Approximate Inference with Amortised MCMC

Yingzhen Li
MLG, University of Cambridge

Joint work with Rich Turner (Cambridge) and Qiang Liu (Dartmouth)
arXiv preprint 1702.08343

Recap: from Variational EM to VAE

Variational EM

param. infer
bn,

)

n=1:N

(For simplicity we omit the model parameter @ but it would be trained by approx. MLE)

Recap: from Variational EM to VAE

Variational EM VAE
On param. In _”_‘fe_r, o param. q infer
>\
input\‘\
n=1:N n=1:N

Amortised inference: memory efficient & no need to run VI optimisation in test time!

New: from MCMC-EM to amortised MCMC

MCMC-EM

MCMC infer
D)

&)

n=1:N

For every x,, need to simulate MCMC for T >> 0 steps (slow!)

New: from MCMC-EM to amortised MCMC

MCMC-EM persistent MCMC

MCMC infer MCMC infer
po 'S pr MG {29} pr MG

from last
iteration

&) &)

n=1:N n=1:N

Need to store all samples from the previous iteration, memory cost O(NKD).
For a new datapoint, still need to run MCMC with T >> 0 starting from pg (slow!)

New: from MCMC-EM to amortised MCMC

MCMC-EM

n=1

MCMC
bo ----» Ppr

infer

N

~(z0)

&)

¢

Amortise initial distribution

param. MCMC
S U IGRERL i)
input ~~ _
n=1:N

infer

~(zv)

This method essentially cares about g1 only, so no need for q(z|x) ~ p(z|x).

In test time still need to run MCMC to obtain samples from g7 (slow!)

New: from MCMC-EM to amortised MCMC

MCMC-EM
Do MCMC _i[‘fe_r,
n=1:N

Distillation happens

¢

Amortised MCMC

d|st|I

param. r MCMC Y infer
i ar -=25(2n)

N < infer (test time)
\\
N
~

input ~~ _
: N

n=1

(thus also improving g71),

and now g(z|x) =~ p(z|x) — no need to run MCMC in test time!

Understanding “distillation during training”

* initial * final MCMC —
—> — projection
approx. approx. target update proj

MCMC Distil after MCMC Distil during training

\
P P P

Q= {#X,d(z=2") Q= {as(2)}
distillation during training can also improve results

very restrictive when K i 11
(very Bl (think about projected gradient descent)

Amortised MCMC: distillation rules

We want g to be implicit!

(i.e. can sample from g but cannot evaluate density)

idea: match samples {zt} ~ g to samples {zX} ~ g7!
e We tested the original GAN idea !

e In general, any GAN-like technique is applicable!

1Goodfellow et al. Generative Adversarial Networks. NIPS 2014.

Training generative models with implicit g distributions

OXN NI ™ O >0
NV N O0Q00 O

CIOCTTTRNTAS
S 9 D0 Qo Do & 0 O b
CeESODNDNTEYN
w0 IWIYVUwesw
PO LOOD IO W
+ T T FFNIT LIy
MM OMM A€ 0M
NNEd AN g
N =~ =~ NN\

Q0 O0YI000D

a small convolutional decoder

decoder

e Gaussian encoder: a symmetric flip of the
e Amortised MCMC (AMC) training:

Generative model:
e VAE training:

Gaussian encoder + VAE

data

- N A0 9 <!

TN ~TDIT®RYT
NN AQANRS ~ ™~
AM T S -oa N
NI eNOOIY
MPUNG OIS
NOSNVY ML OTY
ASTANIONHOMNO
O~ &g s
QOTEITN—~N

VRO T EIED
GRS VG ™ |

rSuomm—=s=QVOw
O F0) MWW e =
D> Dha~unwny
U~ TG — T W
LOMe NN
DENI@ TN~
QOTNDDORND O
N DNNWOM SN D

0.5)
e MCMC: Langevin Dynamics w/out rejection

e~ N(0,1)
e CNN-B encoder: z = MLP([CNN(x) ® €]),

e CNN-G encoder: z = MLP([CNN(x), €]),
€ ~ Bern(

CNN-B + AMC

CNN-G + AMC

An open question for test-LL evaluation

Table 1: Average Test LL and effective sample size (ESS). n as the stepsize for Langevin dynamics.

Encoder Method IS-LL IS-ESS HAIS-LL HAIS-ESS
Gaussian VAE -81.31 104.11 -80.64 91.59
MCMC-VI, T =5,n=0.2 -90.06 110.58 -89.79 85.63
AMC, T =5,1n=0.2 -90.71 49.02 -89.64 87.93
CNN-G AMC, T =5,1n=0.2 -90.84 31.60 -89.35 87.49
AMC, T =50, n = 0.02 -83.30 6.84 -78.23 77.78
AVB -94.97 11.30 -85.92 57.21
CNN-B AMC, T =5,71n=0.2 -90.75 34.17 -89.42 88.10
AMC, T =50, n =0.02 -83.62 8.88 -80.03 80.71
AVB -89.47 8.98 -82.66 76.90
N/A persistent MCMC, T =50, n =0.02 -84.43 9.14 -78.88 77.29

e HAIS seems to be more reliable (K = 100), compared to importance sampling (IS, K = 5000)
e The best case (CNN-G) is better than persistent MCMC

Missing data imputation

Xm] with missing

- [Xoa
values, repeat the following for T steps:

e Given an image x

e sample z ~ q(z|xo, Xm)

and set x, < x,,

x|z)

~ p(

*

e sample x”

Table 2: Label entropy on nearest neighbours. The h

distance is divided by the number of pixels.

CNN-G CNN-B

VAE

Entropy 0.411+0.0389 0.701+0.0476 0.933+0.0491

h

Dataset

norm 0.061£0.0002 0.059+0.0001 0.064+0.0002

Future work

A lot more to be donel!

e what's the best combo of g, MCMC algorithm, and the distillation rule?
(Langevin dynamics & original GAN are inefficient, now trying HMC & WGAN)

Reuse intermediate samples from ¢; to g7_17
Discrete distributions?
Other ideas to mix MCMC, VI and implicit distributions?

e e.g. see “reparameterised MCMC"” by Michalis Titsias

Come and find me at the posters!
(we have more distillation rules & results)

(also see later spotlight on gradient estimators)

