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Starting with an “Ancient” Example…

data Generated (fix content) Generated (fix dynamics)

Disentangle the representation in unsupervised fashion:
• Static information (e.g., content, style)
• Temporal information (e.g., movement)

Y Li and S Mandt. Disentangled Sequential Autoencoder. ICML 2018. 1

Note: no attribute labels, learned purely in an unsupervised manner.



Disentangled Sequential Autoencoder

Y Li and S Mandt. Disentangled Sequential Autoencoder. ICML 2018.

Idea:
• Build a probabilistic graphical model with 𝑓 = “content” and 𝑧1:𝑇  = “dynamics”
• Use LSTMs to parameterise 𝑝 𝑧𝑡 𝑧<𝑡) and CNNs (+LSTM) to parameterise 𝑝 𝑥𝑡|𝑓, 𝑧𝑡

• Train the model on observational data
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Powerful Neural Networks Can “Cheat”

Cheat in the following ways:
• The LSTM hidden cells can learn to “copy” the states 
 ⇒ 𝑧𝑡  captures content info
• The 𝑓 variable can learn the initial condition for a deterministic dynamical system 

⇒ 𝑓 captures movement info

My solution back then: 
Graduate student descent

Y Li and S Mandt. Disentangled Sequential Autoencoder. ICML 2018. 3



Powerful Neural Networks Can “Cheat”

Locatello et al. Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019.

𝑧 ∼ 𝑁(0, 𝐼) 𝑥 = 𝐺(𝑧)Generator 𝐺

𝑧′ ∼ 𝑁(0, 𝐼) 𝑥 = 𝐺′(𝑧′)Generator 𝐺′

𝑧
𝑅−1

Rotate:
𝑧′ = 𝑅(𝑧)

Same results!
(non-identifiable)
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Identifiability in Deep Generative Models

Workflow of causal discovery based on identifiable DGMs:

• Write down the model assumptions
• E.g. 𝑍 = 𝑔𝜃 𝜖1 , 𝑋 = 𝑓𝜃 𝑍 + 𝜖2, 𝑓𝜃 , 𝑔𝜃  can be neural networks

• This defines a model 𝑝𝜃 𝑋 = ∫ 𝑝𝜃 𝑋 𝑧 𝑝𝜃 𝑧 𝑑𝑧 with parameters 𝜃

• 𝑍 is unobserved

• Show identifiability
• i.e. 𝑝𝜃(𝑋) = 𝑝𝜃′(𝑋) ⇔ 𝑓𝜃 ≅ 𝑓𝜃′, 𝑔𝜃 ≅ 𝑔𝜃′

• Fit the model to data, and do model checking
• If pass: use the fitted model to answer representation learning questions

Khemakhem et al. Variational Autoencoders and Nonlinear ICA: A Unifying Framework. AISTATS 2020
Kivva et al. Identifiability of deep generative models without auxiliary information. NeurIPS 2022
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Some Important Notes

• Identifiability Proofs ≠ Learning/Estimation Guarantees
• Assuming no model error

• Assuming usage of consistent estimators e.g., MLE

• Assuming abundant (e.g., infinite) amount of data 

• Assuming global optimum
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• Then why should I care about this?
• Identifiability as a fundamental concept of statistical inference

• Pre-requisite for analyzing consistency of estimation
• “Should I trust my discovery results when my deep generative mode fits the data?”

• Being able to store knowledge ≠ Being able to use knowledge
• Structured representation makes downstream use of features much easier
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Motivating Switching Dynamic Models
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Regime-switching behaviour in time-series data:
• Complex behaviour due to switching between different dynamical patterns
• Within the same regime: 

• The dynamics may be stationary
• The causal dependencies may be the same across time steps
• The causal structure may be the same across time steps

“regimes”



MSM

SDS

Switching Dynamical Systems

• Observations: 

• Continuous latent variables:

• Discrete latent variables:

Switching autoregressive prior dynamics
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• Discrete latents:

• Transitions are conditionally stationary and conditional first-order Markov.

Markov Switching Models

Q: Under which conditions are the transitions identifiable from observations?
10



and                        can be neural networks with analytic activation functions!

1.  Unique indexing for the states

2.  The transition is Gaussian, and the mean and covariance are analytic in 

Identifiable Markov Switching Models

Theorem 1: 

The following conditions render the Markov Switching Model identifiable1 up to 

permutations:

1 We refer to identifiability by means of the function form rather than parameters. 11



1. Identifiability requires linear independence over the family                              [1].

2. Start with                            , then prove               by induction.

3. Show conditions for                            s.t.                                                            are linearly 

independent. (non-parametric case)

4. Work out conditions for the Gaussian case:

Identifiable Markov Switching Models

Proof strategy: Frame the problem as a finite mixture problem over paths:

[1] Yakowitz, Sidney J., and John D. Spragins. "On the identifiability of finite mixtures." The Annals of Mathematical Statistics 39.1 (1968).
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Why do we need Gaussian and analytic transition functions?

Think about linear independence of

• Gaussians

• Analytic functions:

Identifiable Markov Switching Models
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Identifiable Switching Dynamical Systems

MSM

SDS

• Frame the problem as an extension of iMSM and Kivva et al. (2022).

Kivva, Bohdan, et al. "Identifiability of deep generative models without auxiliary information." NeurIPS 2022.
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• If   , is continuous, piece-wise 
linear, and injective,
• MSM and   are identifiable 

up to affine transformations.

• If   , is piece-wise linear and
weakly-injective,
• MSM is identifiable up to 

affine transformations.

Theorem 2: Assume an identifiable MSM.

Identifiable Switching Dynamical Systems

Kivva et al (2022) Khemakhem et al. (2020)

Kivva, Bohdan, et al. "Identifiability of deep generative models without auxiliary information." NeurIPS 2022.

Khemakhem, Ilyes, et al. "Variational autoencoders and nonlinear ica: A unifying framework." AISTATS 2020.

Proof sketch:
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• High-dimensional video sequences of synthetic meshes from CMU mocap data.

Experiments 

Check paper!
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• High-dimensional video sequences from the AIST Dance DB – Hip-hop.

Experiments 

Check paper!
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• We establish identifiability for Switching Dynamical Systems.

• Assumptions directly linked to deep generative models.

• Our proof is a major result beyond classical HMM theory.

Summary

Allman, Elizabeth S, et al. "Identifiability of parameters in latent structure models with many observed variables." (2009)

Gassiat, Élisabeth, et al. "Inference in finite state space nonparametric hidden Markov models and applications." (2016)

Check paper!
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Work In-Progress & Future Extensions
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• Go for more structured distributions:

C Balsells Rodas, Y Wang, P Mediano and Y Li. Identifying Nonstationary Causal Structures with High-Order Markov Switching Models. UAI 2024 workshop
C Balsells Rodas, R Tu, Y Li and H Kjellstrom. Causal Discovery from Conditionally Stationary Time Series. UAI 2022 Causal Representation Learning workshop

𝑥𝑡−1 𝑥𝑡 𝑥𝑡+1

𝑠𝑡−1 𝑠𝑡 𝑠𝑡+1

… …
𝑥𝑡−1 𝑥𝑡 𝑥𝑡+1

𝑠𝑡−1 𝑠𝑡 𝑠𝑡+1

… …

higher-order Markov transitions
(e.g., neuroscience & climate data)

observation-dependent state transitions
(critical in e.g., model-based RL)



Some Important Notes (Again)

• Identifiability Proofs ≠ Learning/Estimation Guarantees
• Assuming no model error

• Assuming usage of consistent estimators e.g., MLE

• Assuming abundant (e.g., infinite) amount of data 

• Assuming global optimum
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• Can we say something closer to the practices?



Some Questions That We Can Ask
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• In VAE (i.e., DGMs learned with amortized VI) context:

𝑍 = 𝑔𝜃 𝜖1 , 𝑋 = 𝑓𝜃 𝑍 + 𝜖2, 𝑓𝜃 , 𝑔𝜃  can be neural networks

• No model error
• Maximum likelihood estimation
• Infinite amount of data 
• Global optimum

If 𝜃, 𝜃′ both maximize ELBO,

Then would 𝑓𝜃 ≅ 𝑓𝜃′, 𝑔𝜃 ≅ 𝑔𝜃′?

Symmetry in learned representations

• No model error
• Maximum likelihood estimation
• Infinite amount of data 
• Global optimum

Estimation consistency

If 𝜃′ maximizes ELBO 
with data 𝑝𝑑 𝑥 = 𝑝𝜃(𝑥), 

Then would 𝑓𝜃 ≅ 𝑓𝜃′, 𝑔𝜃 ≅ 𝑔𝜃′?

Work in progress so I could be wrong :)



Symmetry in Learned Representations?

• A typical strategy for proving identifiability for DGMs:
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𝑍 = 𝑔𝜃 𝜖1 , 𝑋 = 𝑓𝜃 𝑍 + 𝜖2, 𝜖2 ∼ 𝑁(0, 𝜎2𝐼)

Given: 𝑝𝜃 𝑥 = 𝑝𝜃′(𝑥) and assume invertibility/injectiveness of 𝑓𝜃  & 𝑓𝜃′

• From noisy observations to noiseless observations

• 𝑝𝜃 𝑥 = 𝑝𝜃′ 𝑥  ⇒    𝑓𝜃 𝑔𝜃 𝜖1  and 𝑓𝜃′ 𝑔𝜃′ 𝜖1  are equally distributed 

• Removing the ”volume” term (with further assumptions)

log 𝑝𝜃 𝑧 = 𝑓𝜃
−1 𝑥 + log |

𝑑𝑓𝜃
−1(𝑥)

𝑑𝑥
| = log 𝑝𝜃′ 𝑧 = 𝑓𝜃′

−1 𝑥 + log |
𝑑𝑓

𝜃′
−1(𝑥)

𝑑𝑥
|

• Analyze the equivalence class 𝑓𝜃 ≅ 𝑓𝜃′, 𝑔𝜃 ≅ 𝑔𝜃′  

Khemakhem et al. Variational Autoencoders and Nonlinear ICA: A Unifying Framework. AISTATS 2020

e.g.,   Φ(𝑓𝜃
−1(𝑥)) = 𝐴Φ(𝑓𝜃′

−1(𝑥)) + 𝑏   if 𝑔𝜃  induces an ExpFam distribution



Symmetry in Learned Representations?

• Let’s look at the ELBO:

23

𝐸𝐿𝐵𝑂 𝑥, 𝜃, 𝜙 ≔ 𝐸𝑞𝜙(𝑧|𝑥) log 𝑝𝜃 𝑥 𝑧 + 𝐻 𝑞𝜙(𝑧|𝑥) + 𝐸𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑧)] 

= 𝐸𝑞𝜙(𝑧|𝑥)

1

𝜎2 𝑥 − 𝑓𝜃 𝑧 2
2 + 𝐶(𝜎)

(reconstruction error)

Stats. for inferred 
latent  representations

e.g., using ExpFam:
= 𝐸𝑞𝜙(𝑧|𝑥) 𝜆0, Φ 𝑧 − 𝑍(𝜆)

Entropy
(volume)

Work in progress so I could be wrong :)

• Differences?
• Encoder: 𝑓𝜃

−1(𝑥) vs 𝑞𝜙(𝑧|𝑥)

• Additional reconstruction error term



Symmetry in Learned Representations?

• Possible strategy for analyzing symmetry in learned representations:
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Given: 𝐸𝐿𝐵𝑂 𝑥, 𝜃, 𝜙 = 𝐸𝐿𝐵𝑂 𝑥, 𝜃′, 𝜙′  are optimal solutions,
- Assume invertibility/injectiveness of 𝑓𝜃  & 𝑓𝜃′, 
- Assume one of the following scenarios:

• Near deterministic regime: 𝜎 → 0
• Optimally learned output noise variance: optimizing and share 𝜎
• Auxiliary info available for prior only: use 𝑝(𝑧|𝑢) instead of 𝑝(𝑧)
• (each scenario needs different assumptions on 𝑞𝜙(𝑧|𝑥))

Work in progress so I could be wrong :)

𝐸𝑞𝜙(𝑧|𝑥) log 𝑝𝜃 𝑧 = 𝐸𝑞
𝜙′(𝑧|𝑥) log 𝑝𝜃′ 𝑧

𝑍 = 𝑔𝜃 𝜖1 , 𝑋 = 𝑓𝜃 𝑍 + 𝜖2, 𝜖2 ∼ 𝑁(0, 𝜎2𝐼)



Symmetry in Learned Representations?

• Why looking into this term?
• We use 𝑞 to extract latent structure in practice!

• Example: exponential family prior and “conjugate” approximate posterior:
𝑝𝜃 𝑧 = exp 𝜆 𝜃 , Φ 𝑧 − 𝑍 𝜆 𝜃

𝑞𝜙 𝑧|𝑥 = exp 𝜆 𝜙, 𝑥 , Φ 𝑧 − 𝑍 𝜆 𝜙, 𝑥

25Work in progress so I could be wrong :)

𝐸𝑞𝜙(𝑧|𝑥) log 𝑝𝜃 𝑧 = 𝐸𝑞
𝜙′(𝑧|𝑥) log 𝑝𝜃′ 𝑧

⇒  𝐸𝑞𝜙(𝑧|𝑥) Φ(𝑧) = 𝐴𝐸𝑞
𝜙′(𝑧|𝑥) Φ(𝑧) + 𝑏

⇒  𝐸𝑞𝜙∗(𝑧|𝑥) Φ(𝑧) = 𝐸𝑝𝜃
∗ (𝑧) Φ(𝑧)



Take Away

• Identifiability: a fundamental question of structural representation learning
• i.e. should you expect the learned representations to match the ”structures” in data

• The field has quite substantial advances since ~2020

• Our work provides strong theoretical results for (deep) switching dynamical systems

• We need to bring identifiability theory closer to practice
• Option 1: Getting closer to maximum likelihood

• Option 2: Accept bias/errors in current tech, and analyze them

• Challenge : Theory for DDPMs & auto-regressive LLMs?
• No learning for probabilistic representations

• Studying symmetries within neural networks?
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THANK YOU!

Stephan MandtCarles Balsells-Rodas Yixin Wang

Thanks to my awesome collaborators:

Questions? Ask now, or email:
yingzhen.li@imperial.ac.uk 

https://arxiv.org/abs/2305.15925

Ruibo Tu Hedvig KjellströmPedro Mediano

PS: hiring post-docs in ”AI for Chemistry”
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Additional Slides



Identifiability in Markov Switching Models 

Forward and

backward
Turning around Double spinStanding in front

iM
S

M
 (

o
u
rs

)
K

V
A

E

29
Fraccaro et al. A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning. NeurIPS 2017
C Balsells Rodas, Y Wang and Y Li. On the identifiability of Switching Dynamic Models. ICML 2024

• Experiment: discovering 
dancing patterns
• Data: CMU mocap
• Estimation: Generalised EM
• DL Baseline: KalmanVAE



Higher-Order Switching Dynamics

30C Balsells Rodas, Y Wang, P Mediano and Y Li. Identifying Nonstationary Causal Structures with  High-Order Markov Switching Models. Submitted

Neuro Activity Data Analysis:
• Recorded from Monkeys in (a) normal awake, and (b) induced anaesthetized status
• Idea: understand neuro activity by segmenting recorded signal into “regimes”



State-Dependent Causal Inference (SDCI)

C Balsells Rodas, R Tu, Y Li and H Kjellstrom. Causal Discovery from Conditionally Stationary Time Series. UAI 2022 Causal Representation Learning Workshop

Causal discovery & sequence modelling for non-stationary time series:

Dataset: NBA player trajectories
- multi-agent
- non-stationary

Learned hidden state visualisation:

Forecasting error:

Train on full data Train on Boston Celtics only

31
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