Generative Models

GAN basics
Yingzhen Li (yingzhen.li@imperial.ac.uk)

Deep Learning - Yingzhen Li

mailto:yingzhen.li@imperial.ac.uk

Divergence minimisation

* Fitting the model to the data by divergence minimisation:
6" = argmin D[pgaea(x) || po (x)]

* VAE: variational maximum likelihood training

* Objective: MLE is equivalent to minimizing KL[pgatq (%) || P (x)]
* For LVMs, log pg (x) = log [pg(x|2z)p(2)dz is intractable

* = variational lower-bound L(x, ¢, 8) < log pg(x)
* maximise Ej,,)[L(x, p,0)] instead b=

Deep Learning - Yingzhen Li

Generative adversarial networks (GANs)

c;/‘\\zl/ N
AKX
- SX AR
A
AW/

Jaim
V WX\ ALT
R g

7, Discriminator D¢
\ X

NvAwss

z ~p(z2) Generator Gg x = Gg(2)

= x ~ pg(x)
Deep Learning - Yingzhen Li

—— Real or Fake?

Generative adversarial networks (GANs)

I'd train myself to
distinguish the real images
from the fake ones.

iy
£ 2 ;.p vé** '

W X \"K\‘

‘C,E:Q:, — Real or Fake?
) SQAVAV
/] o
Discriminator D¢
—p

R — \

z~p(2) Generator Gg x = Gg(2)

= X ~ pg(x)
Deep Learning - Yingzhen Li

Generative adversarial networks (GANs)

: ST
w, F e
- \\‘,% < (/
- - sample & ::
TR aﬁwﬁ ﬁ & o J
_ vy -3 lfm
.,,“ s/ "L
= N
B | ST
1};* X ~ pdata(x) %

I'd trick the discriminator to think
my fake images as real ones.

g —— Real or Fake?

Dlscr|m|nator D¢

z~p(2) Generator Gy x = Gg(2)

= X ~ pg(x)
Deep Learning - Yingzhen Li

Generative adversarial networks (GANs)

* Two-player game objective:
mein mdc;;\x LO,p) =E,, . (x) [log Dy (x)] + Epyo[log(1 — Dy (x))]
Dy(x) == P(xisreal), 1 —Dy(x) = P(xis fake)

* With fixed 6: training Dy, as the classifier of the following binary classification
task with maximum likelihood (i.e. negative cross-entropy):

y=1ifx ~paaa(x), else y=0ifx ~ pg(x)

* With fixed ¢: training Gg to minimize the log-probability of x ~ pg(x) being
classified as “fake data” by Dy

Goodfellow et al. Generative Adversarial Nets. NeurlPS 2014

Generative adversarial networks (GANs)

* Solving the two-player game objective:

mein mq?x L6, d) =Ep, .. x) [log Dy (x)] + Epy0llog(l — Dy (x))]

* Assume the discriminator network Dy has infinite capacity: with fixed 6

* — L . f D . — pdata(x)
¢ mq?x (8, ¢) satisfies & (x) S)t7e0)

* Plug-in the optimal discriminator (6 dependant) to the objective:

Paata () po (x)
Daata (x) + pg(x) Daata (x) + pg(x)

= KL[pgata(x) || P(x)] + KL[pg (x) || D(x)] — 21og 2
= 2 JS[Paata(®) || pe(x)] — 2log2

Jensen-Shannon divergence between pgq:4 (%) and pg (x)
]S[pdata ” p@] =0 < p@(x) = pdata(x)

L(H’ ¢*(9)) = Epdata(x) lOg

+ Epe(x) [log

1 1
p(x) = Epdata(x) + 5Po (%)

Goodfellow et al. Generative Adversarial Nets. NeurlPS 2014
Deep Learning - Yingzhen Li 8

Generative adversarial networks (GANs)

* Optimising GANs in practice: a double-loop algorithm
* Inner loop: with fixed 8, optimise ¢ for a few gradient ascent iterations:

mq?x Epgatal [log Dy (x)] + Epgx[108(1 — Dy (x))] Loop over
until

* Outer loop: with fixed ¢ from the inner loop, optimize 8 by ONE gradient descent step: |convergence

mein Epg(X) [log(l - qu (X))]

* In practice the expectations E;, , . (x)[-] and Ep) [] are estimated by mini-batches:

M
1
Epdata(x) [log D¢ (x)] ~ M z log D¢> (xm) yXm ~ Pdata (x)

m=1
K
Epy(x) [log (1 = Dy(®))] = %Z log (1 — Dy (Ge (1)) 2ic ~ p(2)
k=1

Goodfellow et al. Generative Adversarial Nets. NeurlPS 2014

Generative adversarial networks (GANs)

Practical implementation for solving min MAX Ep g0 [log D ()] + Epyxy[log(1 — Dy (x))]
(pseudo code):

* Initialise 8, ¢, learning rates yp, ¢, SGD outer-/inner-loop iterations T, K
* Fort = 1,..,T

update discriminator Learning rates yp, V¢ &

e Fori=1,..,K inner-loop iterations K need
© Zi, ., 2Zy ~ p(2) to be chosen carefully!
© Xq, e, Xy ~ Paata(®) (otherwise training may be

1 1
* P d+ypVplTm=1l0g Dy () + - Em=1108(1 — Dy(Go(zn)))] unstable)
update generator
¢ 24,2 ~ p(2)
° fj = Gg(Zj),j = 1, ,]
1qJ N
+ 0 < 0-yeVy;%log(1 —Dy(%))

Goodfellow et al. Generative Adversarial Nets. NeurlPS 2014
Deep Learning - Yingzhen Li 10

Generative adversarial networks (GANs)

* Practical strategy for training the generator Gg:

* At the beginning, generated image quality is bad

Yourd
X

Mﬂ
e ~ Pdata(X)

0\
Discriminator D¢,

~ po(x)

—> Real or Fake?

= Discriminator can classify fake images correctly
with high confidence: D¢(G9 (Z)) ~ 0

Goodfellow et al. Generative Adversarial Nets. NeurlIPS 2014
Deep Learning - Yingzhen Li

Training starts from here:
log(1 — Dy(Ge(2)))
0.0 0.2 0.4 0.6 0.8 1.0
Dy(Go(2))
11

Generative adversarial networks (GANs)

* Practical strategy for training the generator Gg:
* At the beginning, generated image quality is bad

Yourd
4

Mﬂ
e ~ Pdata(X)

N/
K/ WX 7
WAV

/ Discriminator Dy,

~ po(x)

—> Real or Fake?

= Use an alternative “non-saturate” loss:
mein _Epe(x) [10g D(j) (X)] “maximizing the probability of making

wrong decisions on fake data”

Goodfellow et al. Generative Adversarial Nets. NeurlIPS 2014
Deep Learning - Yingzhen Li

\ Training starts from here:
| — V, log(x)| >» 0 whenx = 0

—log Dy (Gp(2))

0.0 0.2 0.4 0.6 0.8 1.0

Dy(Go(2))

12

Wasserstein GAN

* Discriminator can be used to score the provided inputs

mein md?x Epdata(x) [D¢ (X)] — Epe(x) [D¢ (.X)]

Discriminator should assign high scores to data inputs and low scores to fake inputs

* Assume the discriminator network D, has infinite capacity: a trivial solution

Dy+(x) = +o0ifx ~ pgara(x) else Dy=(x) = —0

-- - +oo
D4+ (x)
No useful gradient info for generator learning! x ¥ - -
__________________________ ﬁ —cx)

Arjovsky et al. Wasserstein Generative Adversarial Networks. ICML 2017
Gulrajani et al. Improvedtraining of Wasserstein GANs. NeurlPS 2017

Deep Learning - Yingzhen Li 13

Wasserstein GAN

e Regularised discriminator can be used to score the provided inputs

mein mq?x E o uta(x) [D¢(x)] — Ep 0 [Dg(x)] subject to | D¢(-)||L <1

Discriminator should assign high scores to data inputs and low scores to fake inputs
At the same time, discriminator should be smooth to provide useful gradient for learning Gy

. || D¢(-)||L < 1 is the Lipschitz continuity constraint
||vxD¢(x)”2 S 1for a”x .. - 400

* Equivalent to minimising the Wasserstein distance :

2 (pdata(x)» Pe (X)) — Sup Epdata(x) [qu (X)] - Epg(x) [qu ()]
¢|| D(P(.)”le .. — —00

Arjovsky et al. Wasserstein Generative Adversarial Networks. ICML 2017
Gulrajani et al. Improvedtraining of Wasserstein GANs. NeurlPS 2017

Deep Learning - Yingzhen Li 14

Wasserstein GAN

* Practical implementation: WGAN-GP

Regulariser to enforce the Lipschitz continuity constraint

min max Epqq(0| Dp ()] = Epga [Dp (*)] +[/15ﬁ(x)[(||VxD¢(x) Il - 1)2]]

Xq ~ Paata(x)

* p(x) is defined by the following sampling procedure:
Xq ~ Pdata(X)
Xg ~ Po(x)
a ~ Uniform([0,1])
x =axqg + (1 —a)x,

* Training strategy is similar to the original GAN
* Double-loop algorithm
* Minibatch sampling

Arjovsky et al. Wasserstein Generative Adversarial Networks. ICML 2017
Gulrajani et al. Improvedtraining of Wasserstein GANs. NeurlPS 2017

Deep Learning - Yingzhen Li

