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What is Masked Pre-Training?

* Train the network to predict
the missing words given an
incomplete sentence

* During training, randomly
masking out some words to
create incomplete sentence &
prediction targets

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL-HLT 2019
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Successes of Masked Pre-Training

SOTA vision-language model (BEiT-3) uses Masked Pre-Training
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Successes of Masked Pre-Training

Masked auto-encoder for vision: again using Masked Pre-Training
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He et al. Masked Autoencoders Are Scalable Vision Learners. CVPR 2022 4



Successes of Masked Pre-Training

SOTA long-video generation model (up to 15K frames):
Modelling p(xp | x¢) for any prediction time index set P given any conditioning time index set C

Sampling 111111
stages

(a) Autoregressive. (b) Two temporal res. (c) Long-range (ours). (d) Hierarchy-2 (ours).
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Harvey et al. Flexible Diffusion Modeling of Long Videos. arXiv:2205.11495 5



“Old Fashioned” Pre-Training

* Deep learning resurgence: pre-training Deep Belief Nets

e Each layer modelled as a restricted Boltzmann machine
* Trained using contrastive divergence
* Layer-wised pre-training

“representation”

000 000 000
000 000 000
data reconstruction fantasy
“recognition” “dreaming”
— —

Hinton et al. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554.
Bengio Y. Learning Deep Architectures for Al. Foundations and trends in Machine Learning, 2009, 2(1), 1-127
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“Old Fashioned” Pre-Training

for Scalab
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Not in use anymore!
- Not enough compute to make big models

- Not enough data

ICML 2009
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“Old Fashioned” Unsupervised Learning

* Dimensionality Reduction

e PCA
* Auto-encoders

* Clustering

 Learning a probabilistic generative mode| (i-e. modelling p(x))

* VAEs
* Flows

Lots of progress has been made here!
... and now we have much more data & compute



A 10M Dollar Question

With $10M GPU computing budget...

Would you try pre-training any big models
with any “old-fashioned” unsupervised
learning techniques?



Before You Burn the S10M GPU Budget...

* s masked pre-training fundamentally different?
* Anything BAD about the “old fashioned” methods?

* How to answer these questions?
* Modelling choices?
* Advantages from Training objectives?
* Optimisation aspects?



Modelling Conditional Distributions

Complete Conditionals: Full joint distribution:

[1%%, p(xalx_q) p(X1.4.)

* Modelling complete conditionals vs full joint distribution:

* For some models, conditional distributions are much easier to compute
* Markov random field
* Restricted Boltzmann machine

* Related to Gibbs sampling
e Capturing complete conditionals = use Gibbs sampling to sample from the joint



Modelling Conditional Distributions

 Complete Conditionals for representation learning (linear case):

* Assume a linear relationship for the generative process:
* Continuous case: p(x|z) = N(Wz, a?I)
* Discrete case: p(x =iz =j) = W;;

* Capturing the posterior p(z|x) via the complete conditional:

* The long vector [p(xq|x_1), p(x2|x_5), ..., p(xp|x_p)] can
be represented as a linear transform of p(z|x)
* Under assumptions on W (e.g., full column rank)
* Learned useful features if the ground truth x — y function
depends directly on p(z|x)

e Similar ideas can be extended to Hidden Markov Models

Wei et al. Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning. NeurlPS 2021
Liu et al. Masked prediction tasks: a parameter identifiability view. arXiv:2202.09305

Luo et al. One Objective for All Models -- Self-supervised Learning for Topic Models. arXiv:2203.03539
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Modelling Conditional Distributions

Complete Conditionals: Full joint distribution:

[1%%, p(xalx_q) p(X1.q.)

* Comparing the two modelling paradigms:

 Capturing information about the posterior p(z|x):
* Both methods can do (under linear model assumptions)

* |dentifiability of the model
* Even when the parameter of p(xy.4,) is identifiable, we might not be able to
recover that parameter by modelling some conditional distributions

Liu et al. Masked prediction tasks: a parameter identifiability view. arXiv:2202.09305
Gassiat et al. Inference in finite state space non parametric hidden Markov models and applications[J]. Statistics and Computing, 2016, 26(1): 61-71
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Modelling Conditional Distributions

* In practice: we directly parameterise p(x |x_4)
* Importantly, p(x;|x_;) and p(x;|x_;) share the same network

* Different from first defining P(X1:dx) then working out p(x4|x_4)

* The conditional distributions might not be compatible
* Circumvented by universal approximations of neural networks?
* Inconsistency issues: do they matter?



Pre-Training with Masking

* Ground-truth data generation process:
e« z~N(0,A),z € R%
cx=Wz+e¢,,x € R%™
+ y ~p(ylz), y € RY
* Regression with linear features: define f (x) = Bx, solve
0*(B) = argmin Ey,[lly — 6f (0)ll3]
* Specifically we consider f € R%r with dr < d, (bottleneck)
* And df < d,, i.e., model is mis-specified



Pre-Training with Masking O g e e
x=WZ’+e/xZ,9€cERdx

* Regression with linear features: define f (x) = Bx, solve Y~ p(y|2), y € RY

0"(B) = argmin Ey,[lly — 6f (x)lI3]
* Bottleneck mis-specified: f € R% with dr <dy, df <d,

* Find B with linear auto-encoder: solve
A*,B* = argmin E,[||lx — ABx||5]
B € Rdedx
Solution: equivalent to PCA up to an invertible matrix
B* = C‘lUgf, Udf captures the top dy eigenvectors of X,

(Zyy = 021 + WAWT)

Representation learning works well if y only depends on the subspace of z found by PCA

Baldi and Hornik. Neural networks and principal component analysis: Learning from examples without local minima[J]. Neural networks, 1989, 2(1): 53-58. 16



Pre-Training with Masking

* Regression with linear features: define f (x) = Bx, solve
0"(B) = argmin Ey,[lly — 6f (x)lI3]
* Bottleneck mis-specified: f € R%f with dr <dy, df <d,

 Find B with masked linear auto-encoder:

f' _ T
Define x_;(e) = [xl, ey Xj1) €, Xj g1 wee xdx] g
« Solve the following objective: notice A € R1*%r

2
A*,B* = argmin }; Ex[(xj — ABx_j(e)) ]
Solution is not unique (when d; > 1), but of the following form:
A" = ll; ledf—ll C,B* = C_l[lz 1, b* = (Zxxl — diag(zxx))-r[(dx — DXy + ezl]_l
YiElxjx_j(e)"] YiElx_j(e)xi(e)]

z ~ N(0,M), z € R4z
x=Wz+e€,,x € R%
y ~p(|z),y € RY
Yox = 021 + WAWT



Pre-Training with Masking O g e e

: s : x=Wz+e€,,x € R%
* Regression with linear features: define f (x) = Bx, solve Y~ p(y|2), y € RY

0"(B) = argmin Ey,[lly — 6f (x)lI3] Zx = 02 + WAWT
* Bottleneck mis-specified: f € R% with dr <dy, df <d,

* Find B with masked linear auto-encoder:
/ Arbitrary invertible dr Xd; matrix Mask embedding
. _1/b" . . T _
B =C 1[L |, b" = (Zxx1 - dlag(zxx)) [(dy = DEyx + 1]

Arbitrary (df — 1)Xd, matrix, dr > 1

* b* contains less information about x as compared with the PCA solution
 However, flexibility in L and e allows B to project to different subspaces of z

18



Pre-Training with Masking O g e e

: : : : x=Wz+e,,x €R%
* Regression with linear features: define f (x) = Bx J ~ p(y|2), y € R%

* Bottleneck mis-specified: f € R4 with df <d,, df <d, Tux = 0gl + WAWT

* Find B, 0 together with supervised learning:
B € R9r*dx

0%, B* = argmin E, ,[lly — 6Bx||5]

* Consider the case of d), < df < d,:

Solution is not unique, but of the following form:
. BRI YA Yt
0° = L xa, O x(ay-a,)| € BT = €[],

(0"B* = ZyxZ;,} is the least squares solution of linear regression)



Pre-Training with Masking O g e e

: : : : x=Wz+e,,x €R%
* Regression with linear features: define f (x) = Bx J ~ p(y|2), y € R%

* Bottleneck mis-specified: f € R4 with df <d,, df <d, Tux = 0gl + WAWT
* Now compare the two solutions: assume d,, < df < d,

Supervised learning:
ZyxZix

B*=C
S

],

Masked linear auto-encoder:

* — b* * . T —
B" = le[Lm]r b* = (Zxx1 - dlag(zxx)) [(dy = DEyx + 1]



Pre-Training with Masking O g e e

: : : : x=Wz+e,,x €R%
* Regression with linear features: define f (x) = Bx J ~ p(y|2), y € R%

* Bottleneck mis-specified: f € R4f with df <d,, df <d, Tux = 0gl + WAWT
* Now compare the two solutions: assume d,, < df < d,

Supervised |earning; Arbitrary invertible dr Xd; matrix
< I Ww

B* = C—l[ yX xx]

S ’

Masked linear auto-encoder: (setting e = 0)
B* = C‘l[b*] b* = ;(Z 1 —diag(Z ))TZ_l
/ m Lm ’ dx—l XX XX XX

Arbitrary invertible
drXdr matrix

Arbitrary (df — d,, ) Xd, matrix

Arbitrary (dy — 1)Xd, matrix

21



Pre-Training with Masking O g e e

: : : : x=Wz+e,,x €R%
* Regression with linear features: define f (x) = Bx J ~ p(y|2), y € R%

* Bottleneck mis-specified: f € R4 with df <d,, df <d, Tux = 0gl + WAWT
* Now compare the two solutions: assume d,, < df < d,

Making the two solutions equal: find matrices C and L such that

1 , T )
H(Zxxl —diag(Zx)) = (i Zx],
€ R1%dx c ledf e R(dr—dy)Xdx

(the 15t row of C)

“solving a set of d,, equations with df + (df — dy)xdx variables”

dy<df = dr—dy, =1 = dr + (df — dy)xdy > dy = solution exists!

22



Pre-Training with Masking O g e e

: : : : x=Wz+e,,x €R%
* Regression with linear features: define f (x) = Bx J ~ p(y|2), y € R%

* Bottleneck mis-specified: f € R4f with df <d,, df <d, Tux = 0gl + WAWT

* Compare - w/out masking :

 Linear auto-encoder:

e Solution equivalent to PCA

e Best linear representation for x (in terms of £, recon. error)

* Might not be good for prediction (depending on ground truth p(y|z))
 Masked linear auto-encoder:

* Solution is not unique (when d¢ > 1)

* Not so good representation for x (in terms of £, recon. error)

* Asubset of solutions are optimal for prediction (when d,, < d; < d,)

Hypothesis: masked pre-training works better when good representation for generating x is highly redundant

23



Pre-Training with Masking O g e e

: : : : x=Wz+e,,x €R%
* Regression with linear features: define f (x) = Bx J ~ p(y|2), y € R%

* Bottleneck mis-specified: f € R4f with df <d,, df <d, Tux = 0gl + WAWT

e Caveats of this example:

 Masked linear auto-encoder:
* Asubset of solutions are optimal for prediction (when d,, < d; < d,)

e But: pre-training on x has no obvious “incentives” to find them
(optimal B™ in supervised learning depends on )

e Extension to non-linear models:
* With over-parameterised NNs, auto-encoder solution might not be unique
* But Masked auto-encoder might have bigger subspace of optimal solution
for prediction
* Again: pre-training on x has no obvious “incentives” to find them

24



Optimisation Aspects

* Lower dimensional target to match:
* Linear Auto encoder (PCA) features: f(x) = Bx
A*,B* = argmin E,[|lx — ABx||5] 4 e Rixxdy
* Masked Linear Auto encoder features: f(x) = Bx

2



Optimisation Aspects

* More equally good optima (for representation learning)?

* Linear Auto encoder (PCA) features: f(x) = Bx

Arbitrary invertible matrix

v
B* = C—lugf, U=eig(Z,,)

* Masked Linear Auto encoder features: f(x) = Bx

Y Arbitrary invertible matrix Mask embedding
B =CT0 ] b = (Sal — diag(Ee)) [(dy = Dy + €21]

Arbitrary (dy — 1)Xd, matrix

26



Optimisation Aspects

* Current DL tricks engineered towards supervised learning tasks?

i Unused During Reconstructed |
i Pre-Training Image

BEIT as an example: = U I R
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Bao et al. BEiT: BERT Pre-Training of Image Transformers. ICLR 2022
Wang et al. Image as a Foreign Language: BEIT Pretraining for All Vision and Vision-Language Tasks. arXiv:2208.10442 27



Still Consider Burning the S10M GPU Budget?

* |s masked pre-training fundamentally different?

 How to answer this question?

* Modelling choices?
* Modelling Conditional distributions: a better choice?
* Not the full story: incompatibility/inconsistency issue matters or not?
e Advantages from Training objectives?
* More flexible representation learning?
* Redundancy in information of x?
* Any benefit of the extra [mask] embedding e?
* Optimisation aspects?
» Easier for optimisation? due to lower-dim targets (many equally good optima)?
* Deep neural networks designed to benefit supervised learning objectives?

e Other perspectives (from you)?



