
An Introduction to Bayesian Neural Networks
Yingzhen Li

yingzhen.li@imperial.ac.uk

mailto:yingzhen.li@imperial.ac.uk

2

3

4

Here’s this patient’s health record:
…
Could you summarise it for me?

Here’s the conditions of this construction site:
…
Could you tell me what the potential safety issues are?

Here’s a summary of the patient’s health record you requested:
[point 1] with x% confidence (breakdown quantities)
…

Here’s potential safety issues that need to be look after:
[point 1] with x% confidence (breakdown quantities)
…

Desiderata

Bayesian Inference

𝑃 𝜃| 𝑑𝑎𝑡𝑎 =
𝑃 𝜃 𝑃 𝑑𝑎𝑡𝑎 𝜃)

𝑃 𝑑𝑎𝑡𝑎

• 𝑃 𝜃 : prior distribution
• 𝑃 𝑑𝑎𝑡𝑎 𝜃): likelihood of 𝜃 given 𝑑𝑎𝑡𝑎
• 𝑃 𝜃| 𝑑𝑎𝑡𝑎 : posterior distribution of 𝜃 given 𝑑𝑎𝑡𝑎
• 𝑃 𝑑𝑎𝑡𝑎 : marginal likelihood/model evidence

𝑃 𝑑𝑎𝑡𝑎 = ∫ 𝑃 𝜃 𝑃 𝑑𝑎𝑡𝑎 𝜃)

𝜋 𝜃 = 𝑝(𝜃|𝑑𝑎𝑡𝑎)

Image courtesy of Sebastian Nowozin
Re-use of the image for any other purpose is not allowed 5

Bayesian Inference
• The central equation for Bayesian inference:

∫ 𝐹 𝜃 𝑝(𝜃|𝐷)𝑑𝜃

“What is the prediction
distribution of the test output

given a test input?”

𝐹 𝜃 = 𝑝(𝑦|𝑥, 𝜃),
𝐷 = observed datapoints

6

Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• 𝑥: input image; 𝑦: output label
• Build a neural network with parameters 𝜃:

𝑝 𝑦 𝑥, 𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓!(𝑥))

7

Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• 𝑥: input image; 𝑦: output label
• Build a neural network with parameters 𝜃:

𝑝 𝑦 𝑥, 𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓!(𝑥))

A typical neural network (with non-linearity 𝑔(⋅)):

𝑓! 𝑥 = 𝑊"𝑔 𝑊"#$ 𝑔 …𝑔 𝑊$ 𝑥 + 𝑏$ + 𝑏"#$ + 𝑏",

ℎ% = 𝑔(𝑊% ℎ%#$ + 𝑏%), ℎ$ = 𝑔 𝑊$ 𝑥 + 𝑏$.

Neural network parameters: 𝜃 = 𝑊% , 𝑏% %&$"

8

Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• 𝑥: input image; 𝑦: output label
• Build a neural network with parameters 𝜃:

𝑝 𝑦 𝑥, 𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓!(𝑥))

Typical deep learning solution:
• Optimize 𝜃 to obtain a point estimates (MLE):

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 log 𝑝 𝐷 𝜃) ,
log 𝑝 𝐷 𝜃) = ∑(&$) log 𝑝 𝑦(𝑥(, 𝜃) , 𝐷 = 𝑥(, 𝑦((&$

)

• Prediction: using 𝑝 𝑦∗ 𝑥∗, 𝜃∗)

9

Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• 𝑥: input image; 𝑦: output label
• Build a neural network with parameters 𝜃:

𝑝 𝑦 𝑥, 𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓!(𝑥))

Bayesian solution:
• Put a prior 𝑝(𝜃) on network parameters 𝜃, e.g. Gaussian prior

𝑝 𝜃 = 𝑁(𝜃; 0, 𝜎* 𝐼)
• Compute the posterior distribution 𝑝 𝜃 𝐷):

𝑝 𝜃 𝐷) ∝ 𝑝 𝐷 𝜃) 𝑝(𝜃)
• Bayesian predictive inference:

𝑝 𝑦∗ 𝑥∗, 𝐷) = 𝐸+ ! ,)[𝑝 𝑦∗ 𝑥∗, 𝜃)]

10

Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• 𝑥: input image; 𝑦: output label
• Build a neural network with parameters 𝜃:

𝑝 𝑦 𝑥, 𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓!(𝑥))

Approximate (Bayesian) inference solution:
• Exact posterior intractable, use approximate posterior:

𝑞 𝜃 ≈ 𝑝 𝜃 𝐷)
• Approximate Bayesian predictive inference:

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ 𝐸.(!)[𝑝 𝑦∗ 𝑥∗, 𝜃)]
• Monte Carlo approximation:

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ $
0
∑1&$0 𝑝 𝑦∗ 𝑥∗, 𝜃1), 𝜃1 ∼ 𝑞(𝜃)

11

Bayesian Neural Network (BNN) 101

Prediction on in-distribution data:
ensemble over networks, using weights sampled from 𝑞(𝜃)

12

Bayesian Neural Network (BNN) 101

Prediction on OOD/noisy/adversarial data:
Disagreement (i.e. uncertainty) exists over networks sampled from 𝑞(𝜃)

13

Bayesian Neural Network (BNN) 101

Prediction on OOD/noisy/adversarial data when 𝑞 𝜃 is over-confident:
Return confidently wrong answers (close to point estimate)

14

Bayesian Neural Network (BNN) 101

Prediction on in-distribution data when 𝑞(𝜃) is under-confident:
Low accuracy in prediction tasks (less desirable)

15

Approximate Inference in BNNs
• Key steps of approximate inference in BNNs

1. Construct the 𝑞 𝜃 ≈ 𝑝 𝜃 𝐷) distribution
• Simple distributions: e.g. Mean-field Gaussian
• Structured approximations, e.g. low-rank Gaussians
• Others (non-Gaussian)

See my NeurIPS 2020 tutorial on approximate inference 16

Approximate Inference in BNNs
• Key steps of approximate inference in BNNs

1. Construct the 𝑞 𝜃 ≈ 𝑝 𝜃 𝐷) distribution
• Simple distributions: e.g. Mean-field Gaussian
• Structured approximations, e.g. low-rank Gaussians
• Others (non-Gaussian)

2. Fit the 𝑞 𝜃 distribution
• E.g. with variational inference

See my NeurIPS 2020 tutorial on approximate inference 17

Approximate Inference in BNNs
• Key steps of approximate inference in BNNs

1. Construct the 𝑞 𝜃 ≈ 𝑝 𝜃 𝐷) distribution
• Simple distributions: e.g. Mean-field Gaussian
• Structured approximations, e.g. low-rank Gaussians
• Others (non-Gaussian)

2. Fit the 𝑞 𝜃 distribution
• E.g. with variational inference

3. Compute prediction with Monte Carlo
approximations

See my NeurIPS 2020 tutorial on approximate inference 18

Today’s agenda

• Lecture on Basics: MFVI for BNNs
• Hands-on tutorial on BNNs
• i.e., programming exercises
• Also some case studies

19

Part I: Basics
• Variational inference

• Bayes-by-backprop

20

Bayesian Inference

𝑃 𝜃 | 𝐷 =
𝑃 𝜃 𝑃 𝐷 𝜃)

𝑃 𝐷

• 𝑃 𝜃 : prior
• 𝑃 𝐷 𝜃): likelihood
• 𝑃 𝜃| 𝐷 : posterior
• 𝑃 𝐷 : marginal

Image courtesy of Sebastian Nowozin
Re-use of the image for any other purpose is not allowed 21

Variational Inference (VI)

The posterior The variational distribution

𝑝 𝜃 𝐷) = 𝑝 𝐷 𝜃)𝑝(𝜃)/𝑝 𝐷 𝑞.(𝜃)

22

Inference as Optimization

Kullback-Leibler (KL) divergence

𝑝 𝜃 𝐷) 𝑞.(𝜃)

23

Kullback-Leibler Divergence

𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃)] = ∫ 𝑞 𝜃 log
𝑞(𝜃)
𝑝(𝜃)

𝑑𝜃 = 𝐸0 1 [log
𝑞 𝜃
𝑝 𝜃

]

• When 𝑝 = 𝑞, KL is 0
• Otherwise, KL > 0
• It measures how similar are these two distributions

24

Let’s Derive the Objective of VI
• Minimize 𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)]

𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)] = −E2 1 log
𝑝 𝜃 𝐷
𝑞 𝜃

25

Let’s Derive the Objective of VI
• Minimize 𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)]

𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)] = −𝐸0 1 log
𝑝 𝜃 𝐷
𝑞 𝜃

= −𝐸0 1 log 3 1,4
5 4 0 1

= −𝐸0 1 log 3 1,4
0 1

− log 𝑝(𝐷)

26

Let’s Derive the Objective of VI
• Minimize 𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)]

𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)] = −𝐸0 1 log
𝑝 𝜃 𝐷
𝑞 𝜃

= −𝐸0 1 log 3 1,4
5 4 0 1

= −𝐸0 1 log 3 1,4
0 1

− log 𝑝(𝐷)

= log 𝑝(𝐷) − 𝐸0 1 log
𝑝 𝜃, 𝐷
𝑞 𝜃

Model Evidence
27

Let’s Derive the Objective of VI
• Minimize 𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)]

𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)] = log 𝑝(𝐷) − 𝐸0 1 log
𝑝 𝜃, 𝐷
𝑞 𝜃

Maximize 𝐸! " log # ",%
! "

28

Let’s Derive the Objective of VI
• Minimize 𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)]

𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)] = log 𝑝(𝐷) − 𝐸0 1 log
𝑝 𝜃, 𝐷
𝑞 𝜃

Maximize 𝐿 = 𝐸! " log # ",%
! "

Evidence Lower Bound (ELBO)

log 𝑝(𝐷)

𝐾𝐿[𝑞 𝜃 ||𝑝(𝜃|𝐷)]

ELBO

“Model Evidence = ELBO + KL”

Model Evidence

29

Variational Inference (VI)
The posterior The variational distribution

𝑝 𝜃 𝐷) = 𝑝 𝐷 𝜃)𝑝(𝜃)/𝑝 𝐷 𝑞.(𝜃)

𝐿 = 𝐸7!(#) log
p D, 𝜃
𝑞. 𝜃

= log 𝑝 𝐷 − 𝐾𝐿[𝑞.(𝜃)||𝑝 𝜃]

𝑝 𝜃 𝐷)
𝑞 ∈ 𝑄

𝑞∗(𝜃)

30

Variational Inference (VI)

• Rewriting the ELBO:

log 𝑝(𝐷) ≥ 𝐿 = 𝐸7! # log 𝑝 𝐷 𝜃 − 𝐾𝐿[𝑞. 𝜃 ‖𝑝 𝜃]

Data fitting term KL regulariser

(Negative) Data fitting term:
- Like the usual DL loss you’ll use for training neural networks
- …except that now the network’s weights are sampled from 𝑞

KL regulariser:
- Make the 𝑞 distribution closer to the prior
- Regularises the approximate posterior, especially when using e.g., Gaussian prior

31

Approximate Inference in BNNs
• Key steps of approximate inference in BNNs

1. Construct the 𝑞 𝜃 ≈ 𝑝 𝜃 𝐷) distribution
• Simple distributions: e.g. Mean-field Gaussian
• Structured approximations, e.g. low-rank Gaussians
• Others (non-Gaussian)

2. Fit the 𝑞 𝜃 distribution
• E.g. with variational inference

3. Compute prediction with Monte Carlo
approximations

See my NeurIPS 2020 tutorial on approximate inference 32

Approximate Inference in BNNs
• Step 1: construct the 𝑞 𝜃 ≈ 𝑝 𝜃 𝐷) distribution
• Example: Mean-field Gaussian distribution:

𝑞 𝜃 =;
9:;

<

𝑞 𝑊9 𝑞(𝑏9)

𝑞 𝑊9 =;
=>

𝑞(𝑊=>
9) , 𝑞 𝑊=>

9 = 𝑁(𝑊=>
9 ; 𝑀=>

9 , 𝑉=>9)

𝑞 𝑏9 = ∏= 𝑞 𝑏=9 , 𝑞 𝑏=9 = 𝑁(𝑏=9; 𝑚=
9, 𝑣=9)

• Variational parameters: 𝜙 = 𝑀=>
9 , log 𝑉=>9 , 𝑚=

9, log 𝑣=9 9:;
<

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 33

Approximate Inference in BNNs
• Step 2: fit the 𝑞 𝜃 distribution:
• Variational inference: 𝜙∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐿(𝜙)

𝐿 𝜙 = 𝐸7!(?) log 𝑝 𝐷 𝜃) − 𝐾𝐿 𝑞. 𝜃 𝑝(𝜃)]

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 34

Approximate Inference in BNNs
• Step 2: fit the 𝑞 𝜃 distribution:
• Variational inference: 𝜙∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐿(𝜙)

𝐿 𝜙 = 𝐸7!(?) log 𝑝 𝐷 𝜃) − 𝐾𝐿 𝑞. 𝜃 𝑝(𝜃)]
• First scalable technique: Stochastic optimization

• i.i.d. assumption of data: log 𝑝 𝐷 𝜃) = ∑!"#$ log 𝑝 𝑦! 𝑥!, 𝜃)
• Enable mini-batch training with 𝑥%, 𝑦% ∼ 𝐷& :

𝐿 𝜙 ≈
𝑁
𝑀
J
@:;

A

𝐸7 ? log 𝑝 𝑦@ 𝑥@, 𝜃) − 𝐾𝐿 𝑞 𝜃 𝑝 𝜃

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 35

Approximate Inference in BNNs
• Step 2: fit the 𝑞 𝜃 distribution:
• Variational inference: 𝜙∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐿(𝜙)

𝐿 𝜙 = 𝐸7!(?) log 𝑝 𝐷 𝜃) − 𝐾𝐿 𝑞. 𝜃 𝑝(𝜃)]
• First scalable technique: Stochastic optimization

• i.i.d. assumption of data: log 𝑝 𝐷 𝜃) = ∑!"#$ log 𝑝 𝑦! 𝑥!, 𝜃)
• Enable mini-batch training with 𝑥%, 𝑦% ∼ 𝐷& :

𝐿 𝜙 ≈
𝑁
𝑀
J
@:;

A

𝐸7 ? log 𝑝 𝑦@ 𝑥@, 𝜃) − 𝐾𝐿 𝑞 𝜃 𝑝 𝜃

reweighting to ensure calibrated
posterior concentration

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 36

Approximate Inference in BNNs
• Step 2: fit the 𝑞 𝜃 distribution:
• 2nd scalable technique: Monte Carlo sampling

• 𝐸'())[log 𝑝 𝑦 𝑥, 𝜃)] intractable even with Gaussian 𝑞 𝜃
• Solution: Monte Carlo estimate:

𝐸'()) log 𝑝 𝑦 𝑥, 𝜃) ≈
1
𝐾 B

+

,

log 𝑝 𝑦 𝑥, 𝜃+) , 𝜃+ ∼ 𝑞(𝜃)

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 37

Approximate Inference in BNNs
• Step 2: fit the 𝑞 𝜃 distribution:
• 2nd scalable technique: Monte Carlo sampling

• 𝐸'())[log 𝑝 𝑦 𝑥, 𝜃)] intractable even with Gaussian 𝑞 𝜃
• Solution: Monte Carlo estimate:

𝐸'()) log 𝑝 𝑦 𝑥, 𝜃) ≈
1
𝐾 B

+

,

log 𝑝 𝑦 𝑥, 𝜃+) , 𝜃+ ∼ 𝑞(𝜃)

• Reparameterization trick to sample mean-field Gaussians:
𝜃! ∼ 𝑞 𝜃 ⇔ 𝜃! = 𝑚" + 𝜎" ⊙ 𝜖! , 𝜖! ∼ 𝑁(0, 𝐼)

𝜇 𝜎 𝜖

𝜃

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 38

Approximate Inference in BNNs
• Step 2: fit the 𝑞 𝜃 distribution:
• 2nd scalable technique: Monte Carlo sampling

• 𝐸'())[log 𝑝 𝑦 𝑥, 𝜃)] intractable even with Gaussian 𝑞 𝜃
• Solution: Monte Carlo estimate:

𝐸'()) log 𝑝 𝑦 𝑥, 𝜃) ≈
1
𝐾 B

+

,

log 𝑝 𝑦 𝑥, 𝜃+) , 𝜃+ ∼ 𝑞(𝜃)

⇒ 𝐸#(") log 𝑝 𝑦 𝑥, 𝜃) ≈
1
𝐾 T

!

&

log 𝑝 𝑦 𝑥, 𝜃! = 𝑚" + 𝜎"𝜖!) , 𝜖! ∼ 𝑁(0, 𝐼)

• Reparameterization trick to sample mean-field Gaussians:
𝜃! ∼ 𝑞 𝜃 ⇔ 𝜃! = 𝑚" + 𝜎" ⊙ 𝜖! , 𝜖! ∼ 𝑁(0, 𝐼)

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

𝜇 𝜎 𝜖

𝜃

…

𝐿

backprop

39

Approximate Inference in BNNs
• Combining both steps:

𝐿 𝜙 ≈
𝑁
𝑀
J
@:;

A
1
𝐾
J
U:;

V

log 𝑝 𝑦@ 𝑥@, 𝜃U) − 𝐾𝐿 𝑞 𝜃 𝑝 𝜃 , 𝜃U ∼ 𝑞 𝜃
analytic between two Gaussians

(if not, can also be estimated with Monte Carlo)

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

In regression:
𝑝 𝑦 𝑥, 𝜃) = 𝑁(𝑓" 𝑥 , 𝜎')

In classification:
𝑝 𝑦 𝑥, 𝜃) = 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝑙𝑜𝑔𝑖𝑡 = 𝑓"(𝑥))

40

Approximate Inference in BNNs
• Step 3: compute prediction with Monte Carlo approximations:

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ D
E
∑FGDE 𝑝 𝑦∗ 𝑥∗, 𝜃F), 𝜃F ∼ 𝑞(𝜃)

Mean-field Gaussian case:
𝜃! = 𝑚" + 𝜎"⊙ 𝜖!, 𝜖! ∼ 𝑁(0, 𝐼)

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 41

Part II: Bayesian MLPs
• Implement various BNN methods for MLP architectures

• Regression example test

• Case study 1: Bayesian Optimisation with UCB

42

https://bit.ly/probai2023_bnn_regression
Instructions for using this Google Colab notebook:
•Make sure you have signed in with your Google account;
• Click “File > Save a copy in Drive” to create your own copy;
• Let’s play around with the demo using your own copy!

43

Findings with MFVI for Bayesian MLPs

44

Findings with MFVI for Bayesian MLPs

• MFVI tends to underfit
• Initialisation matters
• Tuning the beta parameter also helps

45

Findings with MFVI for Bayesian MLPs

• MFVI tends to underfit
• Initialisation matters
• Tuning the beta parameter also helps

• Uncertainty behaviour

46

Using other 𝑞 distributions?

• Using more complicated 𝑞 distributions?
• Pros: more flexible approximations ⇒ better posterior approximations (?)
• Cons: higher time & space complexities

47

Using other 𝑞 distributions?

• Using more complicated 𝑞 distributions?
• Pros: more flexible approximations ⇒ better posterior approximations (?)
• Cons: higher time & space complexities

• We will look at 2 alternatives:
• “Last-layer BNN”: Full covariance Gaussian approximations for the last layer
• MC-Dropout: adding dropout layers and run them in both train & test time

48

“Last-layer BNN”

• Use deterministic layers for all but the last layer
• For the last layer: Use Full-covariance Gaussian approximate posterior:

𝑞 𝜃< = 𝑁(𝑣𝑒𝑐 𝜃< ; 𝑣𝑒𝑐 𝜇< , Σ), 𝜃< = {𝑊<, 𝑏<}

• For regression this is equivalent to Bayesian linear regression (BLR)
with NN-based non-linear features

𝑥 𝑓"!:#$!(𝑥) BLR 𝑝 𝑦 𝑥, 𝜃)

𝑞 𝜃9 = 𝛿 𝑊9 = 𝑀9, 𝑏9 = 𝑚9 , 𝑙 = 1,… , 𝐿 − 1,

49

“Last-layer BNN”

• Use deterministic layers for all but the last layer
• For the last layer: Use Full-covariance Gaussian approximate posterior

• For regression this is equivalent to Bayesian linear regression (BLR)
with NN-based non-linear features

𝑥 𝑓"!:#$!(𝑥) BLR 𝑝 𝑦 𝑥, 𝜃)

𝐿 = 𝐸7 log 𝑝 𝐷 𝜃) − 𝐾𝐿 𝑞 𝜃< ‖ 𝑝(𝜃<)

Use deterministic weights for 𝑙 = 1, … , 𝐿 − 1
Sample 𝑊(∼ 𝑞(𝑊()

KL regulariser for the last layer only
50

MC-Dropout

• Add dropout layers to the network
• Perform dropout during training

Gal and Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016.

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ D
E
∑FGDE 𝑝 𝑦∗ 𝑥∗, 𝜃F), 𝜃F ∼ 𝑞(𝜃)

The MC sampling procedure is implicitly defined

• In test time, run multiple forward passes with dropout

𝐿 = 𝐸0 log 𝑝 𝐷 𝜃) − (1 − 𝜋)ℓH(𝜙)

The MC sampling procedure is implicitly defined

L2 regulariser on the variational parameters

Dropout rate

51

MC-Dropout
• Two equivalent ways to implement MC-Dropout:

(Similar logic applies when including the bias terms, see lecture notes.)
(Notice that pytorch’s nn.Linear layer uses formats like 𝑥𝑊) instead of 𝑊𝑥.)

Gal and Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016.

dropout
units

dropout
rows

52

Using other 𝑞 distributions?

• What you’ll do for the next part of the tutorial:
• Implement MC-Dropout in 2 ways
• Run the regression sample with the 2 approximation methods discussed
• Compare with MFVI

53

Case study 1: Bayesian Optimisation

• Imagine you’d like to solve the following task:

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥d 𝑓e(𝑥)

54

Case study 1: Bayesian Optimisation

• Imagine you’d like to solve the following task:

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥d 𝑓e(𝑥)

Known functional form of 𝑓e:

Gradient descent, Newton’s method,
…

55

Case study 1: Bayesian Optimisation

• Imagine you’d like to solve the following task:

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥d 𝑓e(𝑥)

Known functional form of 𝑓e:

Gradient descent, Newton’s method,
…

Unknown functional form of 𝑓e:

(can only query (noisy) function values)

𝑥 𝑓* 𝑥 + 𝜖

56

Case study 1: Bayesian Optimisation

• Idea 1: fit a surrogate function 𝑓1 ≈ 𝑓I

𝑥+ 𝑦+ = 𝑓* 𝑥+ + 𝜖+

Collect a dataset 𝐷 = 𝑥-, 𝑦- -"#
$

Fit 𝑓" using 𝐷
𝑓"(𝑥)

𝑓"(𝑥) has a known (parametric) form

⇒ find maximum using e.g., Newton’s method

57

Case study 1: Bayesian Optimisation

• Idea 1: fit a surrogate function 𝑓1 ≈ 𝑓I

𝑥+ 𝑦+ = 𝑓* 𝑥+ + 𝜖+

Collect a dataset 𝐷 = 𝑥-, 𝑦- -"#
$

Fit 𝑓" using 𝐷
𝑓"(𝑥)

• Issues of this approach:
• Need to collect a lot of datapoints for accurate fitting of 𝑓?
• Do not consider uncertainty at unseen locations

58

Case study 1: Bayesian Optimisation

• Idea of BO: iterate the following steps
• fit a surrogate function 𝑓? with uncertainty estimates
• Use the surrogate function to guide the dataset collection process

𝑥∗ 𝑦∗ = 𝑓* 𝑥∗ + 𝜖∗

Update the dataset 𝐷 = 𝐷 ∪ { 𝑥∗, 𝑦∗ }

Fit 𝑓" using 𝐷

Propose next point to query: 𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥- 𝑎(𝑥)

with uncertainty
estimates

data

𝑓*(𝑥)

𝐸[𝑓" 𝑥]

acquisition function

Srinivas et al. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. ICML 2010.
Snoek et al. Practical Bayesian Optimization of Machine Learning Algorithms. NeurIPS 2012. 59

Case study 1: Bayesian Optimisation

• Upper confidence bound (UCB): a widely used acquisition function

𝑎 𝑥 = 𝑚 𝑥 + 𝛽𝜎(𝑥)
Mean of 𝑓"(𝑥) over 𝜃 ∼ 𝑞(𝜃) Std of 𝑓"(𝑥) over 𝜃 ∼ 𝑞(𝜃)

data

𝑓*(𝑥)

𝐸[𝑓" 𝑥]

𝑎(𝑥)
(UCB)

Srinivas et al. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. ICML 2010.
Snoek et al. Practical Bayesian Optimization of Machine Learning Algorithms. NeurIPS 2012. 60

Case study 1: Bayesian Optimisation

• What you’ll do for the case study part of the tutorial:
• Implement UCB acquisition function
• Run the BO example
• Play around with hyper-parameters and other settings

61

Part III: Bayesian ConvNets
• Classification example test

• Case study 2: Detecting adversarial examples

62

https://bit.ly/probai2023_bnn_classification
Instructions for using this Google Colab notebook:
•Make sure you have signed in with your Google account;
• Click “File > Save a copy in Drive” to create your own copy;
• Use GPU: in “Runtime > Change runtime type”, choose

“GPU” for “hardware accelerator”
• Let’s play around with the demo using your own copy!

63

Case study 2: Detecting adversarial examples

• Hypothesis:
• Adversarial examples are regarded as OOD data
• BNNs become uncertain about their prediction on OOD data
• ⇒ uncertainty measures can be used for detecting adversarial examples

64

Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Imagine flipping a coin:
• Epistemic uncertainty: “How much do I believe the coin is fair?”

• Model’s belief after seeing the population
• Reduces when having more data

• Aleatoric uncertainty: “What’s the next coin flip outcome?”
• Individual experiment outcome
• Non-reducible

65

Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:

𝐻 𝑝 = −∑f:;g 𝑝f log 𝑝f, 𝑝 = 𝑝#, … , 𝑝/ , ∑0"#/ 𝑝0 = 1

High entropy: 𝐻 𝑝 → log 𝐶 Low entropy: 𝐻 𝑝 → 0

66

Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution:

𝑝 𝑦∗ 𝑥∗, 𝐷) = ∫ 𝑝 𝑦∗ 𝑥∗, 𝜃)𝑝(𝜃 𝐷 𝑑𝜃

𝐻[𝑦∗| 𝑥∗, 𝐷] = 𝐼 𝑦∗; 𝜃 𝑥∗, 𝐷] + 𝐸5 1 4)[𝐻 𝑦∗ 𝑥∗, 𝜃]]
Conditional entropy

under posterior
Mutual information
between 𝑦∗ and 𝜃

Total entropy of the
predictive distribution

67

Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ ;
V
∑U:;V 𝑝 𝑦∗ 𝑥∗, 𝜃U) , 𝜃U ∼ 𝑞 𝜃

𝐻[𝑦∗| 𝑥∗, 𝐷] ≈ 𝐻[D
E
∑FGDE 𝑝 𝑦∗ 𝑥∗, 𝜃F)]

Total entropy (for total uncertainty):

68

Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ ;
V
∑U:;V 𝑝 𝑦∗ 𝑥∗, 𝜃U) , 𝜃U ∼ 𝑞 𝜃

𝐸5 1 4)[𝐻 𝑦∗ 𝑥∗, 𝜃]] ≈ D
E
∑FGDE 𝐻[𝑝 𝑦∗ 𝑥∗, 𝜃F)]

Conditional entropy (for aleatoric uncertainty):

69

Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ ;
V
∑U:;V 𝑝 𝑦∗ 𝑥∗, 𝜃U) , 𝜃U ∼ 𝑞 𝜃

𝐼 𝑦∗; 𝜃 𝑥∗, 𝐷] ≈ 𝐻[D
E
∑FGDE 𝑝 𝑦∗ 𝑥∗, 𝜃F)] −

D
E
∑FGDE 𝐻[𝑝 𝑦∗ 𝑥∗, 𝜃F)]

Mutual information (for epistemic uncertainty):

70

Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

𝑝 𝑦∗ 𝑥∗, 𝐷) ≈ ;
V
∑U:;V 𝑝 𝑦∗ 𝑥∗, 𝜃U) , 𝜃U ∼ 𝑞 𝜃

𝐼 𝑦∗; 𝜃 𝑥∗, 𝐷] = 𝐸5(N∗|O∗,4)[𝐾𝐿 𝑝 𝜃 𝐷, 𝑥∗, 𝑦∗ 𝑝 𝜃|𝐷]]
Mutual information (for epistemic uncertainty) if you can do exact inference:

“What the model thinks the posterior is going to change if we add new observation at location 𝑥∗”
71

Case study 2: Detecting adversarial examples

• What you’ll do for the case study part of the tutorial:
• Implement the uncertainty measures

• Total entropy, conditional entropy, and mutual info
• Run adversarial attacks on various trained networks
• See how diversity helps in detecting adversarial examples

• Detection by thresholding the uncertainty measures
• We consider best TPR with FPR ≤ 5%

72

Ensemble BNNs

• Define 𝑞 distribution as mixture of mean-field Gaussian:

𝑞 𝜃 = ;
j
∑k:;j 𝑞(𝜃|𝑠), 𝑞 𝜃 𝑠 = 𝑁(𝜃; 𝜇k, 𝑑𝑖𝑎𝑔(𝜎kl))

• Objective is still a valid lower-bound to log 𝑝(𝐷):

𝐿 = ;
j
∑k:;j 𝐸𝐿𝐵𝑂[𝑞(𝜃|𝑠)] , 𝐸𝐿𝐵𝑂 𝑞 𝜃 𝑠 = 𝐸7(?|k) log 𝑝 𝐷 𝜃) − 𝐾𝐿 𝑞 𝜃|𝑠 ‖ 𝑝(𝜃)

• The parameters of 𝑞(𝜃|𝑠) for	different	𝑠 are	independent
⇒ train 𝑆 number of MFVI-BNNs independently

Ensemble BNNs are winning solutions of NeurIPS 2021 Approximate Inference in BDL Competition 73

Part IV: Advances & Future Works
• Various applications

• Glossary of BDL methods

• Future directions

74

Applications of BNNs: Image Segmentation

Kendall and Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurIPS 2017 75

Applications of BNNs: Super Resolution

Tanno et al. Uncertainty Quantification in Deep Learning for Safer Neuroimage Enhancement. Neuroimage 2020 76

Applications of BNNs: Continual Learning

Nguyen et al. Variational Continual Learning. ICLR 2018
Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past. NeurIPS 2020

𝐿QRST 𝑞T 𝜃 = 𝐸0"($) log 𝑝 𝐷T 𝜃) − 𝐾𝐿 𝑞T 𝜃 | 𝑞TUD(𝜃)]

Posterior from the
previous tasks as prior
for the current task

Update posterior
belief with the
current task

77

A Glossary of BDL methods

78Wilson and Izmailov. Bayesian Deep Learning and a Probabilistic Perspective of Generalization. NeurIPS 2020

• Methods based on sampling
• SG-MCMC
• Particle-based inference

• Function-space inference: 𝑞 𝑊 → 𝑞(𝑓)
• With helps from Gaussian Processes (GPs), Neural Tangent Kernel (NTK),

deep kernel learning
• Ensemble methods

• Deep ensemble, efficient ensemble methods

• Methods based on approximate inference
• Variational inference with different 𝑞 distribution design
• Laplace method
• Moment matching (EP, message passing)

Applications of BNNs in Transformers?

79

Best method still unclear (under research), but a few observations:

Chen and Li. Calibrating Transformers via Sparse Gaussian Processes. ICLR 2023

• Multi-head attention module: different probabilistic perspectives
• Naïve application of BNN methods to weights (MC-dropout)
• Probabilistic attention module: understanding attention matrix as random variable
• Gaussian process perspective

• Transformers need big amount of data to train and get decent accuracy
• So methods like simple MFVI (which tends to underfit) work less well

Future directions
• Understanding BNN behaviour:

• How would 𝑞(𝑓) behave given a particular form of 𝑞(𝑊)?
• Is weight-space objective appropriate for MFVI?
• We don’t understand very well the optimisation properties of VI-BNN

• Scaling up BNNs in the era of “foundation models”:
• How can we make the approximate posterior more efficient in both time and space

complexities?
• Priors for BNNs

• How to think about priors in function space?
• Priors for Transformer-based networks?

• Applications
• Improve for applications that require good uncertainty estimates

Ritter et al. Sparse Uncertainty Representation in Deep Learning with Inducing Weights. NeurIPS 2021
Fortuin. Priors in Bayesian deep learning: A review. International Statistical Review, 2022. 86

Thank You!
Questions? Ask NOW or email:

yingzhen.li@imperial.ac.uk

Example answers of the tutorial demos:
Regression: https://bit.ly/probai2023_bnn_regression_answer

Classification: https://bit.ly/probai2023_bnn_classification_answer

87

mailto:yingzhen.li@imperial.ac.uk
https://bit.ly/probai2023_bnn_regression_answer
https://bit.ly/probai2023_bnn_classification_answer

