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Sampling from Energy Density

Task:    sample from   𝜋 𝑥 : =
1

𝑍
exp[−𝐸(𝑥)]

𝑃 𝜃| 𝐷 =
𝑃 𝜃 𝑃 𝐷 𝜃)

𝑃 𝐷

Bayesian Inference Energy-based Models Molecular Dynamics Simulation
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(𝑥 ∈ 𝑅𝑑)𝑍 ≔ නexp[−𝐸(𝑥)] 𝑑𝑥



MCMC, SMC & Transport
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MCMC

• Find a transition kernel 
invariant to 𝜋(𝑥)

• Run MCMC transitions 
until ”convergence”

Transport

• Define an initial 
distribution 𝑝0(𝑥)

• Find a transport map 𝑇 
such that

𝑥1 ∼ 𝜋 𝑥
⇔

𝑥0 ∼ 𝑝0 𝑥 , 𝑥1 = 𝑇(𝑥0)

Task:    sample from   𝜋 𝑥 : =
1

𝑍
exp[−𝐸(𝑥)]

SMC

• Based on Importance 
Sampling

• Define a sequence of 
proposal distributions 
towards 𝜋(𝑥)

• Reweighting & 
Resampling

This work (training) This work (sampling)This work (training)



Continuous Normalising Flows
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• Transport via Continuous Normalising Flows (CNFs):

𝑥1 =  𝑇 𝑥0 ,               𝑇 𝑥0 ≔ 𝑥0 + 
0

1
𝑣𝑡 𝑥𝑡 𝑑𝑡

𝜕𝑡 log 𝑝𝑡 𝑥 = −∇𝑥 ⋅ 𝑣𝑡 𝑥 − ⟨∇𝑥 log 𝑝𝑡 𝑥 , 𝑣𝑡 𝑥 ⟩

• Probability density evolves: 𝑝𝑡 𝑥 𝑡∈[0,1] satisfy

Figure adapted from Grathwohl et al. ICLR 2019

• Notice the difference from change-of-variable rule:

𝜕𝑡 log 𝑝𝑡 𝑥𝑡 = −∇𝑥 ⋅ 𝑣𝑡 𝑥𝑡

𝑝0(𝑥)

𝑝1(𝑥)

𝜋 𝑥 =
1

𝑍
exp[−𝐸(𝑥)]



Neural Flow Sampler

• Learn a flow model 𝑣𝜃(𝑥, 𝑡) by minimising L2 error: 

4

• Specify a density path: 

𝑝𝑡 𝑥 𝑡∈[0,1]:  𝑝𝑡 𝑥 =
1

𝑍𝑡
exp[−𝐸𝑡(𝑥)], 

𝑝0(𝑥) easy to sample,         𝑝1 𝑥 = 𝜋 𝑥 , i.e., 𝐸1 𝑥 ≔ 𝐸(𝑥)

• Simulate samples from 𝜋(𝑥) (approximately) by solving ODE: 

𝑥0 ∼ 𝑝0 𝑥 , 𝑥1 ≔ 𝑥0 + න
0

1

𝑣𝜃 𝑥𝑡 , 𝑡 𝑑𝑡

𝐿 𝑣𝜃 ≔ 𝐸𝑞𝑡(𝑥)[‖ 𝜕𝑡 log 𝑝𝑡 𝑥 + ∇𝑥 ⋅ 𝑣𝜃 𝑥, 𝑡 + ⟨∇𝑥 log 𝑝𝑡 𝑥 , 𝑣𝜃 𝑥, 𝑡 ⟩ ‖2
2]

Ensuring continuity equation to hold for every 𝑥 ∼ 𝑞𝑡(𝑥)

Tian et al. Liouville Flow Importance Sampler. ICML 2024
Mate and Fleuret. Learning Interpolations between Boltzmann Densitie. TMLR 2023

𝜋 𝑥 =
1

𝑍
exp[−𝐸(𝑥)]

E.g., tempering: 
𝐸𝑡 𝑥 = 𝛽𝑡𝐸0 𝑥 + 1 − 𝛽𝑡 𝐸(𝑥), 

𝛽0 = 1, 𝛽1 = 0



Neural Flow Sampler
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• Challenges:
• Selecting the “training data” distribution 𝑞𝑡(𝑥) and estimating the expectation

• Not necessary for 𝑞𝑡 𝑥 = 𝑝𝑡(𝑥) but ideally 𝑞𝑡 𝑥 ≈ 𝑝𝑡(𝑥) 

𝑝𝑡 𝑥 ≔
1

𝑍𝑡
exp[−𝐸𝑡(𝑥)]    ⇒   𝜕𝑡 log 𝑝𝑡 𝑥 = −𝜕𝑡𝐸𝑡 𝑥 − 𝜕𝑡 log 𝑍𝑡

(intractable)

• Estimating 𝜕𝑡 log 𝑝𝑡(𝑥): 

• Solving the ODE flow simulation in a fast way

𝐿 𝑣𝜃 ≔ 𝐸𝑞𝑡(𝑥)[‖ 𝜕𝑡 log 𝑝𝑡 𝑥 + ∇𝑥 ⋅ 𝑣𝜃 𝑥, 𝑡 + ⟨∇𝑥 log 𝑝𝑡 𝑥 , 𝑣𝜃 𝑥, 𝑡 ⟩ ‖2
2]

𝑥0 ∼ 𝑝0 𝑥 , 𝑥1 ≔ 𝑥0 + න
0

1

𝑣𝜃 𝑥𝑡 , 𝑡 𝑑𝑡

Training:

Sampling:

= −∇𝑥𝐸𝑡(𝑥)

𝜋 𝑥 =
1

𝑍
exp[−𝐸(𝑥)]



Using “Training Data” 𝑞𝑡(𝑥)
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𝐿 𝜃 ≔ 𝐸𝑞𝑡(𝑥)[‖ 𝜕𝑡 log 𝑝𝑡 𝑥 + ∇𝑥 ⋅ 𝑣𝜃 𝑥, 𝑡 + ⟨∇𝑥 log 𝑝𝑡 𝑥 , 𝑣𝜃 𝑥, 𝑡 ⟩ ‖2
2]

• Estimating expectation under 𝑞𝑡 𝑥 ≈ 𝑝𝑡(𝑥) via velocity-driven SMC:
• A typical SMC method (e.g., Hamiltonian AIS): 

• Pick 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑀 = 1 and run SMC with path 𝑝𝑡𝑚
𝑥

𝑚=0

𝑀
 as proposals

• Compute the importance weights by accumulating density ratios through time
• Resampling is required by monitoring ESS

• The steps for approximately drawing samples from 𝑝𝑡𝑚
(𝑥):

• Transport from previous step: 𝑥𝑡𝑚
= 𝑥𝑡𝑚−1

+ 
𝑡𝑚−1

𝑡𝑚 𝑣𝜃 𝑥𝑡 , 𝑡 𝑑𝑡       (“prediction”)

• Run (short-chain) HMC: 𝑥𝑡𝑚
= 𝐻𝑀𝐶 𝑥𝑡𝑚

                               (“correction”)

Neal. Annealed Importance Sampling. Stats. Comp., 2001
Neal. MCMC using Hamiltonian Dynamics. Handbook of MCMC, 2010

𝜋 𝑥 =
1

𝑍
exp[−𝐸(𝑥)]



Estimating 𝜕𝑡 log 𝑍𝑡
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𝜕𝑡 log 𝑍𝑡 =
1

𝑍𝑡
𝜕𝑡 නexp[−𝐸𝑡(𝑥)] 𝑑𝑥 = −

1

𝑍𝑡
නexp −𝐸𝑡 𝑥 𝜕𝑡𝐸𝑡 𝑥 𝑑𝑥 = −𝐸𝑝𝑡 𝑥 [𝜕𝑡𝐸𝑡(𝑥)]

Monte Carlo estimate 
can have high variance!

• Stein’s Identity ensures unbiasedness: for any 𝑣𝜃(𝑥, 𝑡)

𝐸𝑝𝑡(𝑥) ∇𝑥 ⋅ 𝑣𝜃 𝑥, 𝑡 + ⟨∇𝑥 log 𝑝𝑡 (𝑥), 𝑣𝜃 𝑥, 𝑡 ⟩ = 0

• Solution: Stein control variate with 𝑥𝑘 ∼ 𝑝𝑡(𝑥) 

−𝐸𝑝𝑡 𝑥 𝜕𝑡𝐸 𝑥 ≈
1

𝐾
σ𝑘=1

𝐾 −𝜕𝑡𝐸𝑡 𝑥𝑘 + 𝛽 ∇𝑥 ⋅ 𝑣𝜃 𝑥𝑘 , 𝑡 + ⟨∇𝑥 log 𝑝𝑡 (𝑥𝑘), 𝑣𝜃 𝑥𝑘 , 𝑡 ⟩      

(Langevin-Stein Operator)

Liu et al. Action-dependent Control Variates for Policy Optimization via Stein Identity. ICLR 2018

• Continuity equation for globally optimal 𝑣𝜃 𝑥, 𝑡

−𝜕𝑡𝐸𝑡 𝑥 + ∇𝑥 ⋅ 𝑣𝜃 𝑥, 𝑡 + ∇𝑥 log 𝑝𝑡 𝑥 , 𝑣𝜃 𝑥, 𝑡 = 𝜕𝑡 log 𝑍𝑡 

⇒ Variance is 0 when 𝛽 = 1 and 𝑣𝜃(𝑥, 𝑡) is optimal

≔ 𝜉𝑡(𝑥; 𝑣𝜃(𝑥, 𝑡))

𝜋 𝑥 =
1

𝑍
exp[−𝐸(𝑥)]



Speeding up with Shortcuts
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𝑥0 ∼ 𝑝0 𝑥 , 𝑥1 ≔ 𝑥0 + න
0

1

𝑣𝜃 𝑥𝑡 , 𝑡 𝑑𝑡Sampling:

Naïve Euler method 
requires a lot of steps! 

Solution: Shortcut models
𝑥𝑡+𝑑 ← 𝑥𝑡 + 𝑠𝜃 𝑥𝑡 , 𝑡, 𝑑 𝑑

Frans et al. One Step Diffusion via Shortcut Models. ICLR 2025

• 𝑠𝜃 𝑥𝑡 , 𝑡, 0 ≔ 𝑣𝜃(𝑥𝑡 , 𝑡)

• 𝑠𝜃 𝑥𝑡 , 𝑡, 2𝑑 =
1

2
𝑠𝜃 𝑥𝑡 , 𝑡, 𝑑 +

1

2
𝑠𝜃(𝑥𝑡+𝑑 , 𝑡 + 𝑑, 𝑑)

• A shortcut model 𝑠𝜃  is a valid ODE solver if for any 𝑥𝑡:

• Training a neural flow shortcut sampler:

෨𝐿 𝑠𝜃 ≔ 𝐿 𝑠𝜃 ⋅,⋅, 0 + 𝐸𝑞 𝑑 ‖𝑠𝜃 𝑥𝑡, 𝑡, 2𝑑 −
1

2
𝑠𝜃 𝑥𝑡, 𝑡, 𝑑 −

1

2
𝑠𝜃(𝑥𝑡+𝑑, 𝑡 + 𝑑, 𝑑)‖2

2  

flow learning enforcing consistency

𝜋 𝑥 =
1

𝑍
exp[−𝐸(𝑥)]



Example: Mixture of 40 Gaussians
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Midgley et al. Flow Annealed Importance Sampling Bootstrap. ICLR 2023
Akhound-Sadegh et al. Iterated Denoising Energy Matching for Sampling from Boltzmann Densities. ICML 2024
Tian et al. Liouville Flow Importance Sampler. ICML 2024

• “Ground Truth”: samples from mixture of Gaussians
• FAB: normalising flow transport map, trained by alpha-divergence, “data” from AIS + replay buffer
• iDEM: diffusion-based, score estimation via importance sampling + replay buffer
• LFIS: continuity equation-based loss, no amortization across 𝑡, simple importance sampling for 𝜕𝑡 log 𝑍𝑡



Example: Mixture of 40 Gaussians
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Example: Many-Well 32-Dim

11Midgley et al. Flow Annealed Importance Sampling Bootstrap. ICLR 2023

𝜋 𝑥 = ς𝑖=1
16 𝜋(𝑥2𝑖−1, 𝑥2𝑖) , 

log 𝜋 𝑥2𝑖−1, 𝑥2𝑖 = −𝑥2𝑖−1
4 + 6𝑥2𝑖−1

2 + 0.5 𝑥2𝑖−1 − 0.5𝑥2𝑖
2 + 𝐶

• dim 𝑥 = 32
• 216 = 65,536 symmetric modes
• “Ground Truth” samples generated 

by sampling from the marginals
• Rejection sampling for 𝑥2𝑖−1

• Gaussian for 𝑥2𝑖



Example: Many-Well 32-Dim
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• “Ground Truth”: rejection sampling for odd dimensions + Gaussian sampling for even dimensions
• FAB: normalising flow transport map, trained by alpha-divergence, “data” from AIS + replay buffer
• iDEM: diffusion-based, score estimation via importance sampling + replay buffer
• LFIS: continuity equation-based loss, no amortization across 𝑡, simple importance sampling for 𝜕𝑡 log 𝑍𝑡

𝑝(𝑥1, 𝑥4)

𝑝(𝑥2, 𝑥3)



Example: Many-Well 32-Dim 
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𝑝(𝑥1, 𝑥3)



Quantitative Results
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• Compared with “ground-truth” samples
• Comparing 𝑥-space sample distribution (e.g., 𝑥-TV) & energy histogram (e.g., 𝜖-TV)
• For DW-4, 𝑥-space metric is replaced by 𝑑-space metric (“distance between atoms”) 

DW-4: 𝐸 𝑥 =
1

2
σ𝑖,𝑗 −4 𝑑𝑖𝑗 − 𝑑0

2
+ 0.9 𝑑𝑖𝑗 − 𝑑0

4
, 𝑑𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 2

 



Summary of the Recipe

• Idea of Neural Flow Shortcut Sampler in a nutshell:
• Specify a density path 𝑝𝑡 𝑥 𝑡∈[0,1] with: 

• Easy-to-sample 𝑝0(𝑥)

• Tractable energy function 𝑝𝑡 𝑥 ∝ exp[−𝐸𝑡(𝑥)]

• 𝑝1 𝑥 = 𝜋 𝑥

• Train a flow sampler to satisfy the continuity equation wrt. 𝑝𝑡 𝑥 𝑡∈[0,1]

• Selecting a good “training data” distribution (via e.g., SMC)

• Estimating intractable terms efficiently (with e.g., control variate)

• In sampling time, generate samples by ODE/flow simulation
• Shortcut model to speed-up, achieving speed-accuracy trade-off

15

Task:    sample from   𝜋 𝑥 : =
1

𝑍
exp[−𝐸(𝑥)]



Challenges & Future Work

• Quality of 𝑞𝑡(𝑥) as an approximation to 𝑝𝑡(𝑥)

• Computation of divergence ∇𝑥 ⋅ 𝑣𝜃(𝑥, 𝑡)

• Sampling from density with high “energy barrier”

• Adaptive and faster ODE solvers (e.g., adaptive shortcut model?)

• Also optimising the density path {𝑝𝑡 𝑥 }?

• Scaling-up the neural samplers to high dimensions?

• Discrete versions of neural flow samplers and shortcuts?

• Simulation-free training?

16Holderrieth et al. LEAPS: A discrete neural sampler via locally equivariant networks. arXiv:2502.10843

Chen*, Ou* and Li,
“Neural Flow Samplers with Shortcut Models”

https://arxiv.org/abs/2502.07337

https://arxiv.org/abs/2502.07337


Appendix: A Coordinate Descent View
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• Equivalent to performing coordinate descent + Monte Carlo for optimisation w.r.t. 𝑣𝜃  and 𝐶𝑡:

• Practical Implementation of Stein control variate with 𝑥𝑘 ∼ 𝑞𝑡(𝑥) 

𝜕𝑡 log 𝑍𝑡 ≈
1

𝐾
σ𝑘=1

𝐾 −𝜕𝑡𝐸𝑡 𝑥𝑘 + 𝛽 ∇𝑥 ⋅ 𝑣𝜃 𝑥𝑘 , 𝑡 + ⟨∇𝑥 log 𝑝𝑡 (𝑥𝑘), 𝑣𝜃 𝑥𝑘 , 𝑡 ⟩      

(Langevin-Stein Operator)

𝜋 𝑥 =
1

𝑍
exp[−𝐸(𝑥)]

𝐿 𝑣𝜃 , 𝐶𝑡 ≔ 𝐸𝑞𝑡(𝑥)[‖ − 𝜕𝑡 𝐸𝑡 𝑥 − 𝐶𝑡 +∇𝑥 ⋅ 𝑣𝜃 𝑥, 𝑡 + ⟨∇𝑥 log 𝑝𝑡 𝑥 , 𝑣𝜃 𝑥, 𝑡 ⟩ ‖2
2]

⇒        𝐶𝑡
∗ = 𝐸𝑞𝑡(𝑥)[−𝜕𝑡 𝐸𝑡 𝑥 +∇𝑥 ⋅ 𝑣𝜃 𝑥, 𝑡 + ⟨∇𝑥 log 𝑝𝑡 𝑥 , 𝑣𝜃 𝑥, 𝑡 ⟩]

With globally optimal 𝑣𝜃(𝑥, 𝑡), we also have 𝐶𝑡
∗ = 𝜕𝑡 log 𝑍𝑡
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