

Towards Causal Deep Generative Models for Sequential Data

Yingzhen Li

yingzhen.li@imperial.ac.uk

t_x Controllable Video Generation

Disentangle the representation in unsupervised fashion:

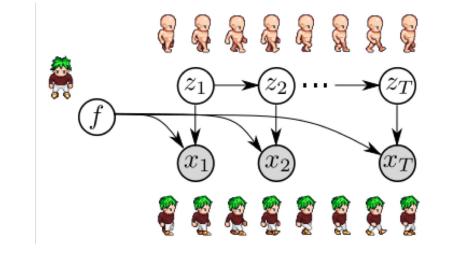
- Static information (e.g., content, style)
- Temporal information (e.g., movement)

data

Generated (fix content)

Generated (fix dynamics)

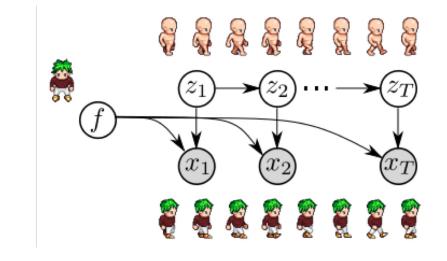
Disentangled Sequential Autoencoder



Idea:

- Build a probabilistic graphical model with f = "content" and $z_{1:T} =$ "dynamics"
- Use LSTMs to parameterise $p(z_t|z_{< t})$ and CNNs (+LSTM) to parameterise $p(x_t|f, z_t)$
- Train the model on observational data

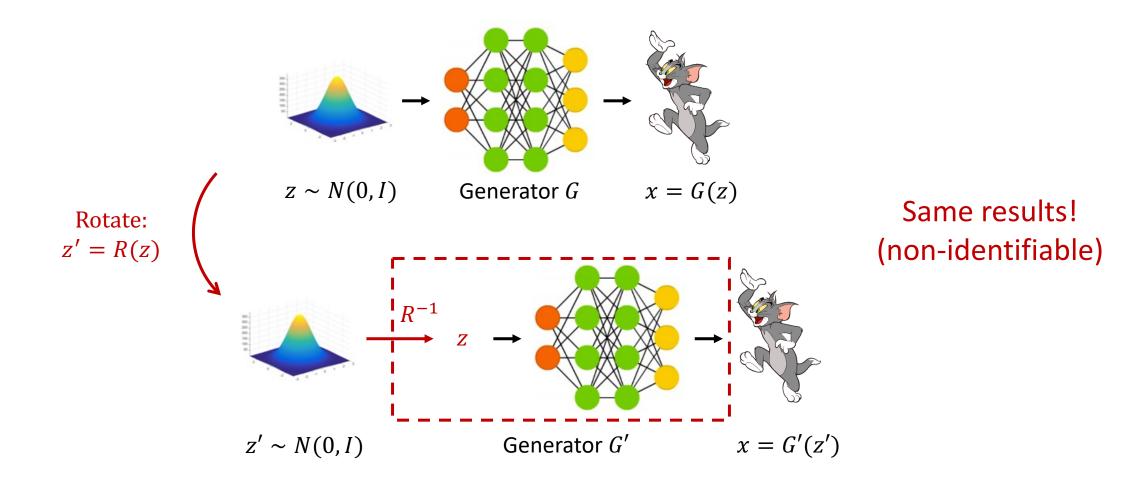
Powerful Neural Networks Can "Cheat"



Cheat in the following ways:

- My solution back then: Alchemy
- The LSTM hidden cells can learn to "copy" the states
 - $\Rightarrow z_t$ captures content info
- The f variable can learn the initial condition for a deterministic dynamical system $\Rightarrow f$ captures movement info

Powerful Neural Networks Can "Cheat"



fx

Identifiability in Statistical/Causal Models

Workflow of causal discovery based on functional causal models:

- Write down the SCM/SEM
 - E.g. $Y = f_{\theta}(X) + \epsilon$
 - This defines a model $p_{\theta}(Y|X)$ with parameters θ
- Show identifiability
 - i.e. $p_{\theta}(Y|X) = p_{\theta'}(Y|X) \Leftrightarrow \theta \cong \theta'$
 - Identifiability enables causal discovery & counterfactual reasoning
- Fit the model defined by SCM to data, and do model checking
 - If pass: use the fitted model to answer causal questions

Identifiability in Deep Generative Models

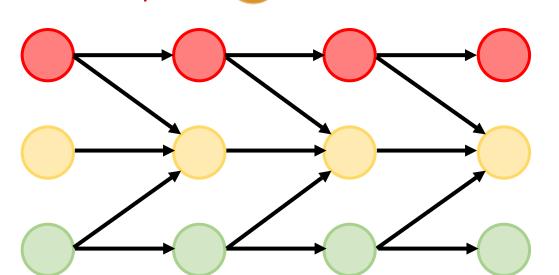
Workflow of causal discovery based on identifiable DGMs:

- Write down the SCM/SEM
 - E.g. $Z = g_{\theta}(\epsilon_1), X = f_{\theta}(Z) + \epsilon_2, f_{\theta}, g_{\theta}$ can be neural networks
 - This defines a model $p_{\theta}(X) = \int p_{\theta}(X|z)p_{\theta}(z)dz$ with parameters θ
 - Z is unobserved
- Show identifiability
 - i.e. $p_{\theta}(X) = p_{\theta'}(X) \Leftrightarrow f_{\theta} \cong f_{\theta'}, g_{\theta} \cong g_{\theta'}$
 - Identifiability enables causal discovery & counterfactual reasoning
- Fit the model defined by SCM to data, and do model checking
 - If pass: use the fitted model to answer causal questions

Causal Discovery in Time-Series

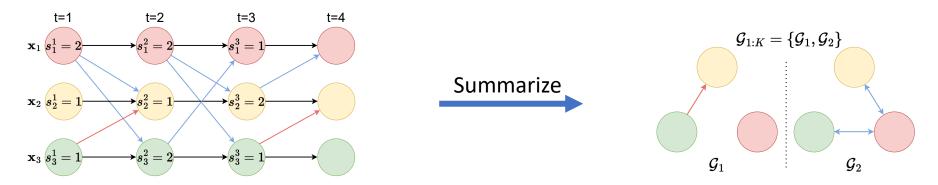
Use the information of time: "the cause happens prior to its effect"

- Granger causality, TiMINo, etc.:
 - Assume all the variables are observed
 - In most cases assume stationarity



State-Dependent Causal Inference (SDCI)

Causal discovery & sequence modelling for non-stationary time series:



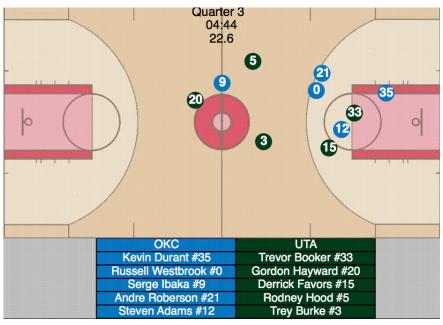
- Imagine having *N* agents interacting:
 - Each agent *i* at time step *t* has both its observation x_i^t and its internal discrete state s_i^t
 - Depending on the state s_i^t , x_i^t will have different functional relationship with x_i^{t+1}
- Conditional summary graph:
 - Compact summary of the causal relationship
 - When the states are all fixed to the same: reduced back to summary graph

State-Dependent Causal Inference (SDCI)

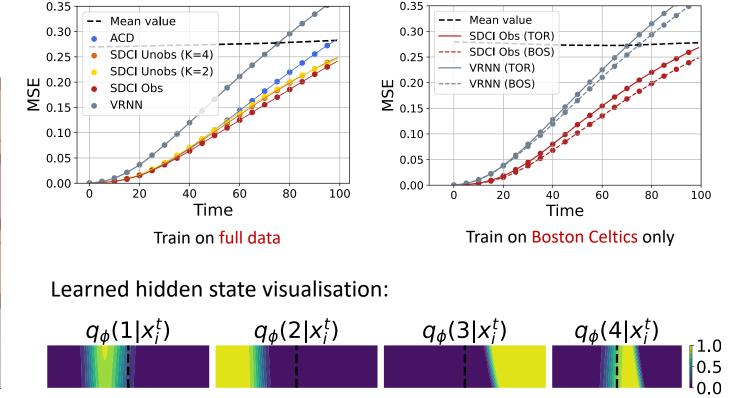
Causal discovery & sequence modelling for non-stationary time series:

Dataset: NBA player trajectories

- multi-agent
- non-stationary



Forecasting error:



State-Dependent Causal Inference (SDCI)

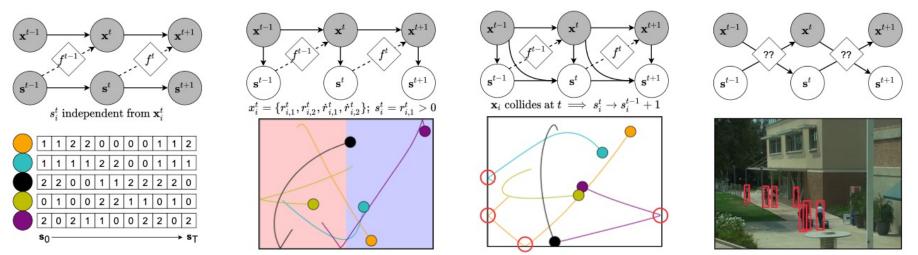
Identifiability result for SDCI (informal):

The conditional summary graph is identifiable if the states are observed.

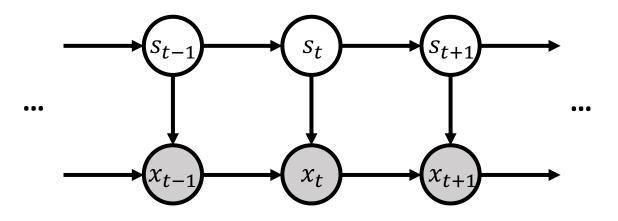
(not realistic)

Can we do better?

Yes, but need assumptions on how the observations and states interact



Markov Switching Models (first-order):



- Discrete and finite state-space: $s_t \in \{1, ..., K\}$
- Conditional first-order Markov model: $p(x_t|x_{< t}, s_t) = p(x_t|x_{t-1}, s_t)$ (assuming $x_0 = \emptyset$)

When does this model identifiable with observations of $x_{1:T}$ only?

Identifiability result (informal):

 $\xrightarrow{S_{t-1}} \xrightarrow{S_t} \xrightarrow{S_{t+1}} \xrightarrow{S_{t+1}} \cdots$

The first-order Markov Switching Model is identifiable up to state permutation when:

• Unique indexing for the states (i.e., no repeating states):

$$i \neq j \Leftrightarrow p(x_t | x_{t-1}, s_t = i) \neq p(x_t | x_{t-1}, s_t = j)$$

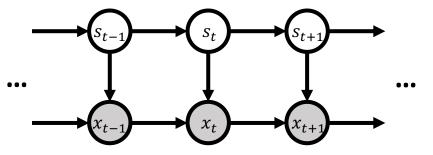
• In Gaussian case, the mean and covariance functions are analytic in x_{t-1} :

$$p(x_t | x_{t-1}, s_t) = N(x_t; m(x_{t-1}, s_t), S(x_{t-1}, s_t))$$

Can use neural networks with smooth activation functions! (here identifiability means identifying the functions)

Proof sketch (informal):

Think about it as a finite mixture model over paths: $p(x_{1:T}) = \sum_{s_{1:T} \in \{1,...,K\}^T} p(x_{1:T}|s_{1:T}) p(s_{1:T})$



(1) Identifiability for finite mixture model requires linear independence of family $\{p(x_{1:T}|s_{1:T})\}$

(2) Notice the first-order Markov structure: $p(x_{1:T}|s_{1:T}) = \prod_{t=1}^{T} p(x_t|x_{t-1}, s_t)$

 \Rightarrow Show linear independence of $p(x_{1:2}|s_{1:2})$, then prove for $T \ge 3$ case by induction

(3) Work out conditions on $p(x_t|x_{t-1}, s_t)$ to make $\{p(x_t|x_{t-1}, s_t) \ p(x_{t+1}|x_t, s_{t+1})\}$ linearly independent

⇒ Obtain certain linear independence & continuity conditions in non-parametric case

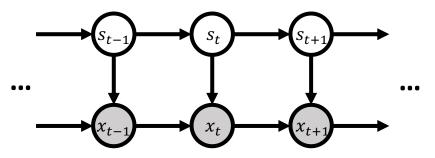
(4) In Gaussian case: work out the conditions on the mean & covariance to satisfy conditions in (3)

$$p(x_t | x_{t-1}, s_t) = N(x_t; \underline{m(x_{t-1}, s_t), S(x_{t-1}, s_t)})$$

 \Rightarrow Analytic in x_{t-1}

Proof sketch (informal):

Think about it as a finite mixture model over paths: $p(x_{1:T}) = \sum_{s_{1:T} \in \{1,...,K\}^T} p(x_{1:T} | s_{1:T}) p(s_{1:T})$



• What is nice about Gaussians:

$$p_{\mu_1,\Sigma_1}(x) = p_{\mu_2,\Sigma_2}(x) \text{ for } x \in X \subset \mathbb{R}^d \quad \Leftrightarrow \quad \mu_1 = \mu_2, \Sigma_1 = \Sigma_2$$
(non-zero measure subset)

• What is nice about analytic functions:

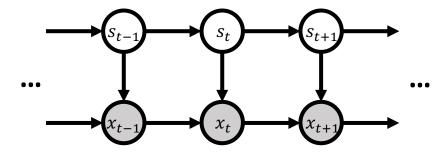
$$f_1(x) = f_2(x) \text{ for } x \in X \subset \mathbb{R}^d \iff f_1(\cdot) = f_2(\cdot)$$
(non-zero measure subset)

 $m(\cdot)$

 $N(x_t; m_1(x_{t-1}, s_t), S_1(x_{t-1}, s_t)) = N(x_t; m_2(x_{t-1}, s_t), S_2(x_{t-1}, s_t))$ for some (x_{t-1}, x_t) in some non-zero measure set

 $\Leftrightarrow m_1(\cdot, s_t) = m_2(\cdot, s_t), S_1(\cdot, s_t) = S_2(\cdot, s_t) \quad \text{(when the functions are analytic in } x_{t-1}\text{)}$

Some simulation results: (Estimation with stochastic EM)



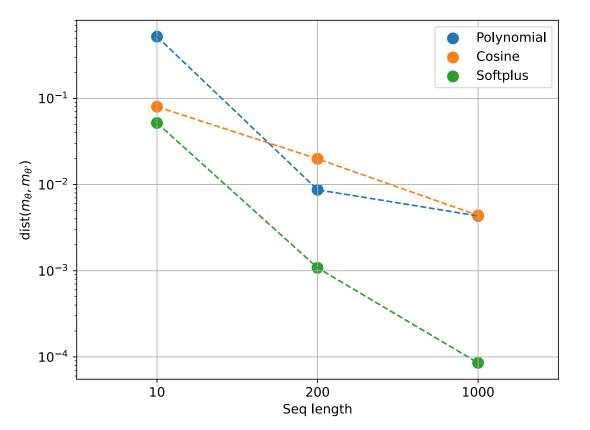
Simulation settings:

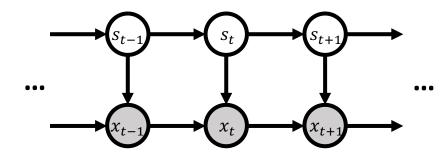
- Stationary hidden state transitions (first order)
- Conditional transition ground-truth:

$$p(x_t | x_{t-1}, s_t) = N(x_t; m(x_{t-1}, s_t), \sigma^2 I)$$

- Three types of ground-truth *m* function:
 - 1. Polynomial (cubic function)
 - 2. Randomly initialised neural network with cosine activations
 - 3. Randomly initialised neural network with softplus activations

Some simulation results: (Estimation with stochastic EM)



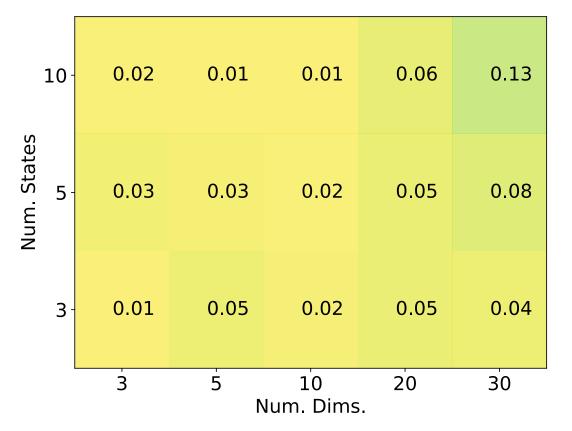


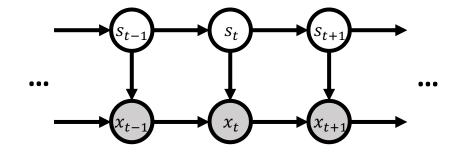
Error metric:

*l*₂ distance between ground-truth and estimated functions (after state-matching & average over states)

C Balsells Rodas, Y Wang and Y Li. On the identifiability of Markov Switching Models. In preparation

Some simulation results: (Estimation with stochastic EM)





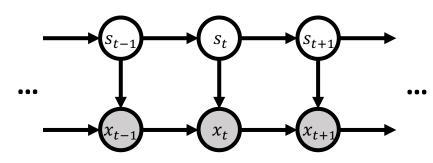
Scalability of the estimation method:

 t_{x}

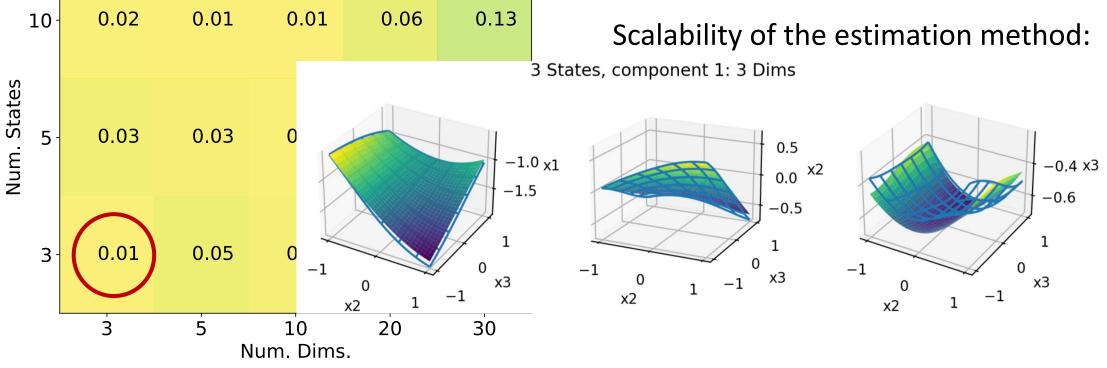
 Locally connected network assumption: on avg. 3 variables interact

C Balsells Rodas, Y Wang and Y Li. On the identifiability of Markov Switching Models. In preparation

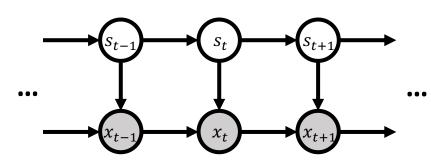
Some simulation results: (Estimation with stochastic EM)



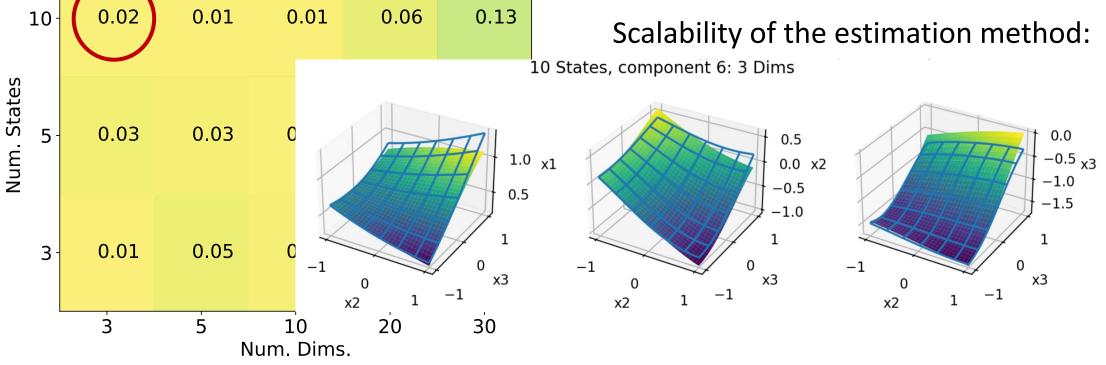
†_x



Some simulation results: (Estimation with stochastic EM)



†_x



C Balsells Rodas, Y Wang and Y Li. On the identifiability of Markov Switching Models. In preparation

Some Discussions

On the proof strategy and indications:

- f_{x}
- Cannot use the proof strategy of HMM identifiability results
 - Simply because the dynamic is not fully controlled by latent state transitions
- The proof makes NO assumption on $p(s_{1:T})$ and can identify the joint $p(s_{1:T})$
 - Works for ANY dynamic model for the states $s_{1:T}$
 - The marginal $p(x_{1:T})$ can thus be non-stationary and higher-order Markov
 - Direct extension to global regime settings by making $s_1 = s_2 = \cdots = s_T$
- Easily extendable to include observed "control signals" $u_{1:T}$:

 $p(x_{1:T}, s_{1:T}|u_{1:T}) = p(x_{1:T}|s_{1:T})p(s_{1:T}|u_{1:T})$

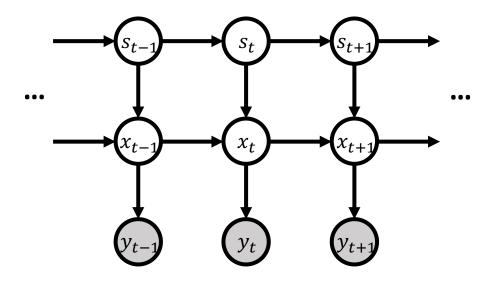
Some Discussions

Future extensions:

• Go for higher-order Markov conditional transitions (with time lag M > 1):

$$p(x_t | x_{\le t}, s_t) = p(x_t | x_{t-M:t-1}, s_t)$$

- Better assumptions for e.g., neuron activity data, energy & climate time-series
- Lift the continuous states $x_{1:T}$ to latent space:
 - More realistic for video & other high-dimensional data
 - Potential application in model-based RL
- Beyond time series?

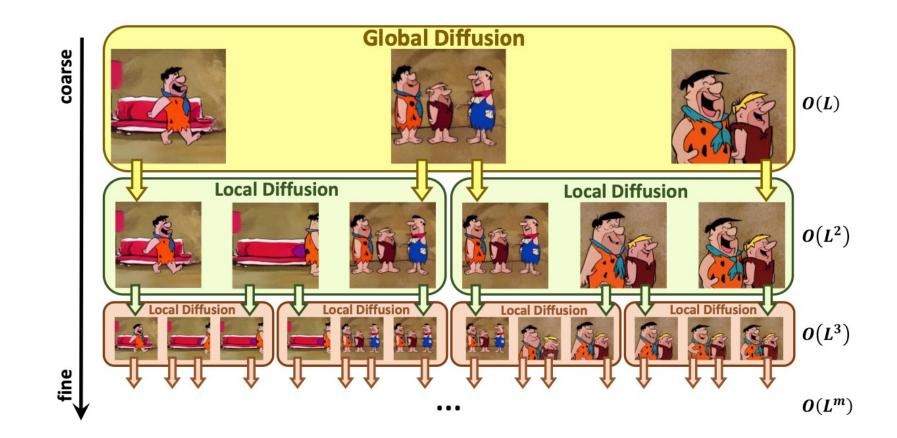


Identifiability in Deep Generative Models

Workflow of causal discovery based on identifiable DGMs:

- Write down the SCM/SEM
 - E.g. $Z = g_{\theta}(\epsilon_1), X = f_{\theta}(Z) + \epsilon_2, f_{\theta}, g_{\theta}$ can be neural networks
 - This defines a model $p_{\theta}(X) = \int p_{\theta}(X|z)p_{\theta}(z)dz$ with parameters θ
 - Z is unobserved
- Show identifiability
 - i.e. $p_{\theta}(X) = p_{\theta'}(X) \Leftrightarrow f_{\theta} \cong f_{\theta'}, g_{\theta} \cong g_{\theta'}$
 - Identifiability enables causal discovery & counterfactual reasoning
- Fit the model defined by SCM to data, and do model checking
 - If pass: use the fitted model to answer causal questions

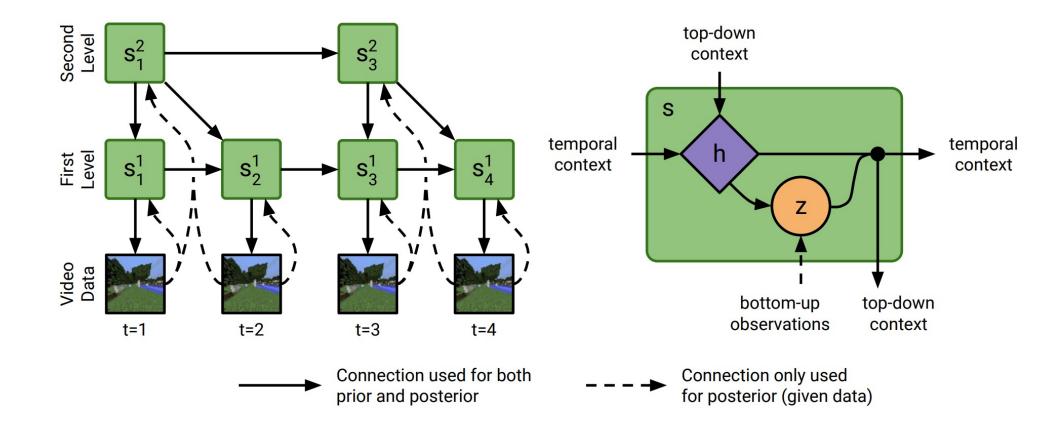
SOTA Video Generation Models are "Non-Causal"



• "Non-causal": future observations to help on generating past observations

SOTA Video Generation Models are "Non-Causal"

 t_{x}



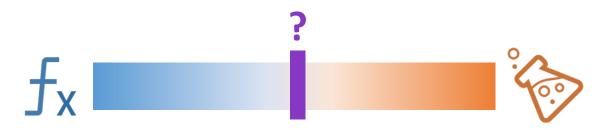
• "Non-causal": Identifiability in hierarchical DGMs very difficult

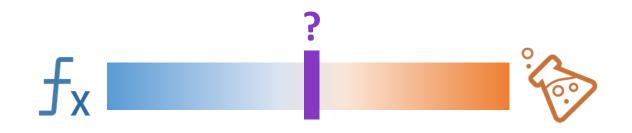
End-to-End Causal DGMs: Ever Possible?

My personal opinions:

- Leave low-level representation learning to perception models
 - Deep Learning methods provide impressive results now
 - Can leverage multi-modality data (which usually don't share the same SCM)
- Identifiable DGMs on perception representations
 - Much easier than handling "raw pixels" directly
 - Take benefits from multi-modality perception models

"Scientific Alchemy": figure out the theoretical limits, leave the rest to perception





THANK YOU!

Questions? Ask now, or email: yingzhen.li@imperial.ac.uk

Thanks to my awesome collaborators:

Stephan Mandt

Ruibo Tu

Hedvig Kjellström

Yixin Wang