Generative Models

GAN basics

Yingzhen Li (yingzhen.li@imperial.ac.uk)

Divergence minimisation

• Fitting the model to the data by divergence minimisation:

$$\theta^* = argmin D[p_{data}(x) || p_{\theta}(x)]$$

- VAE: variational maximum likelihood training
 - Objective: MLE is equivalent to minimizing $KL[p_{data}(x) \mid\mid p_{\theta}(x)]$
 - For LVMs, $\log p_{\theta}(x) = \log \int p_{\theta}(x|z)p(z)dz$ is intractable
 - \Rightarrow variational lower-bound $L(x, \phi, \theta) \le \log p_{\theta}(x)$
 - maximise $E_{p_{data}(x)}[L(x, \phi, \theta)]$ instead

Two-player game objective:

$$\min_{\theta} \max_{\phi} L(\theta, \phi) := E_{p_{data}(x)} [\log D_{\phi}(x)] + E_{p_{\theta}(x)} [\log (1 - D_{\phi}(x))]$$

$$D_{\phi}(x) := P(x \text{ is real}), \quad 1 - D_{\phi}(x) = P(x \text{ is fake})$$

• With fixed θ : training D_{ϕ} as the classifier of the following binary classification task with maximum likelihood (i.e. negative cross-entropy):

$$y = 1$$
 if $x \sim p_{data}(x)$, else $y = 0$ if $x \sim p_{\theta}(x)$

• With fixed ϕ : training G_{θ} to minimize the log-probability of $x\sim p_{\theta}(x)$ being classified as "fake data" by D_{ϕ}

Solving the two-player game objective:

$$\min_{\theta} \max_{\phi} L(\theta, \phi) := E_{p_{data}(x)} [\log D_{\phi}(x)] + E_{p_{\theta}(x)} [\log(1 - D_{\phi}(x))]$$

• Assume the discriminator network $D_{oldsymbol{\phi}}$ has infinite capacity: with fixed heta

$$\phi^* \coloneqq \max_{\phi} L(\theta, \phi)$$
 satisfies $D_{\phi^*}(x) = \frac{p_{data}(x)}{p_{data}(x) + p_{\theta}(x)}$

• Plug-in the optimal discriminator (θ dependant) to the objective:

$$\begin{split} L\big(\theta,\phi^*(\theta)\big) &= E_{p_{data}(x)} \left[\log \frac{p_{data}(x)}{p_{data}(x) + p_{\theta}(x)}\right] + E_{p_{\theta}(x)} \left[\log \frac{p_{\theta}(x)}{p_{data}(x) + p_{\theta}(x)}\right] \\ &= KL[p_{data}(x) \mid\mid \tilde{p}(x)] + KL[p_{\theta}(x) \mid\mid \tilde{p}(x)] - 2\log 2 \\ &= 2JS[p_{data}(x) \mid\mid p_{\theta}(x)] - 2\log 2 \end{split}$$
 Jensen-Shannon divergence between $p_{data}(x)$ and $p_{\theta}(x)$ are $p_{\theta}(x) = p_{\theta}(x)$ and $p_{\theta}(x) = p_{\theta}(x)$ and $p_{\theta}(x) = p_{\theta}(x)$ and $p_{\theta}(x)$ are $p_{\theta}(x) = p_{\theta}(x)$ and $p_{\theta}(x) = p_{\theta}(x)$ and $p_{\theta}(x) = p_{\theta}(x)$ and $p_{\theta}(x) = p_{\theta}(x)$ and $p_{\theta}(x)$ are $p_{\theta}(x) = p_{\theta}(x)$ and $p_{\theta}(x) = p_{\theta}(x)$

- Optimising GANs in practice: a double-loop algorithm
 - Inner loop: with fixed heta, optimise ϕ for a few gradient ascent iterations:

$$\max_{\phi} E_{p_{data}(x)} \left[\log D_{\phi}(x) \right] + E_{p_{\theta}(x)} \left[\log (1 - D_{\phi}(x)) \right]$$

• Outer loop: with fixed ϕ from the inner loop, optimize θ by ONE gradient descent step:

$$\min_{\theta} E_{p_{\theta}(x)}[\log(1 - D_{\phi}(x))]$$

• In practice the expectations $E_{p_{data}(x)}[\cdot]$ and $E_{p_{\theta}(x)}[\cdot]$ are estimated by mini-batches:

$$E_{p_{data}(x)}[\log D_{\phi}(x)] \approx \frac{1}{M} \sum_{m=1}^{M} \log D_{\phi}(x_m), x_m \sim p_{data}(x)$$

$$E_{p_{\theta}(x)}[\log (1 - D_{\phi}(x))] \approx \frac{1}{K} \sum_{k=1}^{K} \log (1 - D_{\phi}(G_{\theta}(z_k))), z_k \sim p(z)$$

Loop over until convergence

Practical implementation for solving $\min_{\theta} \max_{\phi} E_{p_{data}(x)} [\log D_{\phi}(x)] + E_{p_{\theta}(x)} [\log (1 - D_{\phi}(x))]$ (pseudo code):

- Initialise θ , ϕ , learning rates γ_D , γ_G , SGD outer-/inner-loop iterations T, K
- For t = 1, ..., T

update discriminator

- For i = 1, ..., K
 - $z_1, \ldots, z_M \sim p(z)$
 - $x_1, \dots, x_M \sim p_{data}(x)$
 - $\phi \leftarrow \phi + \gamma_D \nabla_{\phi} \left[\frac{1}{M} \sum_{m=1}^{M} \log D_{\phi}(x_m) + \frac{1}{M} \sum_{m=1}^{M} \log(1 D_{\phi}(G_{\theta}(z_m))) \right]$

update generator

- $z_1, \ldots, z_I \sim p(z)$
- $\tilde{x}_j = G_{\theta}(z_j), j = 1, ..., J$
- $\theta \leftarrow \theta \gamma_G \nabla_{\theta} \frac{1}{J} \sum_{j=1}^{J} \log \left(1 D_{\phi}(\tilde{x}_j) \right)$

Learning rates γ_D , γ_G & inner-loop iterations K need to be chosen carefully! (otherwise training may be unstable)

- Practical strategy for training the generator G_{θ} :
 - At the beginning, generated image quality is bad

 \Rightarrow Discriminator can classify fake images correctly with high confidence: $D_{\phi}(G_{\theta}(z)) \approx 0$

- Practical strategy for training the generator G_{θ} :
 - At the beginning, generated image quality is bad

⇒ Use an alternative "non-saturate" loss:

$$\min_{\theta} -E_{p_{\theta}(x)}[\log D_{\phi}(x)]$$

"maximizing the probability of making wrong decisions on fake data"

Wasserstein GAN

Discriminator can be used to score the provided inputs

$$\min_{\theta} \max_{\phi} E_{p_{data}(x)} [D_{\phi}(x)] - E_{p_{\theta}(x)} [D_{\phi}(x)]$$

Discriminator should assign high scores to data inputs and low scores to fake inputs

• Assume the discriminator network $D_{m{\phi}}$ has infinite capacity: a trivial solution

$$D_{\phi^*}(x) = +\infty \text{ if } x \sim p_{data}(x) \text{ else } D_{\phi^*}(x) = -\infty$$

No useful gradient info for generator learning!

Wasserstein GAN

Regularised discriminator can be used to score the provided inputs

$$\min_{\theta} \max_{\phi} E_{p_{data}(x)} [D_{\phi}(x)] - E_{p_{\theta}(x)} [D_{\phi}(x)] \text{ subject to } \|D_{\phi}(\cdot)\|_{L} \leq 1$$

Discriminator should assign high scores to data inputs and low scores to fake inputs At the same time, discriminator should be smooth to provide useful gradient for learning G_{θ}

• $\|D_{\phi}(\cdot)\|_{L} \leq 1$ is the Lipschitz continuity constraint

$$\|\nabla_x D_{\phi}(x)\|_2 \le 1$$
 for all x

Equivalent to minimising the Wasserstein distance :

$$W_{2}(p_{data}(x), p_{\theta}(x)) := \sup_{\phi: \| p_{\phi}(\cdot) \|_{L} \le 1} E_{p_{data}(x)} [D_{\phi}(x)] - E_{p_{\theta}(x)} [D_{\phi}(x)]$$

Wasserstein GAN

Practical implementation: WGAN-GP

Regulariser to enforce the Lipschitz continuity constraint

$$\min_{\theta} \max_{\phi} E_{p_{data}(x)} [D_{\phi}(x)] - E_{p_{\theta}(x)} [D_{\phi}(x)] + \lambda E_{\hat{p}(x)} [(\|\nabla_{x} D_{\phi}(x)\|_{2} - 1)^{2}]$$

• $\hat{p}(x)$ is defined by the following sampling procedure:

$$x_{d} \sim p_{data}(x)$$

$$x_{g} \sim p_{\theta}(x)$$

$$\alpha \sim Uniform([0, 1])$$

$$x = \alpha x_{d} + (1 - \alpha)x_{g}$$

- Training strategy is similar to the original GAN
 - Double-loop algorithm
 - Minibatch sampling

Arjovsky et al. Wasserstein Generative Adversarial Networks. ICML 2017 Gulrajani et al. Improvedtraining of Wasserstein GANs. NeurIPS 2017