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AI safety is not only restricted to RL

Long-standing practice: Spam emails and filters

• Defender: building better spam filters

• Attacker: figure out how the spam filters work and then cheat
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Adversarial attack to image classifiers

Goodfellow et al. ICLR 2015
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Adversarial attack to NN policies

Huang et al. arXiv 2017
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CV-based autonomous driving system can get fooled!

Evtimov et al. arXiv 2017
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Closely related research topics

• computer security

• machine learning

• differential privacy

• interpretability
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Attacks



Threat Model

• Adversary’s goal: maximise some utility function

• Adversary’s capability, for example:

• modifying input data (limited or unlimited)

• modifying feature vectors

• facing constraints: amount of modifications, computation time

Biggio et al. ECML PKDD 2013
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Threat Model

• Adversary’s knowledge:

• zero-knowledge (or black-box attack)

• perfect-knowledge (white-box attack)

• limited-knowledge

Biggio et al. ECML PKDD 2013

Carlini and Wagner. ACM 2017
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Attacks to classifiers

• clean input: x with class label y

• “victim”: a classifier ypred = C (x) (or p(y |x)) than can output the correct label given a

clean input

• corrupted input: xadv = x + ε (adversarial example)

• goal: make the classifier predict wrong labels (untargeted attack) or a given label other

than the true one (targeted attack)
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Attacks to classifiers

cleverhans.io. Blogpost 2016
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White-box attacks

Fast gradient sign method (FGSM):

untargeted attack:

xadv = x− η · sgn(∇x max
y

log p(y |x))

targeted attack:

xadv = x + η · sgn(∇x log p(ytarget|x))

Goodfellow et al. ICLR 2015
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White-box attacks

Iterative attacks:

keep updating xadv until successful/running out of time

example: iterative FGSM (targeted), or called BIM:

xtadv = xt−1adv + η · sgn(∇x log p(ytarget|xt−1adv ))

example: Jacobian-based saliency map (JSMA): iteratively,

• compute ∇xp(y |x) for all possible classes y = 1, ...,Nclass

• compute the saliency map for each element of the input xi :

S(x, ytarget)i =


0 if ∇xip(ytarget|xi ) < 0

0 if
∑

y 6=ytarget
∇xip(y |xi ) > 0

∇xip(ytarget|xi )|
∑

y 6=ytarget
∇xip(y |xi )| otherwise

• pick the pixel with maximum entry to the map

• modify that pixel

Papernot et al. IEEE 2016 11



White-box attacks

Biggio et al. framework:

min
ε

dist(x, x + ε) s.t. C (x + ε) = ytarget, x + ε is a valid image

C&W framework:

min
ε

dist(x, x + ε) + λf (x + ε) s.t. x + ε is a valid image

−f (x + ε) is some utility function that needs to be specified.

Biggio et al. ECML PKDD 2013

Carlini and Wagner. IEEE 2017
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Black-box attacks

• intra-task transfer: assume dataset A and dataset B has very similar underlying data

distributions. Then attacks that can fool models trained on A is also likely to fool models

trained on B

• cross-technique transfer: assume models C and D are trained on the same dataset. Then

attacks that can fool C is also likely to fool D.

Papernot et al. arXiv 2016
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Black-box attacks

Example: cross technique adversary transfer

Papernot et al. arXiv 2016
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Attacks with limited knowledge

• Assume you cannot compute gradient/saliency maps using the victim model

• However, given an image you can query the victim for its prediction

• Idea: distillation + crafting adversarial samples on the substitute

• distillation: train a student/substitute model to mimic the behaviour of the victim model

• importantly the substitute model is used to approximate the decision boundary of the victim

model

• adversarial examples that fool the substitute model is also likely to fool the victim model

Papernot et al. arXiv 2016

15



Defences



Adversarial training

Idea: add the adversarial images to the training set

• (x, y) – clean data input and output pair

• xadv – adversarial example

• then we can add (xadv, y) to the training data

Szegedy et al. ICLR 2014

Goodfellow et al. ICLR 2015

16



Defence distillation/label smoothing

Defence distillation:

• train a big teacher network on data

• train a small student network using softmax output from the teacher

• need to divide the pre-softmax values by T

Label smoothing: convert one hot labels:

(0, 1, 0, ..., 0)→ (
ε

Nclass − 1
, 1− ε, ε

Nclass − 1
, ...,

ε

Nclass − 1
)

Papernot et al. arXiv 2015

Warde-Farley and Goodfellow. Perturbations, Optimization, and Statistics, 2016

17



Augmenting neural networks for detection/recovery

Train another network to detect/recover from attack:

• let’s say the original class labels y = 1, ...,Nclass

• add a new label y = Nclass + 1 to represent adversarial examples

• augment the neural network to include class Nclass + 1

• add (xadv,Nclass + 1) to the training data

Grosse et al. arXiv 2017

Gong et al. arXiv 2017
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Augmenting neural networks for detection/recovery

Train an auto-encoder to “de-noise” the adversarial images:

• train an AE to map both x and xadv back to x

• in test time: given any input x∗, compute label on AE(x∗) as the prediction

Gu and Rigazio. arXiv 2014
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Two sample test

Statistical testing to find adversarial examples

• assume we have two sets A and B, we know A contains clean data, B contains either clean

data or adversarial examples

• do statistical testing to determine whether A and B are identically distributed

• test statistic selection is key here

Grosse et al.. arXiv 2017
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Examining uncertainty using Bayesian neural networks

Best defence technique so far!

(caveat: I haven’t check all ICLR 2018 submissions)

Concurrently considered by us (joint work with Yarin Gal)

and a few other groups.

Li and Gal ICML 2017

Feinman et al. arXiv 2017

Louizos and Welling. ICML 2017
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Why BNNs could be more robust to adversarial attacks?

A simple reasoning for improved robustness:

• Let’s say you have an ensemble of neural nets

• In most cases the attacker can access the majority vote of the ensemble

• i.e. the attacker needs to fool more than a half of them

BNN is better than naive ensembling!

• Bayesian prediction ⇔ constructing an infinite ensemble in a principled way

• MC sampling returns a random set of ensembles
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Being robust 6= being able to detect!

• Adversarial training: more robust, but still provide point estimates

• Ensembles: even when majority vote is fooled, disagreement can still exist!

(describes uncertainty in some sense)

However, we need reliable “uncertainty” here:

• ideal case: uncertainty level grows as we move away from the data manifold

• meaning we need calibrated uncertainty estimates

• Bayesian method is one of the natural choice 1

1other possible idea: bootstrapping and bagging
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Adversarial attack detection: being Bayesian helps!

• Attack: FGSM

• Detection metric: predictive entropy

H(p(y|xadv,X,Y))

with the predictive distribution

approximated by MC-dropout

• All 3 BNNs are more robust!

• ... and indeed very uncertain at xadv

Li and Gal. ICML 2017
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Adversarial attack detection: being Bayesian helps!

• Attack: Iterative Targeted FGSM

• All 3 BNNs are agian more robust!

• This attack on BNNs produces

trajectories on the manifold!

Li and Gal. ICML 2017
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Carlini and Wagner’s comments

Carlini and Wagner claimed that all the above defences can be bypassed!

However, they did not conclude the (dropout) Bayesian NN technique to be completely broken:

“...At this time, we believe this is the most promising direction of future work.”

Carlini and Wagner. ACM 2017
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