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NeurlPS 2019 Bayesian deep learning tutorial on Monday was jammed with curious heads



Type of uncertainty

Imagine flipping a coin:

e [Epistemic uncertainty: “How much do | believe the coin is fair?”
e Model's belief after seeing the population
e Reduces when having more data
e Aleatoric uncertainty: “What's the next coin flip outcome?”
e Individual experiment outcome
e Non-reducible
e Distribution shift: “Am | still flipping the same coin?"”

e Indicating changes of the underlying quantity of interest




Bayesian neural networks 101

Let’s say we want to classify different types of cats
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p(y|x, W) = softmax(fu/(x))

A Bayesian solution:
Put a prior distribution p(W) over W

e compute posterior p(W|D) given a dataset D = {(x,, y,) N ;:

p(W|D) oc p(W) T p(yalxn W)

n=1

e Bayesian predictive inference:

p(y*|x*, D) = Epwp)lp(y™[x*, W)]



Bayesian neural networks 101

Let's say we want to classify different types of cats
e Xx: input images; y: output label

e build a neural network (with param. W):
p(y|x, W) = softmax(fu(x))

In practice: p(W/|D) is intractable
e First find approximation q(W) =~ p(W|D) (e.g. via VI or MCMC)
e In prediction, do Monte Carlo sampling:
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ply*|x*, D) Z (y*[x, W), WE~ q(W)



Our qualitative description on epistemic uncertainty is vague...

e Weight-space uncertainty is less interesting

e in many cases neural network weights are NOT scientific parameters
e symmetries/invariances in parameterisation

swap node weight re-scale



Our qualitative description on epistemic uncertainty is vague...

e sample W ~ g(W) < sample f(-) ~ gann(f) = gann(f|D)
e Folklore belief for function-space (or output-space) uncertainty:

“Epistemic uncertainty should be high when new input is less similar to observed inputs”

PBP | [HMC

VI BP

What do “high uncertainty” and “less similar’ mean quantitatively?

Herndndez-Lobato and Adams ICML 2015



Evaluation by comparing to a reference

BNN performance relies on the approximate posterior:

a(W) = p(W|D) o p(W) [] plylx, W)
(x,y)€D

e Evaluating inference:
compute some distance metric between g(W) and p(W|D)

e Problem: intractable exact posterior p(W|D)!
(even we have no robust way to estimate moments of p(\W|D))



Evaluation by comparing to a reference

(a) weight space view
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(b) function space view

Function space “reference posterior’! for BNN regression:
e wide BNN has GP limit (under certain conditions)

e for regression problems pgp(f|D) is tractable

= Compare with pgp(f|D) of the wide-limit GP:

e Is gann(f) close to pgp(f|D) (at least in the first 2 moments)?

Lonly as reference for inference, no objective Bayesian here



“In-between” uncertainty

“In-between” uncertainty:
uncertainty estimates in regions between data clusters

e Missing values (especially in time series)

e Ambiguous inputs
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Foong et al. NeurlPS 2019 Bayesian deep learning workshop



“In-between” uncertainty
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On mean-field Gaussian approximation for BNN regression:

e 1 hidden-layer: bad news for any approximate inference method
e approximate inference require expressiveness of the g family

e mean-field has theoretical limitations in representing in-between uncertainty
Foong et al. NeurlPS 2019 Bayesian deep learning workshop



“In-between” uncertainty

Gaussian Process
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On mean-field Gaussian approximation for BNN regression:

e 2+ hidden-layers: mixed news:
e expressiveness (theory): can represent any mean & variance function

e algorithm (practice): weight-space VI + optimisation is to be blamed
e increasing depth does not seem to help to close the gap
between MFVI and GP-limit reference
Foong et al. NeurlPS 2019 Bayesian deep learning workshop 10



“Your GP-posterior reference is also subjective...”

Model selection for BNN in practice:

e Select model -+ inference together
(we almost never try testing the same model with multiple inference checks)

e Criteria based on statistics of total uncertainty
(or balancing between aleatory uncertainty and epistemic uncertainty)

e We often look at averaged metrics only
(even when test examples can be different from training ones in very different ways)
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“Your GP-posterior reference is also subjective...

Good practical performance can come from

e A good model paired with (close-to) exact inference

e A bad model with a bad approximate inference
(e.g. VI can return good results when the model with exact inference is under-confident)

Selecting the second pipeline:
do we expect to inherent benefits from Bayesian inference?
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An online learning example

Start from a bad model p(W)p(y|x, W)

e Observe the first task D; = {(x, y)}, perform bad inference to obtain
q(W) = p(W|Dy)
e ¢1(W) somehow returns good practical performance even when p(W|D;) is bad

e then observe another task D, that is similar to Dy

e Following online Bayesian learning, should compute
(W) = B(W|D2) o p(D2| W) (W)

e do we still expect good pratical performance for g>(W)?
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What I'd love to see in future research...

e Scalable & accurate function space
inference methods for BNNs
(or improve GP /kernel methods?)

e Understand better the gap between
exact/approx. inference
(and potentially fix it)

e Better descriptions on what we really
want from modelling uncertainty
(e.g. evaluate statistics of uncertainty
within data subgroups)

Thank you!
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