Dropout Inference in Bayesian Neural Networks

with Alpha-divergences

Yingzhen Li (presenter) and Yarin Gal

University of Cambridge

Background |: Deep learning s

Data: X = {X1,X2, ...,XN}, Y= {y1,y2, ...,yN}
Model: given matrices W and non-linear func. o(-), define “network”

Vi(xj) = Wz - o(Wx;)

Objective: find W for which y;(X;) is close to y; for all i < N.

Deep learning is awesome v' .. buthas many issues X
» Simple and modular » What does a model not know?
» Huge attention from » Uninterpretable black-boxes

practitioners and engineers

v

Easily fooled (Al safety)
» Great software tools

» Lacks solid mathematical
> Scales with data and foundations (mostly ad hoc)
compute » Crucially relies on big data

» Real-world impact
2 of 16

Background |: Deep learning CAMBRIDGE

Data: X = {X1,X2, ...,XN}, Y= {Y1,YQ, ...,yN}
Model: given matrices W and non-linear func. o(-), define “network”

Vi(x;) = W5 - 0 (W1X;)

Objective: find W for which y;(X;) is close to y; for all i < N.

Deep learning is awesome v' .. buthas many issues X
» Simple and modular » What does a model not know? >
» Huge attention from » Uninterpretable black-boxes 2
practitioners and engineers > Easily fooled (Al safety) é
> Great software tools » Lacks solid mathematical g'
> Scales with data and foundations (mostly ad hoc) <

compute

v

Crucially relies on big data
» Real-world impact

2 of 16

Recap: Bayesian neural networks

e Use your favourite loss function £(y, ¥) to define the likelihood:
log p(y|x,w) = —£(y, ¥» = NNy, (x)) + C

e In many cases regulariser induces prior info, e.g. Gaussian < ¢ regulariser
e Bayesian neural net in two steps (ideally):

e observing data X, Y, compute exact posterior p(w|X,Y)
e for prediction, compute

y' :/NNw(x*)p(w|X,Y)dw

e ...and also obtain uncertainty estimates

Recap: Bayesian neural networks

e Use your favourite loss function £(y, §) to define the likelihood:

log p(y|x,w) = —£(y, ¥, = NN.,(x)) + C

e In many cases regulariser induces prior info, e.g. Gaussian < ¢ regulariser
e Bayesian neural net in two steps (in practice):

e observing data X, Y, find approximate posterior g(w) = p(w|X,Y)

e for prediction, compute approximate Bayesian prediction

y* = / NN, (x*) g(w)duw

e ..and also obtain (approximated) uncertainty estimates

Recap: Bayesian neural networks

e Use your favourite loss function £(y, §) to define the likelihood:

log p(y|x,w) = —£(y, ¥, = NN.,(x)) + C

e In many cases regulariser induces prior info, e.g. Gaussian < ¢ regulariser
e Bayesian neural net in two steps (in practice):

e observing data X, Y, find approximate posterior g(w) = p(w|X,Y)

e for prediction, compute approximate Bayesian prediction

y = [NN g(e)de
e ..and also obtain (approximated) uncertainty estimates
Challenges: efficient approximate inference methods for deep nets

e computationally fast & memory efficient

e easy to implement

Recap: dropout as approximate Bayesian inference for BNNs !

Activation Dropout with rate p Dropout rows with rate p
hl al Ml hl—l hl Wl hl—l
F e - x E < H- x E
Dropout rows with rate p Sample rows Wi from
w! M’ g(W)) = pN (M,)
dropout @ + (1 - p)N(077]I)
rows n — 0

Define gp(w) = H/,,‘ q(W!), 0 = {M!}:
Zé(yn,yn = dropout-NN(x,,)) +£2(0) = MC estimate of —Eg,,)[log p(Y|X,w)]+KL[qs||po]

n

Training NNs with dropout < Training BNNs with variational inference!
Yarin Gal. Uncertainty in Deep Learning. PhD Thesis, University of Cambridge. 2016.

Recap: dropout as approximate Bayesian inference for BNNs !

* ~tivation Dropout with rate p Dropout rows with rate p
-1 hl Wl hl—l
m
Do FHH . f

Define gp(w) = H,J q(W!), 0 = {M!}:
Zﬁ(yn,yn = dropout-NN(x,,)) +£2(0) = MC estimate of —Eg,,)[log p(Y|X,w)]+KL[qs||po]

n

Training NNs with dropout < Training BNNs with variational inference!

Recap: properties of alpha-divergences

p p p
o= —00 a=0 a=0.5
q
v KL(¢||p) VB

a=1 a = o0

KL(p||q) EP

Figure source: Tom Minka

e VI/VB underestimates uncertainty (bad for the applications we considered)

e Black box alpha (BB-): a better alternative 2
2J. M. Hernandez-Lobato and Y. Li et al. Black box alpha-divergence minimisation. ICML 2016.

Naive combination doesn’t work!

Quick explanations on why it fails:

e VI has g appeared in the KL term — efficient approximate KL
e BB-a requires explicitly evaluating log q(&k) for samples & ~ q(w)

e Even worse: dropout implicitly samples different sets of samples @™ for different
datapoints!
e need to store NK sets of & and compute density,
o i.e. O(NK|wl) for both time and space complexity,
e infeasible for wide and deep NNs!

New: “power loss” for training BNNs

We propose a new objective for training BNNs:

1 ~n
La(0) = —= > " log-sum-expy [~ af(yn, NNgos (x,))] + £2(6), @™ ~ go(w)

l(y,¥) is your favourite loss function, log-sum-exp performed over k axis

e Goes back to VIwhen oo - 0or K =1

e |f you have more computational resources, you can obtain better uncertainty estimates
with our method!

Significance: compared to black-box alpha (ICML 2016)

1 ~n
La(0) == > " log-sum-expy [~ a£(yn, NNgos (xn))] + 2(6), @™ ~ go(w)
Our new method is easier to understand!

e To understand the original BB-alpha, need to understand power EP
& go through sets of equations 3

e Instead the new formulation has a clear link to loss function minimisation
while still being an approximate Bayesian inference method (inherent from EP)
e o = 0: focus on decressing prediction error
e o = 1: focus on increasing predictive likelihood

3Ask me at the poster :)

Significance: compared to black-box alpha (ICML 2016)

1 ~n
L,(0) := Z log-sum-exp, [—al(yn, NNgnk(x,))] + C2(0), @ LN qo(w)

T a
Our new method is more computationally efficient!

e The original BB-alpha requires evaluating log q(@v"’k) at samples
(O(NK|w|) time and memory)
e Instead the new formulation just need dropout or other SRTs :)

e can still use a small number of samples to evaluate KL[q||po] if analytical
solutions/approximations are not available

Significance: compared to black-box alpha (ICML 2016)

1 ~n
La(0) =~ > " log-sum-expy [~ al(yn, NNgoi (xn))] + 2(6), @™ ~ go(w)

Our method is much easier to implement!
(Keras example: ~10 lines for the proposed loss function and ~20 lines for dropout itself)

def bbalpha_softmax_cross_entropy_with_mc_logits (alpha):
def loss(y_true, mc_logits):
mc_logits: output of GenerateMCSamples, of shape M x K x D
mc_log_softmax = mc_logits - K.max(mc_logits, axis=2, keepdims=True)
mc_log_softmax = mc_log_softmax - logsumexp (mc_log_softmax, 2)
mc_11 = K.sum(y_true % mc_log_softmax, -1) # M x K
return - 1. / alpha * (logsumexp(alpha = mc_11, 1) + K.log(l.0 / K_mc))

return loss

(see appendix in our paper for full code details)

Adversarial attack detection: being Bayesian helps!

+.007 x =
T sign(VeJ(0,z,y)) esign(VgJ (0, z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure source: Goodfellow et al. ICLR 2015

Why BNNs could be more robust to adversarial attacks?

A simple reasoning for improved robustness:

e Let's say you have an ensemble of neural nets
e In most cases the attacker can only access the majority vote of the ensemble

e i.e. the attacker needs to fool more than a half of them

10

Why BNNs could be more robust to adversarial attacks?

A simple reasoning for improved robustness:

e Let's say you have an ensemble of neural nets
e In most cases the attacker can only access the majority vote of the ensemble

e i.e. the attacker needs to fool more than a half of them
BNN is better than naive ensembling!

e Bayesian prediction < constructing an infinite ensemble in a principled way

e MC sampling returns a random set of ensembles

10

Being robust # being able to detect!

e Adversarial training: more robust, but still provide point estimates

e Ensembles: even when majority vote is fooled, disagreement can still exist!
(describes uncertainty in some sense)

4other possible idea: bootstrapping and bagging

11

Being robust # being able to detect!

e Adversarial training: more robust, but still provide point estimates

e Ensembles: even when majority vote is fooled, disagreement can still exist!
(describes uncertainty in some sense)

However, we need reliable “uncertainty” here:

e ideal case: uncertainty level grows as we move away from the data manifold

e meaning we need calibrated uncertainty estimates

e Bayesian method is one of the natural choice *

4other possible idea: bootstrapping and bagging

11

Adversarial attack detection: being Bayesian helps!

e Fast gradient sign method (FGSM):
Xadv = X — 1) - sgn(Vx max, log p(y|x))
e Detection metric: predictive entropy

H(p(Y|XadV7 X7 Y))
with the predictive distribution
approximated by MC-dropout

e All 3 BNNs are more robust!

e ... and indeed very uncertain at Xaqy

1.0

08}
0.6 k...
0.4 F

02F

accuracy predictive entropy

0.4

02 03
stepsize

0.5

MLP a=00_ a=05_ a=1.0

0.2318 0.4879 0.5832 0.663

accuracy for stepsize=0.1

12

Adversarial attack detection: being Bayesian helps!

e Targeted FGSM (iterative, n = 0.01):

t

e All 3 BNNs are agian more robust!

e This attack on BNNs produces
trajectories on the manifold!

Xadv = X;gv1+77'5gn(vx log p()/target|x;d_v1)) oa]

10 accuracy v predictive entropy
“ — original 15 —_
ol - - target —
1.0
0.6 0.8
0.6
0.4
0.2 F"p3
0.2
0.0 ez
0 20 10 60 80 100
steps
MLP a=0.0 a=05 a=1.0

0.2271 0.4960 0.6143 0.7480
original class acc. for #steps=10

MLP
a=00 |
a=0.5

a=1.0

13

Conclusions

e We proposed an approximate inference method for NNs that is

e easy to understand and implement for deep learning people
e while still maintain advantages of power-EP/BB-alpha

e Bayesian NNs are more useful in applications that needs calibrated uncertainty

e We think, adversarial attack detection, belongs to such set of applications

e maybe can try BNNs + adversarial training 4+ better metric for detection?

Thanks! # 61

14

