
Dropout Inference in Bayesian Neural Networks

with Alpha-divergences

Yingzhen Li (presenter) and Yarin Gal

University of Cambridge

Background I: Deep learning

Conceptually simple models

Data: X = {x1,x2, ...,xN}, Y = {y1,y2, ...,yN}
Model: given matrices W and non-linear func. σ(·), define “network”

ỹi(xi) = W2 · σ
(
W1xi

)
Objective: find W for which ỹi(xi) is close to yi for all i ≤ N.

Deep learning is awesome

I Simple and modular

I Huge attention from
practitioners and engineers

I Great software tools

I Scales with data and
compute

I Real-world impact

... but has many issues

I What does a model not know?

I Uninterpretable black-boxes

I Easily fooled (AI safety)

I Lacks solid mathematical
foundations (mostly ad hoc)

I Crucially relies on big data

2 of 16

Background I: Deep learning

Conceptually simple models

Data: X = {x1,x2, ...,xN}, Y = {y1,y2, ...,yN}
Model: given matrices W and non-linear func. σ(·), define “network”

ỹi(xi) = W2 · σ
(
W1xi

)
Objective: find W for which ỹi(xi) is close to yi for all i ≤ N.

Deep learning is awesome

I Simple and modular

I Huge attention from
practitioners and engineers

I Great software tools

I Scales with data and
compute

I Real-world impact

... but has many issues

I What does a model not know?

I Uninterpretable black-boxes

I Easily fooled (AI safety)

N
o
u
n
certa

in
ty!

I Lacks solid mathematical
foundations (mostly ad hoc)

I Crucially relies on big data

2 of 16

Recap: Bayesian neural networks

• Use your favourite loss function `(y, ŷ) to define the likelihood:

log p(y|x, ω) = −`(y, ŷn = NNω(x)) + C

• In many cases regulariser induces prior info, e.g. Gaussian ⇔ `2 regulariser

• Bayesian neural net in two steps (ideally):

• observing data X,Y, compute exact posterior p(ω|X,Y)

• for prediction, compute

y∗ =

∫
NNω(x∗)p(ω|X,Y)dω

• ...and also obtain uncertainty estimates

Challenges: efficient approximate inference methods for deep nets

• computationally fast & memory efficient

• easy to implement

1

Recap: Bayesian neural networks

• Use your favourite loss function `(y, ŷ) to define the likelihood:

log p(y|x, ω) = −`(y, ŷn = NNω(x)) + C

• In many cases regulariser induces prior info, e.g. Gaussian ⇔ `2 regulariser

• Bayesian neural net in two steps (in practice):

• observing data X,Y, find approximate posterior q(ω) ≈ p(ω|X,Y)

• for prediction, compute approximate Bayesian prediction

y∗ =

∫
NNω(x∗)q(ω)dω

• ...and also obtain (approximated) uncertainty estimates

Challenges: efficient approximate inference methods for deep nets

• computationally fast & memory efficient

• easy to implement

1

Recap: Bayesian neural networks

• Use your favourite loss function `(y, ŷ) to define the likelihood:

log p(y|x, ω) = −`(y, ŷn = NNω(x)) + C

• In many cases regulariser induces prior info, e.g. Gaussian ⇔ `2 regulariser

• Bayesian neural net in two steps (in practice):

• observing data X,Y, find approximate posterior q(ω) ≈ p(ω|X,Y)

• for prediction, compute approximate Bayesian prediction

y∗ =

∫
NNω(x∗)q(ω)dω

• ...and also obtain (approximated) uncertainty estimates

Challenges: efficient approximate inference methods for deep nets

• computationally fast & memory efficient

• easy to implement

1

Recap: dropout as approximate Bayesian inference for BNNs 1

dropout
units

dropout
rows

Define qθ(ω) =
∏

l,i q(Wl
i), θ = {Ml

i}:∑
n

`(yn, ŷn = dropout-NN(xn)) +`2(θ) = MC estimate of −Eqθ(ω)[log p(Y|X, ω)] +KL[qθ||p0]

Training NNs with dropout ⇔ Training BNNs with variational inference!
1Yarin Gal. Uncertainty in Deep Learning. PhD Thesis, University of Cambridge. 2016. 2

Recap: dropout as approximate Bayesian inference for BNNs 1

dropout
units

dropout
rows

Define qθ(ω) =
∏

l,i q(Wl
i), θ = {Ml

i}:∑
n

`(yn, ŷn = dropout-NN(xn)) +`2(θ) = MC estimate of −Eqθ(ω)[log p(Y|X, ω)] +KL[qθ||p0]

Training NNs with dropout ⇔ Training BNNs with variational inference!

Do dropout at test time to
obtain uncertainty estimates!

1Yarin Gal. Uncertainty in Deep Learning. PhD Thesis, University of Cambridge. 2016.

2

Recap: properties of alpha-divergences

VB

EP

Figure source: Tom Minka

• VI/VB underestimates uncertainty (bad for the applications we considered)

• Black box alpha (BB-α): a better alternative 2

2J. M. Hernandez-Lobato and Y. Li et al. Black box alpha-divergence minimisation. ICML 2016.

3

Naive combination doesn’t work!

Quick explanations on why it fails:

• VI has q appeared in the KL term → efficient approximate KL

• BB-α requires explicitly evaluating log q(ω̂k) for samples ω̂k ∼ q(ω)

• Even worse: dropout implicitly samples different sets of samples ω̂n,k for different

datapoints!

• need to store NK sets of ω̂ and compute density,

• i.e. O(NK |ω|) for both time and space complexity,

• infeasible for wide and deep NNs!

4

New: “power loss” for training BNNs

We propose a new objective for training BNNs:

Lα(θ) := − 1

α

∑
n

log-sum-expk [−α`(yn,NNω̂n,k (xn))] + `2(θ), ω̂n,k ∼ qθ(ω)

`(y, ŷ) is your favourite loss function, log-sum-exp performed over k axis

• Goes back to VI when α→ 0 or K = 1

• If you have more computational resources, you can obtain better uncertainty estimates

with our method!

5

Significance: compared to black-box alpha (ICML 2016)

Lα(θ) := − 1

α

∑
n

log-sum-expk [−α`(yn,NNω̂n,k (xn))] + `2(θ), ω̂n,k ∼ qθ(ω)

Our new method is easier to understand!

• To understand the original BB-alpha, need to understand power EP

& go through sets of equations 3

• Instead the new formulation has a clear link to loss function minimisation

while still being an approximate Bayesian inference method (inherent from EP)

• α = 0: focus on decressing prediction error

• α = 1: focus on increasing predictive likelihood

3Ask me at the poster :)

6

Significance: compared to black-box alpha (ICML 2016)

Lα(θ) := − 1

α

∑
n

log-sum-expk [−α`(yn,NNω̂n,k (xn))] + `2(θ), ω̂n,k ∼ qθ(ω)

Our new method is more computationally efficient!

• The original BB-alpha requires evaluating log q(ω̂n,k) at samples

(O(NK |ω|) time and memory)

• Instead the new formulation just need dropout or other SRTs :)

• can still use a small number of samples to evaluate KL[q||p0] if analytical

solutions/approximations are not available

7

Significance: compared to black-box alpha (ICML 2016)

Lα(θ) := − 1

α

∑
n

log-sum-expk [−α`(yn,NNω̂n,k (xn))] + `2(θ), ω̂n,k ∼ qθ(ω)

Our method is much easier to implement!

(Keras example: ∼10 lines for the proposed loss function and ∼20 lines for dropout itself)

(see appendix in our paper for full code details)

8

Adversarial attack detection: being Bayesian helps!

Figure source: Goodfellow et al. ICLR 2015

9

Why BNNs could be more robust to adversarial attacks?

A simple reasoning for improved robustness:

• Let’s say you have an ensemble of neural nets

• In most cases the attacker can only access the majority vote of the ensemble

• i.e. the attacker needs to fool more than a half of them

BNN is better than naive ensembling!

• Bayesian prediction ⇔ constructing an infinite ensemble in a principled way

• MC sampling returns a random set of ensembles

10

Why BNNs could be more robust to adversarial attacks?

A simple reasoning for improved robustness:

• Let’s say you have an ensemble of neural nets

• In most cases the attacker can only access the majority vote of the ensemble

• i.e. the attacker needs to fool more than a half of them

BNN is better than naive ensembling!

• Bayesian prediction ⇔ constructing an infinite ensemble in a principled way

• MC sampling returns a random set of ensembles

10

Being robust 6= being able to detect!

• Adversarial training: more robust, but still provide point estimates

• Ensembles: even when majority vote is fooled, disagreement can still exist!

(describes uncertainty in some sense)

However, we need reliable “uncertainty” here:

• ideal case: uncertainty level grows as we move away from the data manifold

• meaning we need calibrated uncertainty estimates

• Bayesian method is one of the natural choice 4

4other possible idea: bootstrapping and bagging

11

Being robust 6= being able to detect!

• Adversarial training: more robust, but still provide point estimates

• Ensembles: even when majority vote is fooled, disagreement can still exist!

(describes uncertainty in some sense)

However, we need reliable “uncertainty” here:

• ideal case: uncertainty level grows as we move away from the data manifold

• meaning we need calibrated uncertainty estimates

• Bayesian method is one of the natural choice 4

4other possible idea: bootstrapping and bagging

11

Adversarial attack detection: being Bayesian helps!

• Fast gradient sign method (FGSM):

xadv = x− η · sgn(∇x maxy log p(y |x))

• Detection metric: predictive entropy

H(p(y|xadv,X,Y))

with the predictive distribution

approximated by MC-dropout

• All 3 BNNs are more robust!

• ... and indeed very uncertain at xadv

12

Adversarial attack detection: being Bayesian helps!

• Targeted FGSM (iterative, η = 0.01):

xtadv = xt−1
adv +η·sgn(∇x log p(ytarget|xt−1

adv))

• All 3 BNNs are agian more robust!

• This attack on BNNs produces

trajectories on the manifold!

13

Conclusions

• We proposed an approximate inference method for NNs that is

• easy to understand and implement for deep learning people

• while still maintain advantages of power-EP/BB-alpha

• Bayesian NNs are more useful in applications that needs calibrated uncertainty

• We think, adversarial attack detection, belongs to such set of applications

• maybe can try BNNs + adversarial training + better metric for detection?

Thanks! # 61

14

