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Decision making under uncertainty
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The Central Computation for Inference

 Inference: infer the unknowns
* Unobserved/latent variables in the model
* Quantities depending on the latent variables in the model

_ Random variable (unobserved)
prob. density

[ F(6)m(8)do

e Ee—— —

probability Q
measure W
(For discrete probability measures, integration becomes discrete sum.)

(We will discuss continuous variables in the rest of the talk.)




Computation Challenge

 The central equation for inference:

[ F(8) m(6)de

“What is the prediction
distribution of the test output
given a test input?”

F(6) =p(y|x,0),m(0) = p(6 | D),
D = observed datapoints




Computation Challenge

 The central equation for inference:

| F(6) m(6)de

“What is the mean of this distribution?”

F(8) = 6, m(0) can be complicated and high dimensional




Approximate Inference

* Central task: approximate (6)

:‘ iw,»

q(H) ﬂ@)

Approximate distribution design Algorithm for fitting q(0) to (6)

‘ min Loss(q(60),m(6))

Optimisation-based
Explicit distributions _ approaches

Today’s focus



Approximating the Target Distribution

* Target distribution is usually intractable due to normalising constant:

1
p(6|D) = exp[logp(6) + logp(D|6)] p(x) = EeXp[—E (x; 0)]

p(D)

Bayesian Posterior Energy-based Model

* Approximation methods to side-step:

Variational Inference Score Matching
min KL[q|lp] = Eq[log q(x) —log p(x)] min F(q,p) = %Eq[”vx logq(x) — Vylogp(0)ll3]
“compare log q(x) with logp(x)” “compare V, log g(x) with V, logp(x)”
Using equiv. ELBO objective, AsV,logZ = 0,

no need to evaluate log Z no need to evaluate log Z



Comparing KL & Fisher Divergences

 Comparing 2 Gaussians with different mean, same variance (x € R%):

p(x) = N(x; ﬂp»o-zld) q(x) = N(x; ‘uq,O'ZId)
Variational Inference Score Matching
1 2 1 2
KL[qllp] = 5 [lng — mll, F(a.p) = 5 llug — mll,

Define g, = p, + oy, then ||u, — up”z = lyll5



Comparing KL & Fisher Divergences

 Comparing 2 Gaussians with different mean, same variance (x € R%):

p(x) = N(x; tp, 0%14)
Variational Inference

1 2

KL[qllp] = Ellyllz

KL
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Stein’s Method & Score Matching

* Fisher divergence: a way to measure score difference:

1
F(p,q) = EEq[”Vx logq(x) — V, logp(x)”%]

Unknown score (only have x ~ g(x))

p q
? ® o ) ) °
Goodness-of-fit Test EBM learning Tuning MCMC
(g only has samples) (g as data distribution) (g as MCMC samples)

Solution: Find a function to directly compute/approximate the score difference!

Hyvarinen. Estimation of Non-Normalized Statistical Models by Score Matching. JMLR 2005



Stein’s Method & Score Matching

* Stein’s identity:
Epx [Vielogp(x)' f(x) + Vi f(x)] =0

For all f(x) € F satisfying | llilm p(x)f(x) =0
Xl||—00

e Stein discrepancy:

S(q,p) = sup Eqio[Vilogp(x) T f(x) + Vi f(x)]

« g =p = 5(qg,p) (Stein’s identity)
* S(q,p) = 0,andif f € Fisarich function family > g = p
Gorham and Mackey. Measuring Sample Quality with Stein's Method. NIPS 2015

Liu et al. A Kernelized Stein Discrepancy for Goodness-of-fit Tests. ICML 2016
Chwialkowski et al. A kernel test of goodness of fit. ICML 2016 11



Stein’s Method & Score Matching

* Stein discrepancy:

S(q,p) = sup Eqo[Vilogp(x)T f(x) + V' f(x)],

* Estimation requires:
 Samples x ~ q(x) « enables estimation of V,. log g(x) & posterior approximations
* Score function s, (x) evaluated at x <« enables learning of p(x) as an EBM

1
p(x) = exp[~Eo(x)]
V,logp(x) = -V, Eq(x) |V, logZ

=0

Gorham and Mackey. Measuring Sample Quality with Stein's Method. NIPS 2015
Li and Turner. Gradient Estimators for Implicit Models. ICLR 2018

12



Stein’s Method & Score Matching

* Stein discrepancy:

S(q,p) = sup Eqoo[Vilogp() T f(x) + VT ()],

* Selecting test functions f € F:

* As L, integrable functions:
 f*(x) x V,logp(x) —V,logq(x) (intractable)
e Stein discrepancy < Fisher divergence (integration by parts)
» Optimal test function approximated by a neural network fs(x): R® — R”

Ranganath et al. Operator Variational Inference. NIPS 2016
Grathwohl et al. Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling. ICML 2020
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Stein’s Method & Score Matching

* Stein discrepancy:

S(q,p) = sup Eqo[Vilogp(x)T f(x) + V' f(x)],

* Selecting test functions f € F:

* As functions in a unit ball of an RKHS:
* Closed-form optimal test function as “smoothed” score difference
e Optimal test function can be computed (integration by parts)
* Test power depends on the choice of kernel

Liu et al. A Kernelized Stein Discrepancy for Goodness-of-fit Tests. ICML 2016
Chwialkowski et al. A kernel test of goodness of fit. ICML 2016

14



Stein’s method & score matching

* Stein discrepancy:

S(q,p) = sup Eqo[Vilogp(x)T f(x) + V' f(x)],

* Curse-of-dimensionality problem:
* f € F as L, integrable functions:
» Optimizing f5(x): R” - R” is challenging in high dimensions
* f € F as functions in a unit ball of an RKHS:
* Open question of kernel choice in high dimensions

Gong et al. Sliced Kernelized Stein Discrepancy. ICLR 2021
Gong et al. Active Slices for Sliced Stein Discrepancy. ICML 2021
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Sliced Stein Discrepancy

* 1stidea: find the projection direction where scores differ the most (on average)!

coordinate system with basis coordinate system with basis One best projection is enough!
10 -0 '
Id == 07:|_ =1 ... T
00 ..1 r]
V, logp(x) — V, log q(x) 0/ (Vx logp(x) — V, log q(x)) 1T (Vy logp(x) — V, log q(x))

Gong et al. Sliced Kernelized Stein Discrepancy. ICLR 2021

Gong et al. Active Slices for Sliced Stein Discrepancy. ICML 2021 16



Sliced Stein Discrepancy

* 1stidea: find the projection direction where scores differ the most (on average)!

>
coordinate system with basis coordinate system with basis One best projection is enough!
10 -0 '
Iy = o) =1.. T, = sup Sy
r
00 ..1 T'C-lr =S,
SUp Eqx)[Vx logp(x) T f(x) + V' f(x)] z sup Eq[r"Vylogp(x) fr(x) +rTVf(x)]  SUP fsug Eqeo[rTVylogp(x) fi-(x) + 7 TVf.(x)]
fEF = frEFy r Jr€Fr
f:R% - R4 reor f.iR% - R,Vr €0, fiRY > R

Gong et al. Sliced Kernelized Stein Discrepancy. ICLR 2021
Gong et al. Active Slices for Sliced Stein Discrepancy. ICML 2021 17



Sliced Stein Discrepancy

Radon transform: R [I](L,

 2d idea: apply Radon transform

Radon transform

fr:R* >R &  frgtR—>R,vge st

* ... again, pick best g

Resulting Stein discrepancy: maxSSD-rg

sup  Eq[r Vi logp(x) frg(x"g) +17gV 1y fr g (x" 9]

r.9.frg€Frg
fra:R—=>R
rg"

Gong et al. Sliced Kernelized Stein Discrepancy. ICLR 2021
Gong et al. Active Slices for Sliced Stein Discrepancy. ICML 2021 18



Goodness-of-fit Test with SSD

RBM test power

Goodness-of-fit test: . .
* Both p and g are Gaussian-RBMs —*—  Active Slices
° weich rtur from p weigh Gradient-based N
q weights as perturbed from p weights o g S
: ¢
g 0.6
B
(@)
2
* Better test power: & 0.4
* at perturbation level 0.01, rejection rate =
95% (Active slice) vs 45%(GO) 0.2
* Significant speed-up: L
« 0.04s (Active slice) vs 10.15s (GO) o ¥
* 254x times faSter 0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 o0.0175
perturbation level
SSD variants: vs GO
Gong et al. Sliced Kernelized Stein Discrepancy. ICLR 2021 .
1

Gong et al. Active Slices for Sliced Stein Discrepancy. ICML 2021



Selecting SGHMC Step-sizes with SD

Detecting Convergence of SGHMC for Trial 0

Detecting Convergence of SGHMC for Trial 1

Detecting Convergence of SGHMC for Trial 2

—%— maxSKSD_g

—&— maxSKSD_rg
KSD

—— KL

Divergence Value
N

N — — 4R 7

1 \/

eps eps eps
(a) Random seed O (b) Random seed 1 (c) Random seed 2
Selection result in Trial 1 (random seed 1)
Method Metric
step size KSD maxSKSD_rg maxSKSD_g KL
KSD 0.015 -0.384 902 66.0 1.46
maxSKSD_rg 0.008 -0.0166 -0.332 -0.018 0.257
maxSKSD_g  0.004 -0.0100 -0.269 -0.079 0.201

Gong et al. Sliced Kernelized Stein Discrepancy. ICLR 2021
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From Global to Local Coordinates

Aol

Stein discrepancy (SD) Sliced Stein discrepancy (SSD) Diffusion score matching & SD
Global Coordinate system I Global Coordinate system O, Local Coordinate system

N

Barp et al. Minimum Stein Discrepancy Estimators. NeurlPS 2019
Gong and Li. Interpreting Diffusion Score Matching using Normalizing Flows. ICML 2021 INNF+ workshop
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Fitting Student-t with Score Matching

1.2

1.0

0.8

Density

0.4

0.2

0.0

F(qdata, Po) = ]Eq(l.m. “ ‘ \Vm logp (.’L’l - yx log q“*"“‘(xl | |2]

Density of quata @and pg (Student-t distribution)

Score function of qqgata and pg

— dQdata
— Pe

6
Qdata SAMples

—— (Qdata SCOTE
4 —— pg SCOre

Score
o

-3

-2 -1

Train Ps to fit Jaata

0

1 2 3 =3 -5 = 0 1 2 3
X

Score of Po and (data
Score Matching

Integration by parts

L(0) = Eqqua[llsp, (@)1 + 2V 85, (2)]

sp, (z)

Treat Gdataas constant

sq(ldl(l (x)

argmin, F (qdata, po) = argmin, L(0)

22



Fitting Student-t with Score Matching

P (m) = Student—t( ,03) (Idata<x) — StU-dent‘t(O, 03)

SM and DSM Loss for Student-t distribution at different

Score Matching
Valid region

Loss
N

g 2 =9 0 2 4 6
Mean 6

* O initialized in = optimisation converges to 8 = 0 (global optimum)

e Otherwise, optimisation converges to +oo (local optimum)
23



Fitting Student-t with Score Matching

With diffusion matrix m.(x)

Diffusion Score Matching

m(x) isinvertible
]:((Idataa p ) — E(I(ietlu “ | Yx logp (xz - yz log (](lata (xz I |2] ‘Fm (qdaw: p ) = IEqdutu “ |m<x>T(3P (x) - s([duld (x))||2]

Sp (m) sqdnt;:. (m)

SM and DSM Loss for Student-t distribution at different 6

, 00 How to interpret
T s & choose m(x)?
—— DSM with manual flow (-’13—9)2
B Eﬂa:‘ualtﬂowae o m(z) =1+ 0.6
SM .

Mean 6 24



Interpreting DSM using Flows

Invertible flow T()

P95 ddata > PT,4T
Diffusion Score Matching
Densities Po, ddata By choosing pPrT,4qr
| m(z) = (Vo T(z))™
Discrepancy Fm(qaata, Po) F(PT,4q71)

Similar idea applies to Diffusion Stein Discrepancy

Gong and Li. Interpreting Diffusion Score Matching using Normalizing Flows. ICML 2021 INNF+ workshop
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Better Flow Design
Flow (Barp et al.)

m(x) m(z) =1+

Loss

20

15

10

(x —0)
0.6

= (V. T(z))™*

where 7'(-) transforms Pgto

T'(-) is composition of CDF,,,and

SM and DSM Loss for Student-t distribution at different 6

DSM with Gaussian flow

Gaussian flow 6

DSM with manual flow
Manual flow 6

SM

Faster convergence with
compared
to Flow by Barp et al. 2019

26



The Name “Diffusion”

 Stein operator = Stein discrepancy:

* Find Stein operator A,[f] such that E, 4, [Ap 1f] (x)] =0forVf EF

* Construct the corresponding Stein discrepancy
S(CI; ) — ?cup Eq(x)[ [f] (X)]

dx = b(x)dt + /2D (x)dW (t) oo 1
bG) = [0 + 0O Talogp(0) ATC) ot Al = )<v PEDE) + QG ()
Complete SG-MCMC recipe Diffusion Stein discrepancy
Ito diffusion SDE with m(x) = D(x) + Q(x)

Gorham et al. Measuring Sample Quality with Diffusions. Annuals of Applied Probability 2019

Ma et al. A Complete Recipe for Stochastic Gradient MCMC. NIPS 2015 27



Conclusion

* Score-matching & Stein discrepancy as promising alternatives
* Still facing challenges in high dimensions

* |deas from flows can help improve Stein’s method
* How about the other direction?

Thank you!



