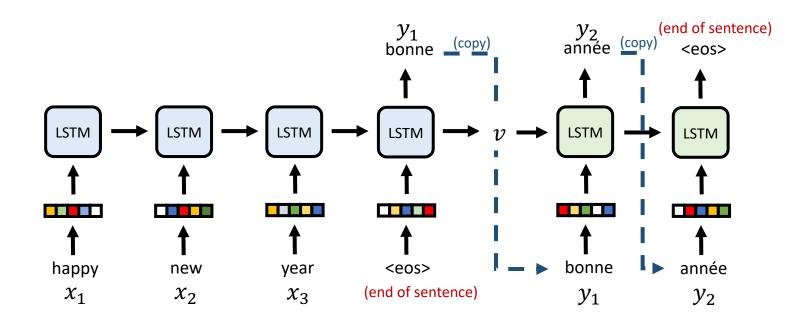
Basics

Yingzhen Li (yingzhen.li@imperial.ac.uk)

#### Motivation

Recap A Seq2Seq model for machine translation:

What if the sequence is very long?

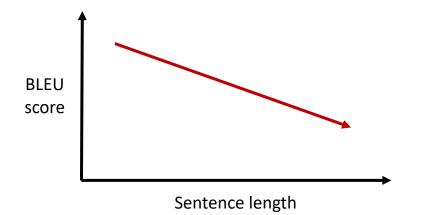


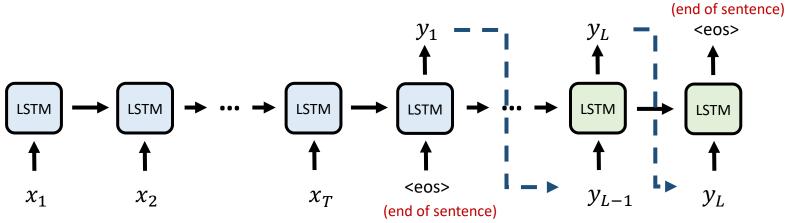
Sutskever et al. Sequence to Sequence Learning with Neural Networks. NeurIPS 2014

#### Motivation

Recap A Seq2Seq model for machine translation:

What if the sequence is very long?



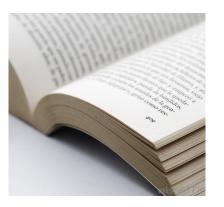


#### Input:

Since the release of Cyberpunk 2077 on Dec. 10, thousands of gamers have created viral videos featuring a multitude of glitches and bugs — many hilarious — that mar the game. They include tiny trees covering the floors of buildings, tanks falling from the sky and characters standing up, inexplicably pantless, while riding motorcycles...

#### Motivation

• Long sequence is everywhere!



A paragraph typically contains hundreds of words

A 30sec short video contains  $30 \times 60 =$  1,800 frames (60Hz frame rate)

#### Need efficient ways to handle long-term dependencies!

#### Attention in Bahdanau et al. NMT model

In Seq2Seq model, decoder is defined as  $p_{\theta}(y_{1:L}|x_{1:T}) = \prod_{l=1}^{L} p_{\theta}(y_l|y_{< l}, v)$ 

 $p_{\theta}(y_{1:L}|x_{1:T}) = \prod_{l=1}^{L} p_{\theta}(y_{l}|y_{< l}, v_{l})$ 

Shared representation of the entire input  $x_{1:T}$ 

With attention:

Each  $y_l$  refers to the input sequence differently

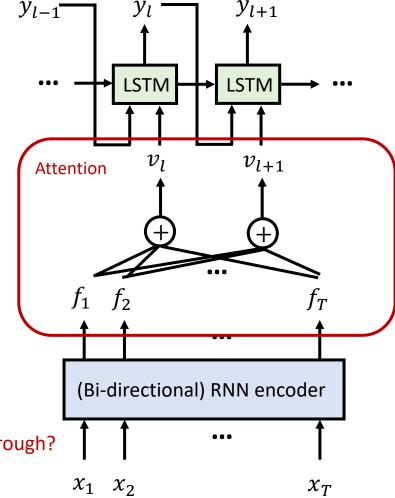
$$\begin{split} v_l &= \sum_{t=1}^T \alpha_{lt} f_t \quad \text{aggregate features by weighted sum} \\ \alpha_l &= softmax(e_l), \, e_l = (e_{l1}, \dots, e_{lT}) \\ e_{lt} &= a(h_{l-1}^d, f_t) \end{split}$$

Decoder RNN state at step l - 1 Encoder feature output at time t

Alignment model  $a(\cdot, \cdot)$  score the "similarity/alignment" between two inputs

Still using RNNs for encoder feature extraction -- Can we do attention all the way through?

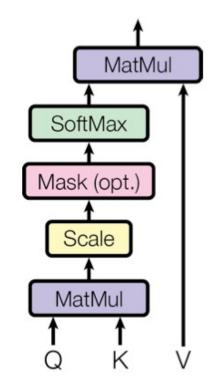
Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015



• Single head attention

Attention(Q, K, V; a) =  $a\left(\frac{QK^T}{\sqrt{d_q}}\right)V$ 

 $Q \in R^{N \times d_q}$ : *N* query inputs, each of dimension  $d_q$  $K \in R^{M \times d_q}$ : *M* key vectors, each of dimension  $d_q$  $V \in R^{M \times d_v}$ : *M* value vectors, each of dimension  $d_v$  $a(\cdot)$ : activation function applied row-wise



#### Self attention: K = Q

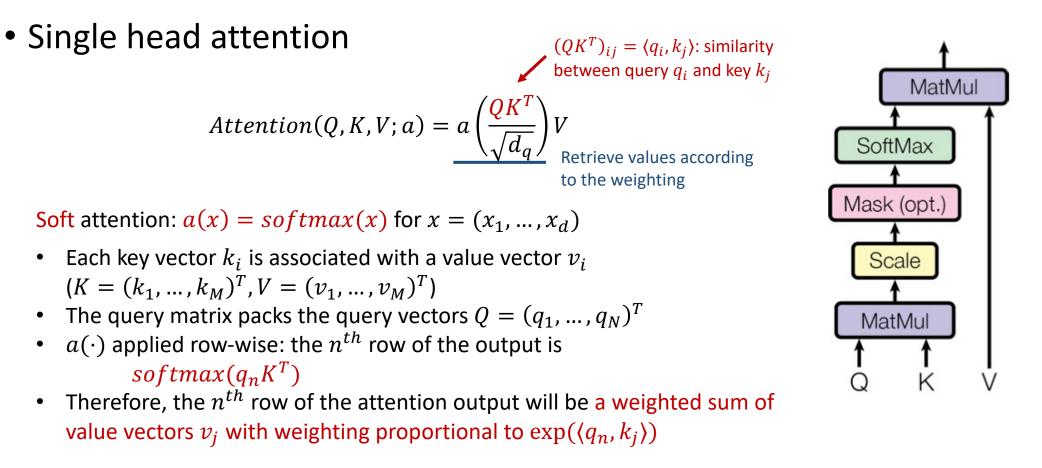
Attention weights

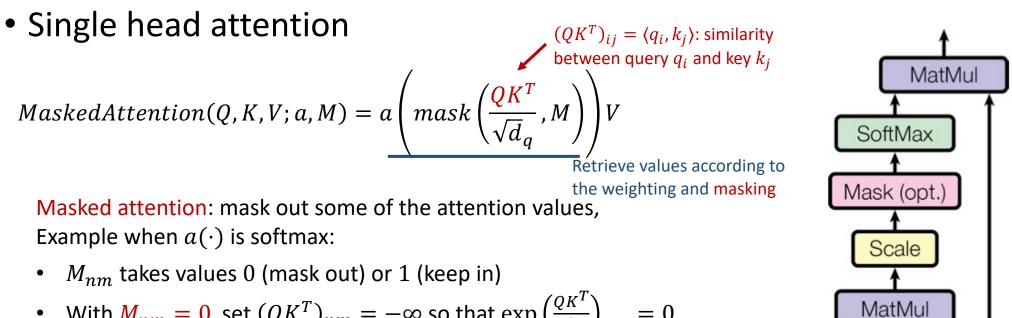
 Single head attention  $(QK^T)_{ij} = \langle q_i, k_j \rangle$ : similarity between query  $q_i$  and key  $k_j$ MatMul Attention(Q, K, V; a) =  $a\left(\frac{QK^{T}}{\sqrt{d_{a}}}\right)V$ SoftMax Retrieve values according to the weighting Mask (opt.) Hard attention:  $a(x) = onehot(argmax x_i)$  for  $x = (x_1, ..., x_d)$ • Each key vector  $k_i$  is associated with a value vector  $v_i$ Scale  $(K = (k_1, ..., k_M)^T, V = (v_1, ..., v_M)^T)$ The query matrix packs the query vectors  $Q = (q_1, ..., q_N)^T$ MatMul •  $a(\cdot)$  applied row-wise: the  $n^{th}$  row of the output is onehot(argmax  $\langle q_n, k_i \rangle$ ) Therefore, the  $n^{th}$  row of the attention output will be  $v_{i_n}$ 

for  $i_n = argmax \langle q_n, k_i \rangle$ 

٠

٠





- With  $M_{nm} = 0$ , set  $(QK^T)_{nm} = -\infty$  so that  $\exp\left(\frac{QK^T}{\sqrt{d}}\right)_{nm} = 0$
- So value  $v_m$  will NOT contribute to the attention output for query  $q_n$ ٠
- Useful for sequence prediction with a given ordering: in test time, • "future" is not available for the "current" to attend

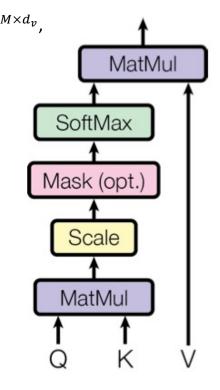
• Single head attention

 $Q \in R^{N \times d_q}, K \in R^{M \times d_q}, V \in R^{M \times d_v}, a(\cdot)$  applied row-wise

Attention(Q, K, V; a) = 
$$a\left(\frac{QK^{T}}{\sqrt{d_{q}}}\right)V$$

Complexity analysis:

- Time complexity:  $O(MNd_q + MNd_v)$
- Space complexity:  $O(MN + Nd_v)$  (incl. intermediate steps)
- Parameters to learn:
  - *K*, *V* in the usual form:  $O(Md_q + Md_v)$
  - *V* only for self attention:  $O(Nd_v)$
  - Can also use V = K (meaning Q = V = K in self attention)



Multi-head attention

 $Multihead(Q, K, V, a) = concat(head_1, ..., head_h)W^0$ 

$$head_{i} = Attention(QW_{i}^{Q}, KW_{i}^{K}, VW_{i}^{V}, a)$$
$$Attention(Q, K, V; a) = a\left(\frac{QK^{T}}{\sqrt{d}}\right)V$$

Different head represent different alignments, e.g. when each query represents a word and self-attention is used:

- Head 1: find keys that are semantically similar to q
- Head 2: find keys that makes (q, k) as a subject-verb pair

Weighted sum with weights  $W^0$ head<sub>1</sub> head<sub>h</sub> ... MatMul MatMul SoftMax SoftMax Mask (opt.) Mask (opt.) . . . Scale Scale MatMul MatMul  $QW_1^Q KW_1^K VW_1^V$  $QW_h^Q KW_h^K VW_h^V$ Linear projection V K Q

multihead(Q, K, V, a)

•

...

Multi-head attention

 $Multihead(Q, K, V, a) = concat(head_1, ..., head_h)W^0$ 

 $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V, a)$ 

Complexity analysis (assume  $Q \in R^{N \times d_q}$  projected to  $R^{N \times \tilde{d}_q}$  and so on):

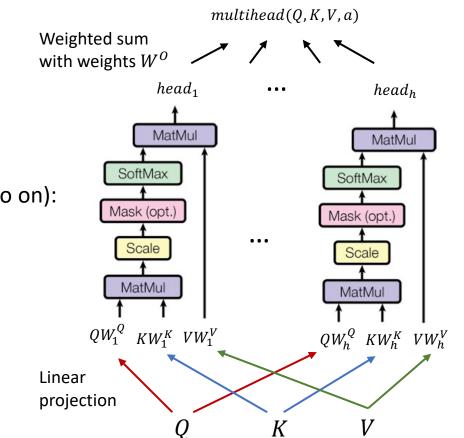
• Time complexity:

Attention heads projections combined output  $O(\frac{hMN(\tilde{d}_q + \tilde{d}_v)}{hMN(\tilde{d}_q + \tilde{d}_v)} + h(\tilde{d}_q d_q (M + N) + \tilde{d}_v d_v M) + \frac{Nh\tilde{d}_v d_{out}}{Nh\tilde{d}_v d_{out}})$ 

• Space complexity:

Attention heads projections combined output  $O\frac{(hN(M + \tilde{d}_v))}{(hN(M + \tilde{d}_v))} + h\left((N + M)\tilde{d}_q + M\tilde{d}_v\right) + Nd_{out})$ 

- Parameters to learn (apart from K and V):
  - Projection parameters  $W_{i_{-}}^{Q}$ ,  $W_{i_{-}}^{K}$ ,  $W_{i_{-}}^{V}$
  - Output weight matrix  $W^{b}$



Attention based encoder + decoder:

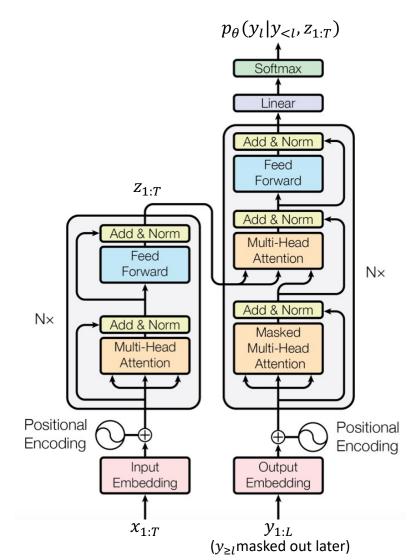
1

$$p_{\theta}(y_{1:L}|x_{1:T}) = \prod_{l=1}^{L} p_{\theta}(y_{l}|y_{< l}, \mathbf{Z}_{1:T})$$

 $y_{\geq l}$  will be masked out in the first layer of decoder Encoder attention outputs used in decoder

The input to the decoder:

- Training time: *y*<sub>1:*L*</sub>
- Test time:  $(y_1, ..., y_{l-1}, \emptyset, ..., \emptyset)$

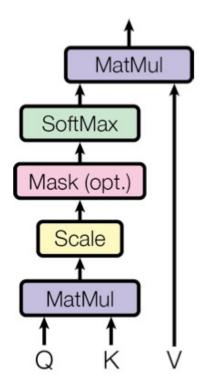


• Single head attention

Attention(Q, K, V; a) = 
$$a\left(\frac{QK^{T}}{\sqrt{d_{q}}}\right)V$$

#### Permutation equivariant:

- $\tilde{Q}$  constructed by swapping the  $i^{th}$  and  $j^{th}$  row in Q  $\Rightarrow$  Attention( $\tilde{Q}, K, V, a$ ) equals to Attention(Q, K, V, a) except that the  $i^{th}$  and  $j^{th}$  rows are swapped
- The ordering information is irrelevant!



Attention based encoder + decoder:

$$p_{\theta}(y_{1:L}|x_{1:T}) = \prod_{l=1}^{L} p_{\theta}(y_{l}|y_{< l}, z_{1:T})$$

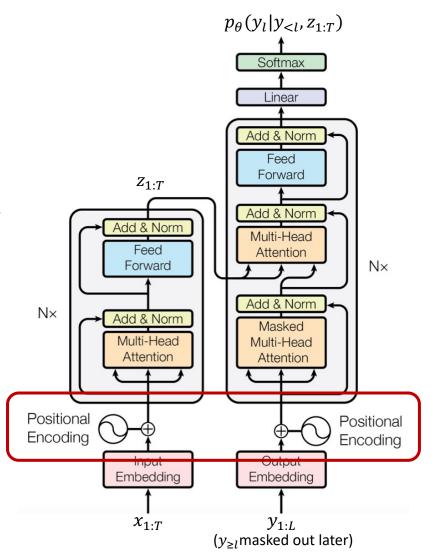
 $y_{\geq l}$  will be masked out in the first layer of decoder Encoder attention outputs used in decoder

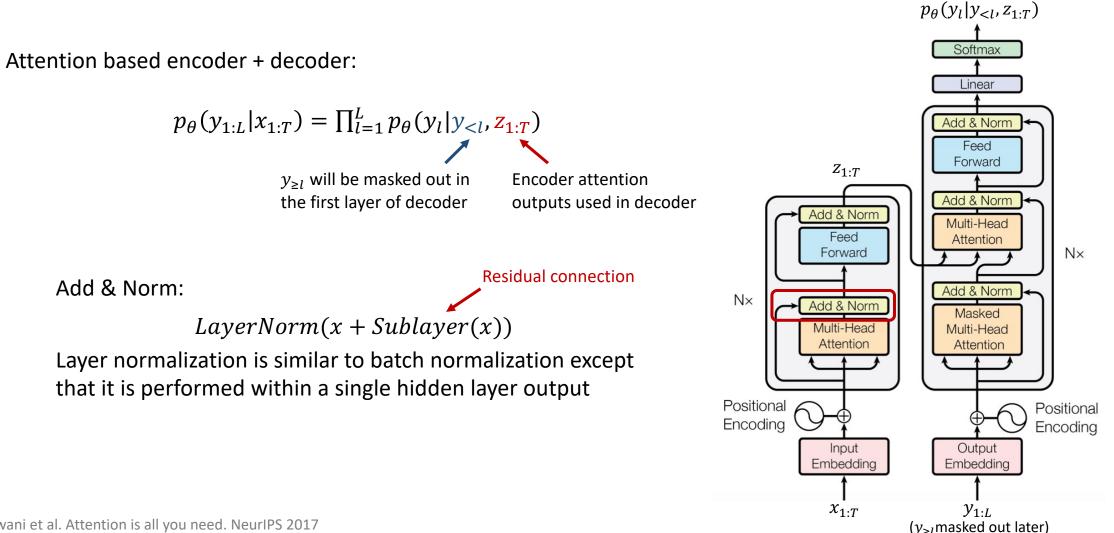
Position encoding: inject ordering information Can either be learned or be a pre-defined mapping, e.g.:

 $PE(pos, 2i) = \sin(pos/10000^{2i/d_{out}})$ 

 $PE(pos, 2i + 1) = \cos(pos/10000^{2i/d_{out}})$ 

output: word embedding( $x_t$ ) +  $PE(t, 1: d_{emb})$ 





Attention based encoder + decoder:

$$p_{\theta}(y_{1:L}|x_{1:T}) = \prod_{l=1}^{L} p_{\theta}(y_{l}|y_{< l}, \mathbf{Z}_{1:T})$$

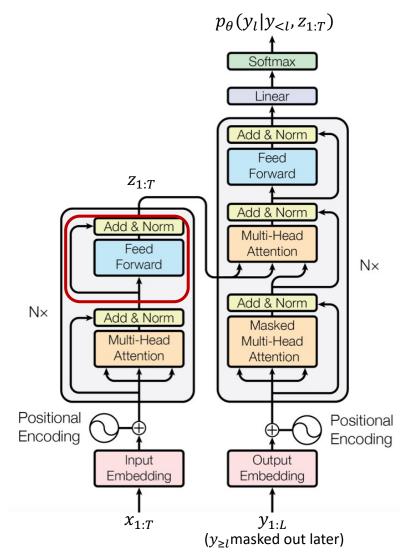
 $y_{\geq l}$  will be masked out in the first layer of decoder Encoder attention outputs used in decoder

 $\mathbf{N}$ 

Feed-forward network:

Applied to each of the output value vectors (i.e. row vectors)

independently and identically



Attention based encoder + decoder:

$$p_{\theta}(y_{1:L}|x_{1:T}) = \prod_{l=1}^{L} p_{\theta}(y_{l}|y_{< l}, \mathbf{z}_{1:T})$$

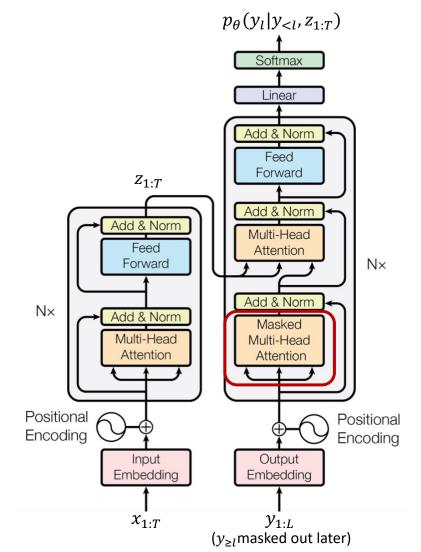
 $y_{\geq l}$  will be masked out in the first layer of decoder

Encoder attention outputs used in decoder

Maked Multi-head Attention: Prevent the model to use "future" information for predicting the current output

(training time input:  $(y_1, \dots, y_{l-1}, y_l, \dots, y_L)$ ) (test time input:  $(y_1, \dots, y_{l-1}, \emptyset, \dots, \emptyset)$ )

should be masked out



Attention based encoder + decoder:

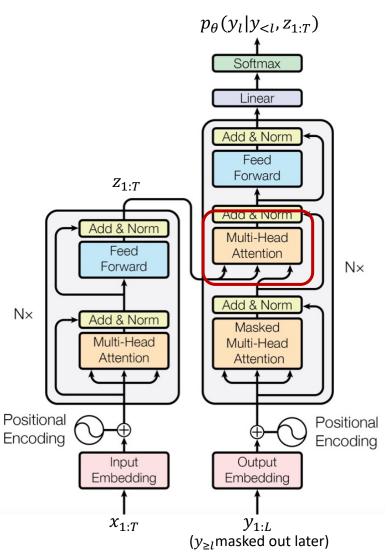
$$p_{\theta}(y_{1:L}|x_{1:T}) = \prod_{l=1}^{L} p_{\theta}(y_{l}|y_{< l}, z_{1:T})$$

 $y_{\geq l}$  will be masked out in the first layer of decoder Encoder attention outputs used in decoder

Multi-head Attention using encoder output  $z_{1:T}$ 

- *z*<sub>1:*T*</sub> are used as the keys and values of this attention module
- Allow the decoder to attend every word in the input  $x_{1:T}$ for each of the predicted output  $y_{1:l-1}$  so far





#### Visualising Learned Attentions

reflect structure of the sentence

