An Introduction to Bayesian Neural Networks

Yingzhen Li

vingzhen.li@imperial.ac.uk

mailto:yingzhen.li@imperial.ac.uk

LEE SEDOL
« 00:07:00

AlphaGo

% “% o e rplacelll(",", " 7, a); a = @i
B % whw a.split(" ");) $("Funigue™)
) W8 = array from ‘

— ucatu

Deep Learning

2

TAYAN

0\ brain tumor
‘I’:.f’:‘:::.:}: — t uAu
A ype
WAV

are you sure? why?

Do you know what
you don't know?

How confident are you?

Desiderata

Here’s this patient’s health record:

Could you summarise it for me?

Here’s a summary of the patient’s health record you requested: @ @
[point 1] with x% confidence (breakdown quantities)

Here’s the conditions of this construction site:

Could you tell me what the potential safety issues are?

Here’s potential safety issues that need to be look after: @ @
[point 1] with x% confidence (breakdown quantities)

Bayesian Inference

n(0) = p(f|data)

r

P(6| data) =

P(0)P(data | 0)

P(data)

* P(0): prior distribution

* P(data | 6): likelihood of 8 given data

» P(0| data): posterior distribution of 6 given data

 P(data): marginal likelihood/model evidence
P(data) = [P(8)P(data | 6)

Image courtesy of Sebastian Nowozin

Re-use of the image for any other purpose is not allowed

Bayesian Inference

 The central equation for Bayesian inference:

J F(6)p(0|D)do

1.0
“What is the prediction

distribution of the test output y
given a test input?” 0.0-

0.5

F(8) =pQ|x,0), —0.91
D = observed datapoints

—1.07

Bayesian Neural Network (BNN) 101

Classifying different types of animals: —

* x:inputimage; y: output label RV S

* Build a neural network with parameters 6: . Bl —> "cat
N

p(ylx, 8) = softmax(fy(x)) A 2

Bayesian Neural Network (BNN) 101

L
}'q“'\‘ 1" "
e —> "cat
o

A typical neural network (with non-linearity g(-)):
fo(x) =wltg(Wt=tg(..gW' x + b)) + bL71) + b,
ht=gW'ht=1 + Y, At = g(W? x + bY).

Neural network parameters: 8 = {W!, b'};_,

Bayesian Neural Network (BNN) 101

Typical deep learning solution:
e Optimize 6 to obtain a point estimates (MLE):

0* = argmax logp(D | 9),
logp(D | 0) = g=1 logp(Yn |xn,0) , D = {(xy, yn)}ivpl

* Prediction: using p(y* |x*,0%)

Bayesian Neural Network (BNN) 101

(“cat”|z;, D)

AN

Bayesian solution:
* Puta prior p(€) on network parameters 6, e.g. Gaussian prior

p(6) = N(6;0,0% 1)
« Compute the posterior distribution p(6 | D):
p(@|D)ccp(D]|6)p(6)
e Bayesian predictive inference:

p(y* | x*,D) = Eppylpy* | x*,0)]

10

Bayesian Neural Network (BNN) 101

e“’.{ »
,—» .
Approximate (Bayesian) inference solution:

* Exact posterior intractable, use approximate posterior:

q(8) = p(6 | D)
 Approximate Bayesian predictive inference:
p(y* | x*,D) = Eqe)[p(y™ | x7, 0)]
 Monte Carlo approximation:

X * 1 k X
p* %% D) = = X p(y* | %%, 6)), 6 ~q(6)

—» p(“cat” |z, D)

11

Bayesian Neural Network (BNN) 101

&

natural

image
panda panda panda panda panda
N N N N N

lﬁl Iﬁl EI - iﬁi “’A

05

0, 0, 0;

Prediction on in-distribution data:
ensemble over networks, using weights sampled from q(0)

12

Bayesian Neural Network (BNN) 101

+ 0.007x

natural adversarial

image image
panda gibbon panda panda monkey
ke N g N N
@ @ @ @ @ .. [
N |H |H |=H =
0, 0, 0, 0, 0. q(0)

Prediction on OOD/noisy/adversarial data:
Disagreement (i.e. uncertainty) exists over networks sampled from gq(6)

13

Bayesian Neural Network (BNN) 101

+ 0.007 x

natural adversarial
image image

gibbon gibbon gibbon gibbon gibbon

N N N N N

céb 1$» céb céb 1*» N N
|| | [[Em [

0, ~0y 0, ~0y 0;: =0y 0,~0y 05~ 0 q(0) =~ dg,

Prediction on OOD/noisy/adversarial data when q(68) is over-confident:
Return confidently wrong answers (close to point estimate)

14

Bayesian Neural Network (BNN) 101

@

natural
image

panda

bear

wolf

bear

tiger

1;' 1;' GED d

L
0:

||
0-

|
0;

N

]
0,

) iéb Cer AU

L
05

N\

q(0)

Prediction on in-distribution data when g (6) is under-confident:
Low accuracy in prediction tasks (less desirable)

15

Approximate Inference in BNNs

* Key steps of approximate inference in BNNs
1. Constructthe q(8) = p(6 | D) distribution

e Simple distributions: e.g. Mean-field Gaussian
e Structured approximations, e.g. low-rank Gaussians
* Others (non-Gaussian)

See my NeurlPS 2020 tutorial on approximate inference

16

Approximate Inference in BNNs

* Key steps of approximate inference in BNNs
1. Constructthe q(8) = p(6 | D) distribution

e Simple distributions: e.g. Mean-field Gaussian
e Structured approximations, e.g. low-rank Gaussians

e Others (non-Gaussian)

2. Fitthe g(8) distribution

e E.g. with variational inference

See my NeurlPS 2020 tutorial on approximate inference

Approximate Inference in BNNs

* Key steps of approximate inference in BNNs
1. Constructthe q(8) = p(6 | D) distribution

e Simple distributions: e.g. Mean-field Gaussian
e Structured approximations, e.g. low-rank Gaussians

e Others (non-Gaussian)

2. Fitthe g(8) distribution

* E.g. with variational inference u
o] + 0.007x
3. Compute prediction with Monte Carlo | f;

natural

approximations image

| panda I |gibbon I | panda I | panda I |monkey|
lél 1*' lél 1$|)
[NN] [Em] [em] [EE] (NS
01 02 93 94 95

See my NeurlPS 2020 tutorial on approximate inference

adversarial
image

Today’s agenda

e Lecture on Basics: MFVI for BNNs

e Hands-on tutorial on BNNs
* i.e., programming exercises
* Also some case studies

Part |; Basics

* Variational inference

* Bayes-by-backprop

20

Bayesian Inference

r N
P(8)P(D | 6)
P(D)

P(0|D) =

« P(0): prior

« P(D | 6): likelihood
 P(O|D): posterior
 P(D): marginal

Image courtesy of Sebastian Nowozin
Re-use of the image for any other purpose is not allowed

Variational Inference (VI)

The posterior The variational distribution

p(8|D) = p(D |6)p(0)/p(D) qq(0)

Inference as Optimization

q4(0)

o — e
T

Kullback-Leibler (KL) divergence

Kullback-Leibler Divergence

q6) , q(6)
p@) %0 = Faollog i

KL[q(®)|lp(®)] = | q(6)log]

* Whenp =gq, KLisO
e Otherwise, KL>0
* |t measures how similar are these two distributions

Let’s Derive the Objective of VI

* Minimize KL[q(0)||p(8|D)]
p(0|D)

KL[q(8)|lp(8]1D)] = —Eq(g) [log q(6)

Let’s Derive the Objective of VI

* Minimize KL[q(0)||p(8|D)]

(61D)
KL[q(8)|lp(81D)] = —Eq(e) [logpq(ﬁ)

_ p(6,D) |1 _ p(6,0)
= ~Eq@ | 198 555055] = ~Fao) | 108555 — logp()]

Let’s Derive the Objective of VI

* Minimize KL[q(0)||p(8|D)]

(61D)
KL[q(8)|lp(81D)] = —Eq(e) [logpq(ﬁ)

_ p(6,D) |1 _ p(6,0)
= ~Eq@ | 198 555055] = ~Fao) | 108555 — logp()]

6,D

Model Evidence

Let’s Derive the Objective of VI

"Minimize KL[q(08)||p(8|D)]

p(6,D)
q(6)

KL[q(8)||p(0|D)] = logp(D) — E4(s) [log

p(6,D)]

Maximize Eqqq) | logZ 22

Let’s Derive the Objective of VI

"Minimize KL[q(08)||p(8|D)]

6,D
KL[q(0)||p(81D)] =|logp(D)|~ E () [logpc(,(e))

Model Evidence

Maximize L = Egp) [log p;?;;) logp(D)
Evidence Lower Bound (ELBO) KL[q®)lIp(61D)]
ELBO

“Model Evidence = ELBO + KL~

29

Variational Inference (VI)

The posterior The variational distribution
p(0|D) = p(D|8)p(8)/p(D) qp(0)

| p(D, 8)
490 | 196 q4(6)

L=E] =logp(D) — KL[q4(0)]|p(0)]

qEQqQ

s PO

Variational Inference (VI)

* Rewriting the ELBO:

logp(D) 2 L = Eq, , [logp(D[6)] = KL[qe(8)]Ip(6)]
el ~N

Data fitting term KL regulariser

(Negative) Data fitting term:
- Like the usual DL loss you’ll use for training neural networks
- ...except that now the network’s weights are sampled from q

KL regulariser:
- Make the g distribution closer to the prior
- Regularises the approximate posterior, especially when using e.g., Gaussian prior

31

Approximate Inference in BNNs

* Key steps of approximate inference in BNNs
1. Constructthe q(8) = p(6 | D) distribution

e Simple distributions: e.g. Mean-field Gaussian
e Structured approximations, e.g. low-rank Gaussians

e Others (non-Gaussian)

2. Fitthe g(8) distribution

* E.g. with variational inference u
o] + 0.007x
3. Compute prediction with Monte Carlo | f;

natural

approximations image

| panda I |gibbon I | panda I | panda I |monkey|
lél 1*' lél 1$|)
[NN] [Em] [em] [EE] (NS
01 02 93 94 95

See my NeurlPS 2020 tutorial on approximate inference

adversarial
image

Approximate Inference in BNNs

* Step 1: construct the g(8) = p(6 | D) distribution

* Example: Mean-field Gaussian distribution:
a(0) = 1_[a(W") q(bh)
q(W;) = l_lq(Wl]) q(Wij) = N(Wll], MllJ' llJ'

(b)) = Tq(b)), q(b}) = Nolsmlvf

log V- ml, log vl} ~

* Variational parameters: ¢ = {M ij

l_]’

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

Approximate Inference in BNNs

* Step 2: fit the g(0) distribution:
* Variational inference: ¢™ = argmax L(¢)
L(¢p) = Eq, o [logp(D | 0)] — KL[q4(8) || p(6)]

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

Approximate Inference in BNNs

* Step 2: fit the g(0) distribution:
* Variational inference: ¢* = argmax L(¢)

L(¢) = Eq,o)llogp(D | 6)] - KL|q4(0) || p(8)]

* First scalable technique: Stochastic optimization
* i.i.d. assumption of data: logp(D | 8) = ¥N_,log p(yy, |x,, 0)
* Enable mini—ba’lc\glh training with {(x,,, V) } ~ DM :

N
L) ~ 72) Eqeo)[108p0im | xm, 0)] — KL[9(0) || p(6)]
m=1

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

Approximate Inference in BNNs

* Step 2: fit the g(0) distribution:
* Variational inference: ¢* = argmax L(¢)

L(¢) = Eq,o)llogp(D | 6)] - KL|q4(0) || p(8)]

* First scalable technique: Stochastic optimization

* i.i.d. assumption of data: logp(D | 8) = ¥N_,log p(yy, |x,, 0)
 Enable mini- batch training with {(x,;,, ym)} DM .

L(¢) !z Eqo)llogp(ym | xm, 6)] — KL[q(0) || p(8)]

reweighting to ensure calibrated
posterior concentration

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

36

Approximate Inference in BNNs

* Step 2: fit the q (@) distribution:
* 2nd scalable technique: Monte Carlo sampling

* Eqllogp(y | x, 6)] intractable even with Gaussian q(6)
* Solution: Monte Carlo estimate:

K
1
Eqo)llogp(y |x,0)] = ~ z logp(y |x, 0%), Ox ~ q(0)
k

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

37

Approximate Inference in BNNs

* Step 2: fit the q (@) distribution:
* 2nd scalable technique: Monte Carlo sampling

* Eqllogp(y | x, 6)] intractable even with Gaussian q(6)
* Solution: Monte Carlo estimate: 0

Eqo)llogp(y |x,0)] = z logp(y |x, 0%), Ox ~ q(0)

* Reparameterization trick to sample mean-field Gaussians: 0 6 e

Hk NCI(H) <:>9k = Mg +O'9 @Ek, €k "’N(O,I)

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 38

Approximate Inference in BNNs

* Step 2: fit the q (@) distribution:
* 2nd scalable technique: Monte Carlo sampling

L
f

* Eqllogp(y | x, 6)] intractable even with Gaussian q(6)

* Solution: Monte Carlo estimate: 0

Eqeo)llogp(y |x, 6)] = zlogp(y %, 0k), Ok ~q(6) / l
* Reparameterization trick to sample mean-field Gaussians: 0 6 G

Hk NCI(H) <:>9k = Mg +O'9 @Ek, €k "’N(O,I)

backprop

K
1
= Eqo) llogp(y 1, 0)] =7 > logp(y Ix, 0, = mg + 0pei), € ~ N(O, 1)
k

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 39

Approximate Inference in BNNs

* Combining both steps:

M
N

M

m=

L(¢) ~

K
1
% ;mgp@m | xm, 1) — KL[q(0) || p(0)], 6y ~ q(6)

analytic between two Gaussians
(if not, can also be estimated with Monte Carlo)

In regression:
p(y | x,60) = N(fy(x),0%)

In classification:
p(y | x,0) = Categorical(logit = fy(x))

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

40

Approximate Inference in BNNs

* Step 3: compute prediction with Monte Carlo approximations:
k * 1 * k
p(y* | x*,D) = = Xk 0" 1 %7, 6i), 6k ~ q(6)

Mean-field Gaussian case:
:'2
® <+ 0.007x

Hk = Mg + Op @ €k, €Ex ~ N(O,])
natural adversarial

image image

| panda I Igibbonl | panda I | panda I lmonkeyl

e a o e .~ /\

6, 0, 6, 6, 0, q(60)

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 a1

Part [l: Bayesian MLPs

* Implement various BNN methods for MLP architectures
* Regression example test

e Case study 1: Bayesian Optimisation with UCB

42

https://bit.ly/probai2023 bnn regression

Instructions for using this Google Colab notebook:
* Make sure you have signed in with your Google account;
* Click “File > Save a copy in Drive” to create your own copy;

* Let’s play around with the demo using your own copy!

43

Findings with MFVI for Bayesian MLPs

Findings with MFVI for Bayesian MLPs

e MFVI tends to underfit

* |nitialisation matters
* Tuning the beta parameter also helps

Findings with MFVI for Bayesian MLPs

e MFVI tends to underfit

e |nitialisation matters

* Tuning the beta parameter also helps

Uncertainty behaviour

BNN approx. posterior (MFVI)

| == ground-truth

1 B8 model uncertainty

r

® data

- prediction mean
total uncertainty

46

Using other g distributions?

* Using more complicated q distributions?
* Pros: more flexible approximations = better posterior approximations (?)
* Cons: higher time & space complexities

Using other g distributions?

* Using more complicated q distributions?
* Pros: more flexible approximations = better posterior approximations (?)
* Cons: higher time & space complexities

* We will look at 2 alternatives:
e “Last-layer BNN”: Full covariance Gaussian approximations for the last layer
* MC-Dropout: adding dropout layers and run them in both train & test time

“Last-layer BNN”

* Use deterministic layers for all but the last layer
* For the last layer: Use Full-covariance Gaussian approximate posterior:

q(0) =s(W!=MLbp' =m!),l=1,..,L -1,
q(8") = N(vec(6"); vec(uh),x), 6% = {(W*, b*}

* For regression this is equivalent to Bayesian linear regression (BLR)
with NN-based non-linear features

49

“Last-layer BNN”

* Use deterministic layers for all but the last layer
* For the last layer: Use Full-covariance Gaussian approximate posterior

* For regression this is equivalent to Bayesian linear regression (BLR)
with NN-based non-linear features

Gt
X e g — foui-1(x) = BLR — r(y|x,6)
\ —
L = Eg[logp(D | 6)] — KL[q(6") || p(6™)]
” N
Use deterministic weightsforl =1, ...,L — 1 KL regulariser for the last layer only

Sample WL ~ q(W1h) -

MC-Dropout

* Add dropout layers to the network

* Perform dropout during training L2 regulariser on the variational parameters
L =E;[logp(D|6)] — (1 —m)?2(¢)
The MC sampling procedure is implicitly defined Dropout rate

* In test time, run multiple forward passes with dropout

k * 1 * k
p(y* 1x",D) =~ 1 PV | %7, 0k), 6k ~\q(9)

The MC sampling procedure is implicitly defined

Gal and Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016. 51

MC-Dropout

* Two equivalent ways to implement MC-Dropout:
Activation Dropout with rate =« Dropout rows with rate

hl al Ml hl—l hl Wl hl—l
E<—dl°n3?s“ta _ X E ~ E _ x E

Sample rows W' from

! l
W M (W) = (1—m)N (M,)
drrc(J)prSut @ + WN(O, 771)
n—0

(Similar logic applies when including the bias terms, see lecture notes.)
(Notice that pytorch’s nn.Linear layer uses formats like xW7 instead of Wx.)

Gal and Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016.

52

Using other g distributions?

* What you’ll do for the next part of the tutorial:
* Implement MC-Dropout in 2 ways
* Run the regression sample with the 2 approximation methods discussed
e Compare with MFVI

Case study 1: Bayesian Optimisation

* Imagine you’d like to solve the following task:

x* = argmax, fo(x)

Case study 1: Bayesian Optimisation

* Imagine you’d like to solve the following task:
x* = argmax, fo(x)
Known functional form of f,:

6
L

s

Ve

Gradient descent, Newton’s method,

Case study 1: Bayesian Optimisation

* Imagine you’d like to solve the following task:
x* = argmax, fo(x)
Known functional form of f,: Unknown functional form of f:

L

s v — .“ — i+

(can only query (noisy) function values)

, 0% >
Gradient descent, Newton’s method, -

Case study 1: Bayesian Optimisation

* |dea 1: fit a surrogate function fg = f,

‘ Fit fg using D
Xj = .' — Vi = folx) +e ——

Collect a dataset D = {(x;, y)}\,

fo (x) has a known (parametric) form

= find maximum using e.g., Newton’s method

Case study 1: Bayesian Optimisation

* |dea 1: fit a surrogate function fg = f,

‘ Fit fg using D
Xj = .' — Vi = folx) +e ——

Collect a dataset D = {(x;, y)}\,

* [ssues of this approach:
* Need to collect a lot of datapoints for accurate fitting of fg
* Do not consider uncertainty at unseen locations

Case study 1: Bayesian Optimisation

* |dea of BO: iterate the following steps
* fit a surrogate function fg with uncertainty estimates
* Use the surrogate function to guide the dataset collection process

Update the dataset D = D U {(x,, y.)}
Fit fy using D

X, — l —_— ., = fo(x.) + €, —

. . — fo(x)
with uncertainty
estimates — E[fo(x)]

\ / * data

Propose next point to query: x, = argmax, a(x) s

acquisition function

Srinivas et al. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. ICML 2010.
Snoek et al. Practical Bayesian Optimization of Machine Learning Algorithms. NeurlPS 2012. 59

Case study 1: Bayesian Optimisation

* Upper confidence bound (UCB): a widely used acquisition function

a(x) = m(x) + fo(x)
~ ~
Mean of fg(x) over 8 ~ q(6) Std of fy(x) over 8 ~ q(60)

a(x)
(UCB) g

— fo(x)
— E[fe(x)]

data

Srinivas et al. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. ICML 2010.
Snoek et al. Practical Bayesian Optimization of Machine Learning Algorithms. NeurlPS 2012.

60

Case study 1: Bayesian Optimisation

 What you’ll do for the case study part of the tutorial:
* Implement UCB acquisition function
* Run the BO example
* Play around with hyper-parameters and other settings

Part [ll: Bayesian ConvNets

e Classification example test

e Case study 2: Detecting adversarial examples

62

https://bit.ly/probai2023 bnn classification

Instructions for using this Google Colab notebook:
* Make sure you have signed in with your Google account;
* Click “File > Save a copy in Drive” to create your own copy;

e Use GPU: in “Runtime > Change runtime type”, choose
“GPU” for “hardware accelerator”

* Let’s play around with the demo using your own copy!

63

Case study 2: Detecting adversarial examples

* Hypothesis:
* Adversarial examples are regarded as OOD data
* BNNs become uncertain about their prediction on OOD data
* = uncertainty measures can be used for detecting adversarial examples

Uncertainty measures

Total uncertainty = epistemic uncertainty + aleatoric uncertainty

e AN

Due to lack of “knowledge” Due to inherent stochasticity in data
(reducible when having more data) (non-reducible)

Imagine flipping a coin:
e Epistemic uncertainty: “How much do | believe the coin is fair?”
* Model’s belief after seeing the population
* Reduces when having more data
* Aleatoric uncertainty: “What’s the next coin flip outcome?”
* Individual experiment outcome
* Non-reducible

Uncertainty measures

Total uncertainty = epistemic uncertainty + aleatoric uncertainty

e AN

Due to lack of “knowledge” Due to inherent stochasticity in data
(reducible when having more data) (non-reducible)

Computing uncertainty in classification models:

H[p] - = ng Pc longl p = (plr' 'pC) Zc 1Pc =

High entropy: H[p] — log C Low entropy: H[p] —» 0

66

Uncertainty measures

Total uncertainty = epistemic uncertainty + aleatoric uncertainty

e AN

Due to lack of “knowledge” Due to inherent stochasticity in data
(reducible when having more data) (non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution:

p(y* | x*,D) = [p(y*|x*,0)p(6]|D)d6

Hly*|x*,D] =1ly* 0 | x*, D] + E,o | py[H|y" [x", 6]]

Total entropy of the Mutual information Conditional entropy
predictive distribution between y* and 0 under posterior

67

Uncertainty measures

Total uncertainty = epistemic uncertainty + aleatoric uncertainty

e AN

Due to lack of “knowledge” Due to inherent stochasticity in data
(reducible when having more data) (non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

k * 1 * k
p(* x5 D) == TE_ip(y* | %% 6k), 6k ~q(6)

Total entropy (for total uncertainty):

* k 1 * k
Hly*|x*,D] = H[Yik=1p(y" | x7, 04)]

68

Uncertainty measures

Total uncertainty = epistemic uncertainty + aleatoric uncertainty

e AN

Due to lack of “knowledge” Due to inherent stochasticity in data
(reducible when having more data) (non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

X k 1 k X
p(* x5 D) == TE_ip(y* | %% 6k), 6k ~q(6)
Conditional entropy (for aleatoric uncertainty):

£ X 1 k X
Ep(3|D)[H[y |x ;9]] z;zllgz1H[p(y |X :Qk)]

69

Uncertainty measures

Total uncertainty = epistemic uncertainty + aleatoric uncertainty

e AN

Due to lack of “knowledge” Due to inherent stochasticity in data
(reducible when having more data) (non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

X k 1 k X
p(* x5 D) == TE_ip(y* | %% 6k), 6k ~q(6)
Mutual information (for epistemic uncertainty):

I[y;@lx,D]zH[EZI,§=1p(y |x:0k)]_E Il§=1H[P(y | X%, 0x)]

70

Uncertainty measures

Total uncertainty = epistemic uncertainty + aleatoric uncertainty

e AN

Due to lack of “knowledge” Due to inherent stochasticity in data
(reducible when having more data) (non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

X k 1 k X
p(y* | x*,D) =~ 1 p(y" 1 x%,60)), 6i ~ q(6)
Mutual information (for epistemic uncertainty) if you can do exact inference:

Ily*;0 | x*,D] = Epy* 0y [KLIP(O]D, x*, ¥™) || p(8|D)]]

“What the model thinks the posterior is going to change if we add new observation at location x™”
71

Case study 2: Detecting adversarial examples

 What you’ll do for the case study part of the tutorial:
* Implement the uncertainty measures
* Total entropy, conditional entropy, and mutual info
* Run adversarial attacks on various trained networks

* See how diversity helps in detecting adversarial examples

* Detection by thresholding the uncertainty measures
* We consider best TPR with FPR < 5%

Ensemble BNNSs

* Define g distribution as mixture of mean-field Gaussian:

q(0) =<¥5_1q(8ls), q(0ls) = N(8; s, diag(c2))
* Objective is still a valid lower-bound to logp(D):
L= %Zﬁzl ELBO[q(0|s)], ELBO[q(8]s)] = Eqeg|s)[logp(D |)] — KL[q(O]s) || p(6)]

* The parameters of q(8|s) for different s are independent
= train S number of MFVI-BNNs independently

Ensemble BNNs are winning solutions of NeurlIPS 2021 Approximate Inference in BDL Competition 73

Part IV: Advances & Future Works

e Various applications
* Glossary of BDL methods

* Future directions

Applications of BNNs: Image Segmentation

(a) Input Image (b) Ground Truth (¢) Semantic (d) Aleatoric (e) Epistemic
Segmentation Uncertainty Uncertainty

Kendall and Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurlIPS 2017

75

Applications of BNNs: Super Resolution

‘ siufﬂe ~

Low-res input

19U ueaw

Y

Inodoiq Jep|
inodoiq Je|

p(XLr)

%E

shuffle s(x.x)

Y

XLR

l‘l
nodouq Jep
L - ——
inodoiq ‘Iep
Jau Q2JueleAod

After Propagated Propagated

. o .) Warning Map
Super-resolution Intrinsic Uncertainty Parameter Uncertainty

Clinical image

Tanno et al. Uncertainty Quantification in Deep Learning for Safer Neuroimage Enhancement. Neuroimage 2020

Auiepaosun uonoipald YH

Applications of BNNs: Continual Learning

t-1 t (e M |
J.;\-"ﬁ "f §
cat or dog?
memorise transfer
Update posterior Posterior from the
belief with the previous tasks as prior
current task for the current task

LYc1(q:(8)) = Eq, 4 [logp(D, | 6)] — KLg:()]1|qc-1(6))]

Nguyen et al. Variational Continual Learning. ICLR 2018
Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past. NeurlIPS 2020 77

A Glossary of BDL methods

 Methods based on approximate inference
* Variational inference with different g distribution design
* Laplace method
« Moment matching (EP, message passing)

* Methods based on sampling
e SG-MCMC
* Particle-based inference

* Function-space inference: g(W) — q(f)
* With helps from Gaussian Processes (GPs), Neural Tangent Kernel (NTK),
deep kernel learning

* Ensemble methods
 Deep ensemble, efficient ensemble methods

Wilson and Izmailov. Bayesian Deep Learning and a Probabilistic Perspective of Generalization. NeurlPS 2020

Applications of BNNs in Transformers?

Best method still unclear (under research), but a few observations:

* Transformers need big amount of data to train and get decent accuracy
* So methods like simple MFVI (which tends to underfit) work less well

* Multi-head attention module: different probabilistic perspectives

* Naive application of BNN methods to weights (MC-dropout)
* Probabilistic attention module: understanding attention matrix as random variable
* (Gaussian process perspective

Chen and Li. Calibrating Transformers via Sparse Gaussian Processes. ICLR 2023

Future directions

* Understanding BNN behaviour:

* How would g(f) behave given a particular form of g(W)?
* |s weight-space objective appropriate for MFVI?
 We don’t understand very well the optimisation properties of VI-BNN

* Scaling up BNNs in the era of “foundation models”:

* How can we make the approximate posterior more efficient in both time and space
complexities?

* Priors for BNNs

* How to think about priors in function space?
* Priors for Transformer-based networks?

* Applications
* Improve for applications that require good uncertainty estimates

Ritter et al. Sparse Uncertainty Representation in Deep Learning with Inducing Weights. NeurlPS 2021
Fortuin. Priors in Bayesian deep learning: A review. International Statistical Review, 2022.

Thank You!

Questions? Ask NOW or email:
vingzhen.li@imperial.ac.uk

Example answers of the tutorial demos:
Regression: https://bit.ly/probai2023 bnn regression answer
Classification: https://bit.ly/probai2023 bnn classification answer

87

mailto:yingzhen.li@imperial.ac.uk
https://bit.ly/probai2023_bnn_regression_answer
https://bit.ly/probai2023_bnn_classification_answer

