Architecure details of DSA (improved, better stability)

The dynamics network for p(z¢41]2t):
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MLP;: concat(z;, ¢;) — ¢, one-layer network, tanh activation.

MLPy: z; — ¢4, one-layer network, tanh activation.

MLP3: concat(z, hy) — ﬁt, one-layer network, tanh activation.

LSTM cell: apply LSTM equations with ¢; as the current input, hy as the
previous hidden state, and ¢; as the previous cell state.

MLPy: hy — p,log o of p(z41|2t), two-layer network [dimH, dimH, dimZx 2],
tanh activation for the first layer and linear activation for the second layer.

p(f) is simply standard normal.

We need to balance the power of p(f) and p(z1.7). This means dimZ,
dimF and dimH need to be chosen carefully. My empirical choice is dimZ=32,
dimF=256 and dimH=256.

p(xt)2t, f) is defined by a deconvolution neural network with ReLU activation
(except the last layer which uses sigmoid). The architecture is like

e concat(f, z:) — P, using a two-layer MLP with size [dimZ+dimF, dimHid-
den, 4 x 4xnChannel], ReLU activation;

e &, — x; using a deconv net with filter size 3, shape [4 x 4xnChannel,
8x8xnChannel, 16 x 16 xnChannel, 32x 32xnChannel, 64 x 64 xnChannel,
64 x 64 x 3], ReLU activation except for the last deconv layer which uses
sigmoid.

The dimensions of the deconv net doesn’t matter to much for disentangle-
ment, although using a big value for dimHidden and nChannel would improve
the frame quality. I use for example dimHidden=>512 and nChannel=256.

I don’t think the encoder matters too much in terms of disentanglement,
although the image quality can differ. Can simply try the fully factorised one
q(f, z1.7lz1.7) = q(flx1.7)q(2|z) and share a feature extractor for both g(f)
and g(z¢).

On mixing deterministic and stochastic dynamics

A more rigorous way to write the prior dynamics would be to define p(z¢y1, het1, cey1l|ze, bty cr),

where

P(ze41, ey, copalze, by ei) = p(zeg1|hirr, copns 26, hey ce)p(higr, cognl2e, by, cr),



P(ht+17 Ct+1|zt7 ht7ct) = 5([ht+17 Ct+1] = g(zt, ht7ct))7
P(zes1|hists Corts 26 by ) = p(zeg1 |Pert) = N (zer1; (higr), 02 (hey))-

Here we use dirac measure for the LSTM states h; and ¢;, and we see that this
is in fact a mix of deterministic/stochastic dynamics.
For approximate posterior we simply define (for the fully factorised case)

Q(Zt+1a ht+1, Ct+1 |Zt7 hi, cq, l’l:T) = q(Zt+1 |It+1)p(ht+1, Ce+1 |Zt7 I, Ct)-

So that it returns the ELBO
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Using LOTUS we can rewrite the lower-bound
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