
Architecure details of DSA (improved, better stability)

The dynamics network for p(zt+1|zt):

MLP1: concat(zt, ct) → ĉt, one-layer network, tanh activation.
MLP2: zt → φt, one-layer network, tanh activation.
MLP3: concat(zt, ht) → ĥt, one-layer network, tanh activation.

LSTM cell: apply LSTM equations with φt as the current input, ĥt as the
previous hidden state, and ĉt as the previous cell state.

MLP4: ht→ µ, log σ of p(zt+1|zt), two-layer network [dimH, dimH, dimZ×2],
tanh activation for the first layer and linear activation for the second layer.

p(f) is simply standard normal.
We need to balance the power of p(f) and p(z1:T ). This means dimZ,

dimF and dimH need to be chosen carefully. My empirical choice is dimZ=32,
dimF=256 and dimH=256.

p(xt|zt, f) is defined by a deconvolution neural network with ReLU activation
(except the last layer which uses sigmoid). The architecture is like

• concat(f , zt)→ Φt using a two-layer MLP with size [dimZ+dimF, dimHid-
den, 4× 4×nChannel], ReLU activation;

• Φt → xt using a deconv net with filter size 3, shape [4 × 4×nChannel,
8×8×nChannel, 16×16×nChannel, 32×32×nChannel, 64×64×nChannel,
64× 64× 3], ReLU activation except for the last deconv layer which uses
sigmoid.

The dimensions of the deconv net doesn’t matter to much for disentangle-
ment, although using a big value for dimHidden and nChannel would improve
the frame quality. I use for example dimHidden=512 and nChannel=256.

I don’t think the encoder matters too much in terms of disentanglement,
although the image quality can differ. Can simply try the fully factorised one
q(f, z1:T |x1:T ) = q(f |x1:T )q(zt|xt) and share a feature extractor for both q(f)
and q(zt).

On mixing deterministic and stochastic dynamics

A more rigorous way to write the prior dynamics would be to define p(zt+1, ht+1, ct+1|zt, ht, ct),
where

p(zt+1, ht+1, ct+1|zt, ht, ct) = p(zt+1|ht+1, ct+1, zt, ht, ct)p(ht+1, ct+1|zt, ht, ct),
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p(ht+1, ct+1|zt, ht, ct) = δ([ht+1, ct+1] = g(zt, ht, ct)),

p(zt+1|ht+1, ct+1, zt, ht, ct) = p(zt+1|ht+1) = N (zt+1;µ(ht+1), σ2(ht+1)).

Here we use dirac measure for the LSTM states ht and ct, and we see that this
is in fact a mix of deterministic/stochastic dynamics.

For approximate posterior we simply define (for the fully factorised case)

q(zt+1, ht+1, ct+1|zt, ht, ct, x1:T ) = q(zt+1|xt+1)p(ht+1, ct+1|zt, ht, ct).

So that it returns the ELBO

L =

T∑
t=1

Eq(f,z1:T |x1:T )
∏T

t=1 p(ht,ct|zt−1,ht−1,ct−1)

[
log

p(f)p(zt|ht)p(xt|f, zt)
q(f |x1:T )q(zt+1|xt+1)

]
,

Using LOTUS we can rewrite the lower-bound

L =

T∑
t=1

Eq(f,z1:T |x1:T )

[
log

p(f)p(zt|ht = prior-net(zt−1, ht−1, ct−1))p(xt|f, zt)
q(f |x1:T )q(zt+1|xt+1)

]
.
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