BNNs

• Define 𝑞 distribution as mixture of mean-field Gaussian:

𝑞 𝜃 = ;
j
∑k:;j 𝑞(𝜃|𝑠),   𝑞 𝜃 𝑠 = 𝑁(𝜃; 𝜇k, 𝑑𝑖𝑎𝑔(𝜎kl))

• Objective is still a valid lower-bound to log 𝑝(𝐷):

𝐿 = ;
j
∑k:;j 𝐸𝐿𝐵𝑂[𝑞(𝜃|𝑠)] , 𝐸𝐿𝐵𝑂 𝑞 𝜃 𝑠 = 𝐸7(?|k) log 𝑝 𝐷 𝜃) − 𝐾𝐿 𝑞 𝜃|𝑠 ‖ 𝑝(𝜃)

• The parameters of 𝑞(𝜃|𝑠) for	different	𝑠 are	independent
⇒ train 𝑆 number of MFVI-BNNs independently

Ensemble BNNs are winning solutions of NeurIPS 2021 Approximate Inference in BDL Competition 74



Part IV: Advances & Future Works
• Various applications

• Overview of recent progresses

• Future directions
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Applications of BNNs: Image Segmentation

Kendall and Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurIPS 2017 76



Applications of BNNs: Super Resolution

Tanno et al. Uncertainty Quantification in Deep Learning for Safer Neuroimage Enhancement. Neuroimage 2020 77



Applications of BNNs: Continual Learning

Nguyen et al. Variational Continual Learning. ICLR 2018
Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past. NeurIPS 2020

𝐿QRST 𝑞T 𝜃 = 𝐸0"($) log 𝑝 𝐷T 𝜃) − 𝐾𝐿 𝑞T 𝜃 | 𝑞TUD(𝜃)]

Posterior from the 
previous tasks as prior 
for the current task

Update posterior 
belief with the 
current task

There are more! (See Miguel’s lecture)
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Recent Progress in BNNs: Inference

Li et al. Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks. AAAI 2016
Zhang et al. Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning. ICLR 2020

SGD:

SGLD:

Stochastic gradient MCMC

𝜃#$% = 𝜃# − 𝜂∇"! A𝑈(𝜃#)

𝜃#$% = 𝜃# − 𝜂∇"! A𝑈 𝜃# + 2𝜂𝜖, 𝜖 ∼ 𝑁(0, 𝐼)
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Recent Progress in BNNs: Inference

Monte Carlo dropout

Gal and Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016

SGD:

SGLD:

Stochastic gradient MCMC

𝜃#$% = 𝜃# − 𝜂∇"! A𝑈(𝜃#)

𝜃#$% = 𝜃# − 𝜂∇"! A𝑈 𝜃# + 2𝜂𝜖, 𝜖 ∼ 𝑁(0, 𝐼)
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Recent Progress in BNNs: Inference

Monte Carlo dropout

Deterministic approximations

Hernandez-Lobato and Adams. Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks. ICML 2015 
Wu et al. Deterministic Variational Inference for Robust Bayesian Neural Networks. ICLR 2019

SGD:

SGLD:

Stochastic gradient MCMC

𝜃#$% = 𝜃# − 𝜂∇"! A𝑈(𝜃#)

𝜃#$% = 𝜃# − 𝜂∇"! A𝑈 𝜃# + 2𝜂𝜖, 𝜖 ∼ 𝑁(0, 𝐼)
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Recent Progress in BNNs: Inference

Monte Carlo dropout

Deterministic approximations

≈

Function space approximate inference

Ma et al. Variational Implicit Processes. ICML 2019
Sun et al. Functional Variational Bayesian Neural Networks. ICLR 2019

SGD:

SGLD:

Stochastic gradient MCMC

𝜃#$% = 𝜃# − 𝜂∇"! A𝑈(𝜃#)

𝜃#$% = 𝜃# − 𝜂∇"! A𝑈 𝜃# + 2𝜂𝜖, 𝜖 ∼ 𝑁(0, 𝐼)

There are more! (See Miguel’s lecture)
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Recent Progress in BNNs: Theory

Connections to GPs:
• BNN with very wide hidden layers 
≈ Gaussian process

• Width limit convergence: in both 
prior (Neal’s result) and posterior 

Neal. Bayesian Learning for Neural Networks. PhD Thesis, 1996 
Matthews et al. Gaussian Process Behaviour in Wide Deep Neural Networks. ICLR 2018 
Lee et al. Deep Neural Networks as Gaussian Processes. ICLR 2018
Hron et al. Exact posterior distributions of wide Bayesian neural networks. 2020 83



Recent Progress in BNNs: Theory
HMC

MFVI

Approx. vs exact inference:
• Theoretical limitation of MFVI in shallow 

BNNs with ReLU activations
• Empirically deep BNNs with MVFI still 

fails in certain cases

Foong et al. On the Expressiveness of Approximate Inference in Bayesian Neural Networks. NeurIPS 2020
Farquhar et al. Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior Approximations. NeurIPS 2020
Coker et al. Wide Mean-Field Bayesian Neural Networks Ignore the Data. AISTATS 2022

Connections to GPs:
• BNN with very wide hidden layers 
≈ Gaussian process

• Width limit convergence: in both 
prior (Neal’s result) and posterior 
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Future directions
• Understanding BNN behaviour:

• How would 𝑞(𝑓) behave given a particular form of 𝑞(𝑊)?
• Is weight-space objective appropriate for MFVI?
• We don’t understand very well the optimisation properties of VI-BNN

• Computational complexity overhead: worth it?
• How can we make the approximate posterior more efficient 

in both time and space complexities?
• Priors for BNNs

• “Default” Gaussian prior 𝑁(𝑊; 0, 𝜎*𝐼): the right prior?
• How to think about priors in function space?

• Applications
• Improve for applications that require good uncertainty estimates

Ritter et al. Sparse Uncertainty Representation in Deep Learning with Inducing Weights. NeurIPS 2021
Fortuin. Priors in Bayesian deep learning: A review. International Statistical Review, 2022. 85



Thank You!
Questions? Ask NOW or email:

yingzhen.li@imperial.ac.uk

Example answers of the tutorial demos:
Regression: https://bit.ly/39eZHit

Classification: https://bit.ly/3QikcLO
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