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Sampling from Energy Density

Task: sample from m(x): = %exp[—E(x)]

Z = fexp[—E(x)] dx (x € R%)
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MCMC, SMC & Transport

Task: sample from m(x): = %exp[—E(x)]

MCMC SMC Transport
* Find a transition kernel * Based on Importance * Define an initial
invariant to (x) Sampling distribution py(x)
* Run MCMC transitions * Define a sequence of  Find atransportmap T
until “convergence” proposal distributions such that
towards (x) x; ~ m(x)
* Reweighting & =
Resampling Xog ~ Po(x),x; =T (%)

This work (training) This work (training) This work (sampling)



1
m(x) = - exp[—E )]

Continuous Normalising Flows

 Transport via Continuous Normalising Flows (CNFs):

1

x; = T(xp), T(xo) = xo + J, v¢(x,)dt

* Probability density evolves: {p,;(x)}¢¢[o 17 Satisfy
0t logp,(x) = =V, - v:(x) — (V logpe(x) , v (x))

* Notice the difference from change-of-variable rule:

0 logp(x;) = =V, - v, (x;)

Figure adapted from Grathwohl et al. ICLR 2019 3



1
m(x) = - exp[—E )]

Neural Flow Sampler
E.g., tempering:

. : : _ Et(x) = BrEo(x) + (1 — B E(x),
Specify a density path: B =15 =0

{pt(x)}tE[O,l]: pe(x) = ;11: exp|—E:(x)],
po(x) easy to sample, p(x) = w(x),i.e., E;(x) == E(x)

* Learn a flow model vy (x, t) by minimising L2 error:

L(vg) = Eq [l 0:1ogpe(x) + Vy - vg(x, t) + (Vy log pe(x) , vg (x, )} lI5]

Ensuring continuity equation to hold for every x ~ g;(x)

* Simulate samples from m(x) (approximately) by solving ODE:

1
Xy ~ po(X),  x, = xg + j vy (xy, )dt
0

Tian et al. Liouville Flow Importance Sampler. ICML 2024
Mate and Fleuret. Learning Interpolations between Boltzmann Densitie. TMLR 2023 4



1
m(x) = - exp[—E )]

Neural Flow Sampler

= =VyE:(x)
Training:  L(vg) := Eg, o[l 9¢ logp (x) + V, - vg(x,t) + (]Vx logpt(XJ|, ve(x, ) 115]

1
Sampling: Xg ~ Po(x), X1 = Xg t f Vg (x¢, t)dt
0

 Challenges:

* Selecting the “training data” distribution g;(x) and estimating the expectation
* Not necessary for g, (x) = p;(x) butideally g,(x) = p;(x)

* Estimating d; log p;(x):
pe(x) = Zitexp[—Et(x)] = d;logp,(x) = —0,E.(x) — 0, log Z,

(intractable)

 Solving the ODE flow simulation in a fast way



1
n(x) = - exp[—E(x)]

Using “Training Data” q¢(x)

L(H) = eq(x)[” at logpt(x) + vx ) (X, t) + (Vx logpt(x) ) UQ(X, t)) ”%]

 Estimating expectation under q;(x) =~ p;(x) via velocity-driven SMC:
 Atypical SMC method (e.g., Hamiltonian AlS):

* PickO=t, <t; <t, <-- <ty =1andrun SMC with path {ptm(x)}j::o as proposals

« Compute the importance weights by accumulating density ratios through time
e Resampling is required by monitoring ESS

* The steps for approximately drawing samples from p,  (x):

. ~ t “« . g ”
* Transport from previous step: X, = x; . + ftm ) vo(x,, t)dt  (“prediction”)
m_

*  Run (short-chain) HMC: x; = HMC(itm) (“correction”)

Neal. Annealed Importance Sampling. Stats. Comp., 2001
Neal. MCMC using Hamiltonian Dynamics. Handbook of MCMC, 2010 6
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m(x) = - exp[—E )]

Estimating d; log Z; |

can have high variance!

1 1
OclogZ, = Z_tat fexp[—Et(x)] dx = _Z_t exp|—E¢(x)] 0. E(x)dx = —E,, () [0:E¢ (X)]

e Solution: Stein control variate with x® ~ p,(x) (Langevin-Stein Operator)

—~Ep, o [0 EGO] ~ 2 BK_y —0,E(x*) + B[V, - vp (x¥, £) + (V,c logp, (x¥), vg(x*,1))]

1.0
* Stein’s Identity ensures unbiasedness: for any vy (x, t) _
©0.8
Ep. ) [Vx - v (x, ) + (Vi log pe (x), vg(x, )] = 0 E WMM‘WM
i 0-6 —— Epadog Be(x)
« Continuity equation for globally optimal vy (x, t) '?‘3,0 ) B Eilx Vi)
—0:E(x) + [V, - vg(x, t) + (V, logps (x),ve(x, t))] = 0;log Z; 5
202
=&t (% vg(x, 1)) 7

(=]
o

= Variance is 0 when f = 1 and vg(x, t) is optimal 05 T T T 0% AT
Training Steps

Liu et al. Action-dependent Control Variates for Policy Optimization via Stein Identity. ICLR 2018
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m(x) = - exp[—E )]

Speeding up with Shortcuts

1 Naive Euler method

ires a lot of steps!
Sampling: Xo ~ Po(x), X1 = X +j Vo (x,, t)dt AR
0

Solution: Shortcut models
Xevg < X¢ + Sg(xs, t,d)d
* Ashortcut model sg is a valid ODE solver if for any x;:
o Sp(xs,t,0) :=vg(xs, t)
o sglx,t,2d) = %59 (xp, t,d) + %sg (Xppqt+d, d)

* Training a neural flow shortcut sampler:

L(sg) = L(s9C, 0)) + Eqeay [l150 (e, £, 2d) =2 59, £, d) — 2 59 (s, t + d, )13

flow learning enforcing consistency

Frans et al. One Step Diffusion via Shortcut Models. ICLR 2025



Example: Mixture of 40 Gaussians

 “Ground Truth”: samples from mixture of Gaussians

* FAB: normalising flow transport map, trained by alpha-divergence, “data” from AIS + replay buffer

* iDEM: diffusion-based, score estimation via importance sampling + replay buffer

* LFIS: continuity equation-based loss, no amortization across t, simple importance sampling for d; log Z;

Midgley et al. Flow Annealed Importance Sampling Bootstrap. ICLR 2023
Akhound-Sadegh et al. Iterated Denoising Energy Matching for Sampling from Boltzmann Densities. ICML 2024
Tian et al. Liouville Flow Importance Sampler. ICML 2024 9



Example: Mixture of 40 Gaussians

16 steps

o

eps

10



Example: Many-Well 32-Dim

m(x) =

logm(xp;_1,%p;) = —X5;_4 +6x5,_1 + 0.5x,;_; — 0.5x3; + C

e dim(x) = 32
« 216 = 65,536 symmetric modes
* “Ground Truth” samples generated
by sampling from the marginals
* Rejection sampling for x,;_4
* Gaussian for x,;

Midgley et al. Flow Annealed Importance Sampling Bootstrap. ICLR 2023

16
=1 T[(x2i—1' xZi) )

0.10 A Ground Truth
FAB
IDEM
0.08 - LFIS
NFS? (ours)
0.06 A
0.04 4
0.02 A
0.00 T = T T T | T T
10 20 30 40 50 60 70

Energy
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Example: Many-Well 32-Dim

Ground Truth I NES (ours)

*  “Ground Truth”: rejection sampling for odd dimensions + Gaussian sampling for even dimensions

* FAB: normalising flow transport map, trained by alpha-divergence, “data” from AIS + replay buffer

* iDEM: diffusion-based, score estimation via importance sampling + replay buffer

e LFIS: continuity equation-based loss, no amortization across t, simple importance sampling for d; log Z; 12



Example: Many-Well 32-Dim

32 steps

p(x1,x3)

A
\ & LA,
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Quantitative Results

Table 1: Comparison of neural samplers on GMM-40, MW-32, and DW-4 energy functions, with
mean and standard deviation based on five evaluations using different random seeds.

Energy — GMM-40 (d = 2) MW-32 (d = 32) DW-4 (d = 8)

Method | E-Wo X-TV E-TV X-Ws E-Wa E-TV D-TV
FAB (Midgley et al., 2023) 8.89+220 0.84+019 0.25+001 5.78+0.02 0.64+020 0.22+0.01 0.09+0.01
1DEM (Sadegh et al., 2024) 1.27+021 0.83+0.01 0.63+0.15 8.18+0.04 0.19+0.05 0.21+001 0.10+0.01
LFIS (Tian et al., 2024) 0.27+021 0.84+0.01 00 8.89+0.03 6.06+1.05 0.66+0.02 0.29+0.01
NFS2-128 (ours) 0.46+0.14 0.67+000 0.16+0.00 6.17+0.01 0.44+003 0.10+0.01 0.07+0.01
NFS2-64 (ours) 1.32+029 0.69+0.01 0.18+0.00 6.34+001 0.98+0.16 0.13+001 0.11+0.01
NFS2-32 (ours) 4.38+114 0.72+001 0.49+0.01 9.05+0.01 14.97+082 0.41+001 0.28+0.01

DW-4. E(X) = %Zi,j [_4(dl] — do)z + Og(du — d0)4] rdij = ||xl — xj”Z

* Compared with “ground-truth” samples
* Comparing x-space sample distribution (e.g., x-TV) & energy histogram (e.g., €-TV)
* For DW-4, x-space metric is replaced by d-space metric (“distance between atoms”)

14



Summary of the Recipe
Task: sample from m(x): = %exp[—E(x)]

* Idea of Neural Flow Shortcut Sampler in a nutshell:

* Specify a density path {p;(x)},¢[0,17 with:
* Easy-to-sample py(x)
e Tractable energy function p,(x) o exp[—E;(x)]
* p(x) = m(x)

» Train a flow sampler to satisfy the continuity equation wrt. {p¢(x) }¢ejo,1
» Selecting a good “training data” distribution (via e.g., SMC)
* Estimating intractable terms efficiently (with e.g., control variate)

* In sampling time, generate samples by ODE/flow simulation
* Shortcut model to speed-up, achieving speed-accuracy trade-off

15



Chen*, Ou* and Lij,
“Neural Flow Samplers with Shortcut Models”

C h d | | en ge S & F ut ure WO r k https://arxiv.org/abs/2502.07337

* Quality of g;(x) as an approximation to p;(x)

* Computation of divergence V,. - vg(x, t)

* Sampling from density with high “energy barrier”

* Adaptive and faster ODE solvers (e.g., adaptive shortcut model?)
* Also optimising the density path {p;(x)}?

* Scaling-up the neural samplers to high dimensions?
* Discrete versions of neural flow samplers and shortcuts?
e Simulation-free training?

Holderrieth et al. LEAPS: A discrete neural sampler via locally equivariant networks.arXiv:2502.10843 16
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1
m(x) = - exp[—E )]

Appendix: A Coordinate Descent View

e Practical Implementation of Stein control variate with x* ~ g, (x)

(Langevin-Stein Operator)

1$K
0p10gZ; ~ ~ Yoy —0.E(x*) + B[V, - v (x*, 1) + (Vy logp, (x7), v (2", 1))]
* Equivalent to performing coordinate descent + Monte Carlo for optimisation w.r.t. vg and C;:

L(vg, C) = Eq ([l = 0¢ E(x) — C, 4V, - vg(x, ) + (Vy logp, (%) , vo (x, )} I5]
= Ci = Eq,0)[—0¢ Ee(x) +V, - vg(x,t) + (Vy logp(x), vg(x, 1))]

With globally optimal vg(x, t), we also have C; = d;logZ;

17
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