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What is Masked Pre-Training?
• Train the network to predict 

the missing words given an 
incomplete sentence 
• During training, randomly 

masking out some words to 
create incomplete sentence & 
prediction targets

2Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL-HLT 2019



Successes of Masked Pre-Training

Bao et al. BEiT: BERT Pre-Training of Image Transformers. ICLR 2022
Wang et al. Image as a Foreign Language: BEiT Pretraining for All Vision and Vision-Language Tasks. arXiv:2208.10442 3

SOTA vision-language model (BEiT-3) uses Masked Pre-Training



Successes of Masked Pre-Training

He et al. Masked Autoencoders Are Scalable Vision Learners. CVPR 2022 4

Masked auto-encoder for vision: again using Masked Pre-Training



Successes of Masked Pre-Training

5Harvey et al. Flexible Diffusion Modeling of Long Videos. arXiv:2205.11495 

Sampling 
stages

Generation 
results

SOTA long-video generation model (up to 15K frames):
Modelling 𝑝 𝑥! 𝑥") for any prediction time index set 𝑃 given any conditioning time index set 𝐶



“Old Fashioned” Pre-Training
• Deep learning resurgence: pre-training Deep Belief Nets

• Each layer modelled as a restricted Boltzmann machine
• Trained using contrastive divergence 
• Layer-wised pre-training
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……
data reconstruction fantasy
𝑡 = 0 𝑡 = 1 𝑡 → ∞

“recognition”

“representation”

“dreaming”

Hinton et al. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554.
Bengio Y. Learning Deep Architectures for AI. Foundations and trends in Machine Learning, 2009, 2(1), 1-127



“Old Fashioned” Pre-Training

7

ICML 2009

NIPS 2014

JMLR 2014
Not in use anymore!
- Not enough compute to make big models
- Not enough data



“Old Fashioned” Unsupervised Learning

• Dimensionality Reduction 
• PCA
• Auto-encoders
• …

• Clustering
• Learning a probabilistic generative model
• VAEs
• Flows
• …

8

(i.e. modelling 𝑝(𝑥))

Lots of progress has been made here!
… and now we have much more data & compute



A 10M Dollar Question

With $10M GPU computing budget…

Would you try pre-training any big models 
with any “old-fashioned” unsupervised 

learning techniques? 
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Before You Burn the $10M GPU Budget…

• Is masked pre-training fundamentally different?
• Anything BAD about the “old fashioned” methods?

10

• How to answer these questions?
• Modelling choices?
• Advantages from Training objectives?
• Optimisation aspects?



Modelling Conditional Distributions

• Modelling complete conditionals vs full joint distribution:
• For some models, conditional distributions are much easier to compute

• Markov random field
• Restricted Boltzmann machine

• Related to Gibbs sampling
• Capturing complete conditionals ⇒ use Gibbs sampling to sample from the joint
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Complete Conditionals:

∏!"#
!! 𝑝(𝑥!|𝑥$!)

Full joint distribution:

𝑝(𝑥#:!!)



Modelling Conditional Distributions
• Complete Conditionals for representation learning (linear case):

• Assume a linear relationship for the generative process:
• Continuous case: 𝑝 𝑥 𝑧 = 𝑁(𝑊𝑧, 𝜎'𝐼)
• Discrete case: 𝑝 𝑥 = 𝑖 𝑧 = 𝑗 = 𝑊()
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𝑧

𝑥

• Capturing the posterior 𝑝(𝑧|𝑥) via the complete conditional:
• The long vector [𝑝 𝑥(|𝑥)( , 𝑝 𝑥* 𝑥)* , … , 𝑝(𝑥+|𝑥)+)] can 

be represented as a linear transform of 𝑝(𝑧|𝑥)
• Under assumptions on 𝑊 (e.g., full column rank)

• Learned useful features if the ground truth 𝑥 → 𝑦 function 
depends directly on 𝑝(𝑧|𝑥)

𝑦

Wei et al. Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning. NeurIPS 2021
Liu et al. Masked prediction tasks: a parameter identifiability view. arXiv:2202.09305
Luo et al. One Objective for All Models -- Self-supervised Learning for Topic Models. arXiv:2203.03539

• Similar ideas can be extended to Hidden Markov Models



Modelling Conditional Distributions

• Comparing the two modelling paradigms:
• Capturing information about the posterior 𝑝(𝑧|𝑥):

• Both methods can do (under linear model assumptions)

13

Complete Conditionals:

∏!"#
!! 𝑝(𝑥!|𝑥$!)

Full joint distribution:

𝑝(𝑥#:!!)

Liu et al. Masked prediction tasks: a parameter identifiability view. arXiv:2202.09305
Gassiat et al. Inference in finite state space non parametric hidden Markov models and applications[J]. Statistics and Computing, 2016, 26(1): 61-71

• Identifiability of the model
• Even when the parameter of 𝑝(𝑥#:%!) is identifiable, we might not be able to 

recover that parameter by modelling some conditional distributions



Modelling Conditional Distributions

• In practice: we directly parameterise 𝑝 𝑥) 𝑥*)
• Importantly, 𝑝(𝑥-|𝑥)-) and 𝑝(𝑥.|𝑥).) share the same network
• Different from first defining 𝑝 𝑥(:0* then working out 𝑝(𝑥0|𝑥)0)
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• The conditional distributions might not be compatible
• Circumvented by universal approximations of neural networks?
• Inconsistency issues: do they matter?



Pre-Training with Masking

• Ground-truth data generation process:
• 𝑧 ∼ 𝑁 0, Λ ,	𝑧 ∈ 𝑅0+
• 𝑥 = 𝑊𝑧 + 𝜖1 ,	𝑥 ∈ 𝑅0*
• 𝑦 ∼ 𝑝 𝑦 𝑧 , 𝑦 ∈ 𝑅0,

15

𝑧

𝑥

𝑦

• Regression with linear features: define 𝑓(𝑥) = 𝐵𝑥, solve
𝜃∗(𝐵) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸/,0[ 𝑦 − 𝜃𝑓(𝑥) 1

1]
• Specifically we consider 𝑓 ∈ 𝑅!& with 𝑑" < 𝑑# (bottleneck)
• And  𝑑" < 𝑑$, i.e., model is mis-specified



Pre-Training with Masking
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𝑧

𝑥

𝑦

• Regression with linear features: define 𝑓(𝑥) = 𝐵𝑥, solve
𝜃∗(𝐵) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸/,0[ 𝑦 − 𝜃𝑓(𝑥) 1

1]
• Bottleneck mis-specified: 𝑓 ∈ 𝑅!& with 𝑑" < 𝑑#, 𝑑" < 𝑑$

𝑧 ∼ 𝑁 0, Λ ,	𝑧 ∈ 𝑅!"
𝑥 = 𝑊𝑧 + 𝜖' ,	𝑥 ∈ 𝑅!!
𝑦 ∼ 𝑝(𝑦|𝑧), 𝑦 ∈ 𝑅!#

• Find 𝐵 with linear auto-encoder: solve
𝐴∗, 𝐵∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸,[ 𝑥 − 𝐴𝐵𝑥 -

-]

Representation learning works well if 𝑦 only depends on the subspace of 𝑧 found by PCA

Baldi and Hornik. Neural networks and principal component analysis: Learning from examples without local minima[J]. Neural networks, 1989, 2(1): 53-58.

Solution: equivalent to PCA up to an invertible matrix
𝐵∗ = 𝐶)(𝑈0-

? ,   𝑈0- captures the top 𝑑@ eigenvectors of Σ11
(Σ'' = 𝜎'(𝐼 +𝑊Λ𝑊))

𝐵 ∈ 𝑅!$×!!



Pre-Training with Masking
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𝑧

𝑥

𝑦

• Regression with linear features: define 𝑓(𝑥) = 𝐵𝑥, solve
𝜃∗(𝐵) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸/,0[ 𝑦 − 𝜃𝑓(𝑥) 1

1]
• Bottleneck mis-specified: 𝑓 ∈ 𝑅!& with 𝑑" < 𝑑#, 𝑑" < 𝑑$

𝑧 ∼ 𝑁 0, Λ ,	𝑧 ∈ 𝑅!"
𝑥 = 𝑊𝑧 + 𝜖' ,	𝑥 ∈ 𝑅!!
𝑦 ∼ 𝑝(𝑦|𝑧), 𝑦 ∈ 𝑅!#

• Find 𝐵 with masked linear auto-encoder:
• Define 𝑥). 𝑒 = 𝑥(, … , 𝑥.)(, 𝑒, 𝑥.E(, … , 𝑥0*

?

• Solve the following objective: notice 𝐴 ∈ 𝑅(×0-

𝐴∗, 𝐵∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑'𝐸([ 𝑥' − 𝐴𝐵𝑥)' 𝑒
*
]

Σ'' = 𝜎'(𝐼 +𝑊Λ𝑊)

Solution is not unique (when 𝑑+ > 1), but of the following form: 

𝐴∗ = 1, 0#×!$$# 𝐶, 𝐵∗ = 𝐶$#[𝑏
∗

𝐿 ], 𝑏
∗ = Σ''1 − 𝑑𝑖𝑎𝑔 Σ''

) 𝑑' − 1 Σ'' + e(I $#

∑"𝐸[𝑥#" 𝑒 𝑥" 𝑒 $]∑"𝐸[𝑥"𝑥#" 𝑒 $]

𝐵 ∈ 𝑅!$×!!



Pre-Training with Masking
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𝑧

𝑥

𝑦

• Regression with linear features: define 𝑓(𝑥) = 𝐵𝑥, solve
𝜃∗(𝐵) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸/,0[ 𝑦 − 𝜃𝑓(𝑥) 1

1]
• Bottleneck mis-specified: 𝑓 ∈ 𝑅!& with 𝑑" < 𝑑#, 𝑑" < 𝑑$

𝑧 ∼ 𝑁 0, Λ ,	𝑧 ∈ 𝑅!"
𝑥 = 𝑊𝑧 + 𝜖' ,	𝑥 ∈ 𝑅!!
𝑦 ∼ 𝑝(𝑦|𝑧), 𝑦 ∈ 𝑅!#

• Find 𝐵 with masked linear auto-encoder:

𝐵∗ = 𝐶)([𝑏
∗

𝐿 ],   𝑏
∗ = Σ111 − 𝑑𝑖𝑎𝑔 Σ11

? 𝑑1 − 1 Σ11 + e*I )(

Σ'' = 𝜎'(𝐼 +𝑊Λ𝑊)

Mask embeddingArbitrary invertible 𝑑,×𝑑, matrix

Arbitrary (𝑑, − 1)×𝑑' matrix, 𝑑, > 1

• 𝑏∗ contains less information about 𝑥 as compared with the PCA solution
• However, flexibility in 𝐿 and 𝑒 allows 𝐵 to project to different subspaces of 𝑧



Pre-Training with Masking
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𝑧

𝑥

𝑦

• Regression with linear features: define 𝑓(𝑥) = 𝐵𝑥
• Bottleneck mis-specified: 𝑓 ∈ 𝑅0- with 𝑑@ < 𝑑1, 𝑑@ < 𝑑V

𝑧 ∼ 𝑁 0, Λ ,	𝑧 ∈ 𝑅!"
𝑥 = 𝑊𝑧 + 𝜖' ,	𝑥 ∈ 𝑅!!
𝑦 ∼ 𝑝(𝑦|𝑧), 𝑦 ∈ 𝑅!#

• Find 𝐵, 𝜃 together with supervised learning:

Σ'' = 𝜎'(𝐼 +𝑊Λ𝑊)

𝜃∗, 𝐵∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸1,W[ 𝑦 − 𝜃𝐵𝑥 *
*]

Solution is not unique, but of the following form: 

𝜃∗ = 𝐼0,×0, , 00,×(0-)0,) 𝐶, 𝐵∗ = 𝐶)([ΣW1Σ11
)(

𝐿
], 

• Consider the case of 𝑑E < 𝑑F < 𝑑G:

𝐵 ∈ 𝑅!$×!!

(𝜃∗𝐵∗ = Σ-'Σ''$# is the least squares solution of linear regression)



Pre-Training with Masking
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𝑧

𝑥

𝑦

• Regression with linear features: define 𝑓(𝑥) = 𝐵𝑥
• Bottleneck mis-specified: 𝑓 ∈ 𝑅0- with 𝑑@ < 𝑑1, 𝑑@ < 𝑑V

𝑧 ∼ 𝑁 0, Λ ,	𝑧 ∈ 𝑅!"
𝑥 = 𝑊𝑧 + 𝜖' ,	𝑥 ∈ 𝑅!!
𝑦 ∼ 𝑝(𝑦|𝑧), 𝑦 ∈ 𝑅!#

• Now compare the two solutions: assume 𝑑0 < 𝑑2 < 𝑑3

Σ'' = 𝜎'(𝐼 +𝑊Λ𝑊)

Supervised learning:

𝐵∗ = 𝐶Y)([
ΣW1Σ11)(

𝐿Y
], 

Masked linear auto-encoder:

𝐵∗ = 𝐶Z)([
𝑏∗
𝐿Z
],   𝑏∗ = Σ111 − 𝑑𝑖𝑎𝑔 Σ11

? 𝑑1 − 1 Σ11 + e*I )(



Pre-Training with Masking
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𝑧

𝑥

𝑦

• Regression with linear features: define 𝑓(𝑥) = 𝐵𝑥
• Bottleneck mis-specified: 𝑓 ∈ 𝑅0- with 𝑑@ < 𝑑1, 𝑑@ < 𝑑V

𝑧 ∼ 𝑁 0, Λ ,	𝑧 ∈ 𝑅!"
𝑥 = 𝑊𝑧 + 𝜖' ,	𝑥 ∈ 𝑅!!
𝑦 ∼ 𝑝(𝑦|𝑧), 𝑦 ∈ 𝑅!#

• Now compare the two solutions: assume 𝑑0 < 𝑑2 < 𝑑3

Σ'' = 𝜎'(𝐼 +𝑊Λ𝑊)

Supervised learning:

𝐵∗ = 𝐶Y)([
ΣW1Σ11)(

𝐿Y
], 

Masked linear auto-encoder: (setting 𝑒 = 0)

𝐵∗ = 𝐶Z)([
𝑏∗
𝐿Z
],   𝑏∗ = (

0*)(
Σ111 − 𝑑𝑖𝑎𝑔 Σ11

?
Σ11)(

Arbitrary (𝑑, − 1)×𝑑' matrix

Arbitrary (𝑑, − 𝑑-)×𝑑' matrix

Arbitrary invertible 𝑑,×𝑑, matrix

Arbitrary invertible 
𝑑,×𝑑, matrix



Pre-Training with Masking
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𝑧

𝑥

𝑦

• Regression with linear features: define 𝑓(𝑥) = 𝐵𝑥
• Bottleneck mis-specified: 𝑓 ∈ 𝑅0- with 𝑑@ < 𝑑1, 𝑑@ < 𝑑V

𝑧 ∼ 𝑁 0, Λ ,	𝑧 ∈ 𝑅!"
𝑥 = 𝑊𝑧 + 𝜖' ,	𝑥 ∈ 𝑅!!
𝑦 ∼ 𝑝(𝑦|𝑧), 𝑦 ∈ 𝑅!#

• Now compare the two solutions: assume 𝑑0 < 𝑑2 < 𝑑3

Σ'' = 𝜎'(𝐼 +𝑊Λ𝑊)

Making the two solutions equal: find matrices 𝐶 and 𝐿 such that
(

0*)(
Σ111 − 𝑑𝑖𝑎𝑔 Σ11

?
= 𝐶(⋅[

ΣW1
𝐿
], 

∈ 𝑅#×!! ∈ 𝑅(!$$!#)×!!∈ 𝑅#×!$
(the 1st row of C)

“solving a set of 𝑑( equations with 𝑑+ + 𝑑+ − 𝑑, ×𝑑( variables”

𝑑- < 𝑑, ⇒ 𝑑, − 𝑑- ≥ 1 ⇒ 𝑑, + 𝑑, − 𝑑- ×𝑑' > 𝑑' ⇒ solution exists!



Pre-Training with Masking
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𝑧

𝑥

𝑦

• Regression with linear features: define 𝑓(𝑥) = 𝐵𝑥
• Bottleneck mis-specified: 𝑓 ∈ 𝑅0- with 𝑑@ < 𝑑1, 𝑑@ < 𝑑V

𝑧 ∼ 𝑁 0, Λ ,	𝑧 ∈ 𝑅!"
𝑥 = 𝑊𝑧 + 𝜖' ,	𝑥 ∈ 𝑅!!
𝑦 ∼ 𝑝(𝑦|𝑧), 𝑦 ∈ 𝑅!#

• Compare - w/out masking : 

Σ'' = 𝜎'(𝐼 +𝑊Λ𝑊)

• Linear auto-encoder: 
• Solution equivalent to PCA 
• Best linear representation for 𝑥 (in terms of ℓ* recon. error)
• Might not be good for prediction (depending on ground truth 𝑝(𝑦|𝑧))

• Masked linear auto-encoder:
• Solution is not unique (when 𝑑+ > 1)
• Not so good representation for 𝑥 (in terms of ℓ* recon. error)
• A subset of solutions are optimal for prediction (when 𝑑, < 𝑑+ < 𝑑-)

Hypothesis: masked pre-training works better when good representation for generating 𝑥 is highly redundant



Pre-Training with Masking
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𝑧

𝑥

𝑦

• Regression with linear features: define 𝑓(𝑥) = 𝐵𝑥
• Bottleneck mis-specified: 𝑓 ∈ 𝑅0- with 𝑑@ < 𝑑1, 𝑑@ < 𝑑V

𝑧 ∼ 𝑁 0, Λ ,	𝑧 ∈ 𝑅!"
𝑥 = 𝑊𝑧 + 𝜖' ,	𝑥 ∈ 𝑅!!
𝑦 ∼ 𝑝(𝑦|𝑧), 𝑦 ∈ 𝑅!#

• Caveats of this example: 

Σ'' = 𝜎'(𝐼 +𝑊Λ𝑊)

• Masked linear auto-encoder:
• A subset of solutions are optimal for prediction (when 𝑑, < 𝑑+ < 𝑑-)
• But: pre-training on 𝑥 has no obvious “incentives” to find them

(optimal 𝐵∗ in supervised learning depends on Σ,()

• Extension to non-linear models:
• With over-parameterised NNs, auto-encoder solution might not be unique
• But Masked auto-encoder might have bigger subspace of optimal solution 

for prediction
• Again: pre-training on 𝑥 has no obvious “incentives” to find them



Optimisation Aspects

• Lower dimensional target to match:
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• Linear Auto encoder (PCA) features: 𝑓 𝑥 = 𝐵𝑥

• Masked Linear Auto encoder features: 𝑓 𝑥 = 𝐵𝑥

𝐴∗, 𝐵∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸1[ 𝑥 − 𝐴𝐵𝑥 *
*]

𝐴∗, 𝐵∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑.𝐸1[ 𝑥. − 𝐴𝐵𝑥). 𝑒
*
]

𝐴 ∈ 𝑅%!×%%

𝐴 ∈ 𝑅#×%%



Optimisation Aspects

• More equally good optima (for representation learning)?
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𝐵∗ = 𝐶)([𝑏
∗

𝐿 ],   𝑏
∗ = Σ111 − 𝑑𝑖𝑎𝑔 Σ11

? 𝑑1 − 1 Σ11 + e*I )(

Mask embeddingArbitrary invertible matrix

Arbitrary (𝑑, − 1)×𝑑' matrix

𝐵∗ = 𝐶)(𝑈0-
? , 𝑈 = 𝑒𝑖𝑔 Σ11

Arbitrary invertible matrix

• Linear Auto encoder (PCA) features: 𝑓 𝑥 = 𝐵𝑥

• Masked Linear Auto encoder features: 𝑓 𝑥 = 𝐵𝑥



Optimisation Aspects

• Current DL tricks engineered towards supervised learning tasks?
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Bao et al. BEiT: BERT Pre-Training of Image Transformers. ICLR 2022
Wang et al. Image as a Foreign Language: BEiT Pretraining for All Vision and Vision-Language Tasks. arXiv:2208.10442

BEiT as an example:
• Pretraining task: classification
• (sparse) Cross-entropy loss



Still Consider Burning the $10M GPU Budget?

• Is masked pre-training fundamentally different?
• How to answer this question?

• Modelling choices?
• Modelling Conditional distributions: a better choice?
• Not the full story: incompatibility/inconsistency issue matters or not? 

• Advantages from Training objectives?
• More flexible representation learning?
• Redundancy in information of 𝑥?
• Any benefit of the extra [mask] embedding 𝑒?

• Optimisation aspects?
• Easier for optimisation? due to lower-dim targets (many equally good optima)?
• Deep neural networks designed to benefit supervised learning objectives?

• Other perspectives (from you)?

28


