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Recap: from Variational EM to VAE
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(For simplicity we omit the model parameter @ but it would be trained by approx. MLE)



Recap: from Variational EM to VAE
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Amortised inference: memory efficient & no need to run VI optimisation in test time!



New: from MCMC-EM to amortised MCMC
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For every x,, need to simulate MCMC for T >> 0 steps (slow!)



New: from MCMC-EM to amortised MCMC

MCMC-EM persistent MCMC
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Need to store all samples from the previous iteration, memory cost O(NKD).
For a new datapoint, still need to run MCMC with T >> 0 starting from pg (slow!)



New: from MCMC-EM to amortised MCMC
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Amortise initial distribution
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This method essentially cares about g1 only, so no need for q(z|x) ~ p(z|x).

In test time still need to run MCMC to obtain samples from g7 (slow!)




New: from MCMC-EM to amortised MCMC
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(thus also improving g71),

and now g(z|x) =~ p(z|x) — no need to run MCMC in test time!




Understanding “distillation during training”
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distillation during training can also improve results

very restrictive when K i 11
(very Bl (think about projected gradient descent)



Amortised MCMC: distillation rules

We want g to be implicit!

(i.e. can sample from g but cannot evaluate density)

idea: match samples {zt} ~ g to samples {zX} ~ g7!
e We tested the original GAN idea !

e In general, any GAN-like technique is applicable!

1Goodfellow et al. Generative Adversarial Networks. NIPS 2014.



Training generative models with implicit g distributions
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a small convolutional decoder

decoder

e Gaussian encoder: a symmetric flip of the
e Amortised MCMC (AMC) training:

Generative model:
e VAE training:

Gaussian encoder + VAE
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e MCMC: Langevin Dynamics w/out rejection

e~ N(0,1)
e CNN-B encoder: z = MLP([CNN(x) ® €]),

e CNN-G encoder: z = MLP([CNN(x), €]),
€ ~ Bern(

CNN-B + AMC

CNN-G + AMC



An open question for test-LL evaluation

Table 1: Average Test LL and effective sample size (ESS). n as the stepsize for Langevin dynamics.

Encoder Method IS-LL  IS-ESS  HAIS-LL  HAIS-ESS
Gaussian VAE -81.31 104.11 -80.64 91.59
MCMC-VI, T =5,n=0.2 -90.06  110.58 -89.79 85.63
AMC, T =5,1n=0.2 -90.71 49.02 -89.64 87.93
CNN-G AMC, T =5,1n=0.2 -90.84 31.60 -89.35 87.49
AMC, T =50, n = 0.02 -83.30 6.84 -78.23 77.78
AVB -94.97 11.30 -85.92 57.21
CNN-B AMC, T =5,71n=0.2 -90.75 34.17 -89.42 88.10
AMC, T =50, n =0.02 -83.62 8.88 -80.03 80.71
AVB -89.47 8.98 -82.66 76.90
N/A persistent MCMC, T =50, n =0.02 -84.43 9.14 -78.88 77.29

e HAIS seems to be more reliable (K = 100), compared to importance sampling (IS, K = 5000)
e The best case (CNN-G) is better than persistent MCMC



Missing data imputation

Xm] with missing
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values, repeat the following for T steps:

e Given an image x

e sample z ~ q(z|xo, Xm)

and set x, < x,,
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e sample x”

Table 2: Label entropy on nearest neighbours. The h

distance is divided by the number of pixels.

CNN-G CNN-B

VAE

Entropy 0.411+0.0389 0.701+0.0476 0.933+0.0491

h

Dataset

norm 0.061£0.0002 0.059+0.0001 0.064+0.0002




Future work

A lot more to be donel!

e what's the best combo of g, MCMC algorithm, and the distillation rule?
(Langevin dynamics & original GAN are inefficient, now trying HMC & WGAN)

Reuse intermediate samples from ¢; to g7_17
Discrete distributions?
Other ideas to mix MCMC, VI and implicit distributions?

e e.g. see “reparameterised MCMC"” by Michalis Titsias

Come and find me at the posters!
(we have more distillation rules & results)

(also see later spotlight on gradient estimators)



