
Lecture notes on generative adversarial networks (GANs)

1.1 Prerequisites

Binary classification

Given a data distribution pdata(x, y) with y ∈ {0, 1}, we would like to fit a binary classifier pϕ(y|x)
to the conditional distribution pdata(y|x). A maximum likelihood estimate of the parameters ϕ is
obtained by solving the following optimisation task:

ϕ∗ = argmax
ϕ

Epdata(x,y)[log pϕ(y|x)], (1)

Assume the dataset is balanced, i.e. pdata(y) = Bern(0.5), then the above objective is equivalent to

ϕ∗ = argmax
ϕ

Epdata(x|y=1)[log pϕ(y = 1|x)] + Epdata(x|y=0)[log(1− pϕ(y = 1|x))]. (2)

The negation of the above maximum likelihood objective is also known as the cross-entropy loss.

1.2 Generative adversarial networks (GANs)

Original GAN formulation as binary classification

The generative adversarial network (GAN) approach [Goodfellow et al., 2014] constructs a binary
classification task to assist the learning of the generative model distribution pθ(x) to fit the data
distribution pdata(x). This is done by labelling all the datapoints sampled from the data distribution
as “real” data and those sampled from the model as “fake” data. In other words, a joint distribution
p̃(x, y) is constructed as follows for the binary classification task:

p̃(x, y) = p̃(x|y)p̃(y), p̃(y) = Bern(0.5), p̃(x|y) =

{
pdata(x), y = 1

pθ(x), y = 0
. (3)

Fitting a binary classifier (“discriminator”) with pϕ(y = 1|x) = Dϕ(x) to p̃(y|x) can be done by
maximising the maximum likelihood objective (see eq. (2)):

ϕ∗(θ) = argmax
ϕ

L(θ,ϕ), L(θ,ϕ) := Epdata(x)[logDϕ(x)] + Epθ(x)[log(1−Dϕ(x))]. (4)

Notice the dependence of the objective (4) on the generative model parameter θ, since the “data
distribution” p̃(x, y) of the binary classification task depends on pθ(x). Then the training of the
generative model pθ(x) aims at fooling the discriminator, by minimising the log probability of
making the right decisions:

θ∗(ϕ) = argmin
θ

Epθ(x)[log(1−Dϕ(x))]. (5)

In summary, the two-player game objective for training the GAN generator and discriminator is

min
θ

max
ϕ

L(θ,ϕ). (6)

Importantly, the terms in the objective related to pθ(x) is Epθ(x)[log(1−Dϕ(x))] which in practice
is approximated by Monte Carlo:

Epθ(x)[log(1−Dϕ(x))] ≈ log(1−Dϕ(x)), x ∼ pθ(x). (7)

Therefore the evaluation of the objective does not require computation of the distribution pθ(x),
instead one can directly define the sampling process of pθ(x), which also defines the distribution
pθ(x) in an implicit way:

x ∼ pθ(x) ⇔ z ∼ p(z), x = Gθ(z), (8)

and often we set p(z) = N (z;0, I).
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Equivalence to Jensen-Shannon divergence minimisation

In order to justify the two-player game objective (6), in the following we will show that with infinite
capacity for both the generator and the discriminator, the global optimum of the generator is pθ(x) =
pdata(x). For a fixed generator pθ(x), we compute the gradient of the GAN objective w.r.t. ϕ:

∇ϕL(θ,ϕ) =
∫ (

pdata(x)

Dϕ(x)
− pθ(x)

1−Dϕ(x)

)
∇ϕDϕ(x)dx (9)

Given infinite capacity of the discriminator, setting ∇ϕL(θ,ϕ) = 0 results in

pdata(x)

Dϕ(x)
=

pθ(x)

1−Dϕ(x)
⇒ Dϕ∗(θ)(x) =

pdata(x)

pθ(x) + pdata(x)
. (10)

Pluggin in the optimal discriminator to the GAN objective:

L(θ,ϕ∗(θ)) = Epdata(x)

[
log

pdata(x)

pθ(x) + pdata(x)

]
+ Epθ(x)

[
log

pθ(x)

pθ(x) + pdata(x)

]
= Epdata(x)

[
log

pdata(x)
1
2 (pθ(x) + pdata(x))

]
+ Epθ(x)

[
log

pθ(x)
1
2 (pθ(x) + pdata(x))

]
− 2 log 2

= 2(
1

2
KL

[
pdata(x)||

1

2
(pdata(x) + pθ(x))

]
+

1

2
KL

[
pθ(x)||

1

2
(pdata(x) + pθ(x))

]
︸ ︷︷ ︸

:=JS[pdata(x)||pθ(x)]

)− 2 log 2,

(11)
where JS[pdata(x)||pθ(x)] is the Jensen-Shannon divergence between pdata(x) and pθ(x). Since
Jensen-Shannon divergence is a valid divergence measure, this means with infinite capacity for the
generator, L(θ,ϕ∗(θ)) is minimised iff. pθ(x) = pdata(x).

Alternative loss for the generator

In the original GAN paper [Goodfellow et al., 2014] the authors proposed to optimise an alternative
“non-saturated” objective for the generator, given a fixed discriminator:

max
θ

Epθ(x)[logDϕ(x)]. (12)

Compared with the original objective (5) which minimises the log probability of making correct
predictions, the alternative objective maximises the log probability of making wrong predictions.
To see how this approach helps, notice that the discriminator often has near-perfect classification
performance at the beginning of GAN training (since at this stage the “fake” data quality is bad).
In this case Dϕ(x) ≈ 0 for x ∼ pθ(x). Also assume the generative model is implicitly defined
by z ∼ p(z),x = Gθ(z). Note that Dϕ(x) is often defined using sigmoid activation sigmoid(t) =
(1 + exp[−t])−1 at the last layer, i.e. Dϕ(x) = sigmoid(dϕ(x)) with dϕ(x) parameterised by a
neural network. This means Dϕ(x) ≈ 0 when dϕ(x) → −∞ (so at the beginning of GAN training
dϕ(x) → −∞ for x ∼ pθ(x)). Therefore the gradients of the two objectives w.r.t. θ are

∇θEpθ(x)[log(1−Dϕ(x))] = −∇θEp(z)[log(1+exp[dϕ(Gθ(z))])] = −Ep(z)[Dϕ(Gθ(z))︸ ︷︷ ︸
≈0

∇θdϕ(Gθ(z))],

(13)
∇θEpθ(x)[logDϕ(x)] = −∇θEp(z)[log(1+exp[−dϕ(Gθ(z))])] = Ep(z)[(1−Dϕ(Gθ(z)))︸ ︷︷ ︸

≈1

∇θdϕ(Gθ(z))].

(14)
It is clear that the alternative objective addresses the vanishing gradient problem of the original

one (5) at the beginning of training, hence the name “non-saturated objective”.
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Another justification of the alternative objective is provided by deriving the optimal solution of
the generator, given the optimal discriminator. Define f(t) = log(1 + t−1) − log 2, in which f(t) is
convex and f(1) = 0. Then we can define an f -divergence [Csiszár, 1963; Morimoto, 1963; Ali and
Silvey, 1966] as

Df [pθ(x)||pdata(x)] :=
∫

pθ(x)f

(
pdata(x)

pθ(x)

)
dx

=

∫
pθ(x) log

(
1 +

pθ(x)

pdata(x)

)
dx− log 2

= −Epθ(x)[logDϕ∗(θ)(x)]− log 2.

(15)

This shows that maximising the alternative “non-saturated objective” is equivalent to minimising
an f -divergence between the model and the data distribution. Therefore again with infinite capacity
of the generator, the optimal solution of the generative model is pθ(x) = pdata(x).

1.3 Conditional GAN

Similar to conditional VAEs, conditional GAN is a particular parameterisation of pθ(x|y) which
approximates the data distribution pdata(x|y). Again x is the random variable for data and y is
the random variable corresponding to the additional information. For the design of the generative
model pθ(x|y), we use a conditional LVM as follows:

pθ(x|y) =
∫

pθ(x|z,y)p(z)dz, (16)

and often we set p(z) = N (z;0, I). But different from conditional VAE which explicitly specifies
the distribution form of pθ(x|z,y), for conditional GAN it is defined implicitly by the following
sampling process:

x ∼ pθ(x|z,y) ⇔ z ∼ p(z),x = Gθ(z,y), (17)

with Gθ(z,y) defined by a neural network that takes both z and y as inputs. Similar to GANs,
learning is done by optimising an adversarial objective:

min
θ

max
ϕ

Epdata(x,y)[logDϕ(x,y)] + Epθ(x|y)pdata(y)[log(1−Dϕ(x,y))]. (18)

In practice the component related to the generator parameters θ is computed by

Epθ(x|y)pdata(y)[log(1−Dϕ(x,y))] ≈ log(1−Dϕ(Gθ(z,y),y)), z ∼ p(z),y ∼ pdata(y). (19)

Using similar techniques, one can derive the optimal discriminator for a fixed generative model with
parameter θ:

Dϕ∗(θ)(x,y) =
pdata(x,y)

pθ(x|y)pdata(y) + pdata(x,y)
, (20)

and with the optimal discriminator, maximising L(θ,ϕ) w.r.t. θ is equivalent to minimising the
Jensen-Shannon divergence JS[pdata(x,y)||pθ(x|y)pdata(y)].

1.4 *Wasserstein GAN

Wasserstein distance

Wasserstein distance is a key concept developed in optimal transport, which aims at finding the
lowest cost approach to transform a distribution to another [Villani, 2008]. The dual form of the
Wasserstein distance is defined by taking the optimal test functions from F = {f : ||f ||L ≤ 1}, the
set of 1-Lipschitz functions:

W2[p, q] = sup
||f ||L≤1

Ep[f(x)]− Eq[f(x)]. (21)
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As a reminder, a function f : Rd → R is said to be l-Lipschitz (denoted as ||f ||L ≤ l) if

|f(x1)− f(x2)| ≤ l||x1 − x2||2, ∀x1,x2 ∈ Rd. (22)

If f is differentiable everywhere, then

||f ||L ≤ 1 ⇔ ||∇xf(x)||2 ≤ 1,∀x ∈ Rd. (23)

Using Wasserstein distance in GANs

In Wasserstein GANs [Arjovsky et al., 2017], the discriminator is used to parameterise the test
function f := Dϕ, and the Wasserstein distance is used as the loss function for adversarial training:

min
θ

max
ϕ

Epdata(x)[Dϕ(x)]− Epθ(x)[Dϕ(x)], subject to ||∇xDϕ(x)||2 ≤ 1,∀x ∈ Rd. (24)

However, it is impractical to compute the constraint for every x ∈ Rd. Instead, the point-wise
constraint is replaced by the following alternative [Gulrajani et al., 2017]:

Ep̂(x)[(||∇xDϕ(x)||2 − 1)2] = 0, (25)

with the auxiliary “interpolation” distribution p̂(x) defined by the following generative process:

x ∼ p̂(x) ⇔ xd ∼ pdata(x),xg ∼ pθ(x), α ∼ Uniform([0, 1]),x = αxd + (1− α)xg. (26)

This alternative constraint (25) is justified as follows. Since the original Wasserstein distance ob-
jective (24) requires evaluating the discriminator within the supports of pdata(x) and pθ(x) only, it
requires to enforce the ||∇xDϕ(x)||2 ≤ 1 constraint for x ∈ supp(pdata(x)) ∪ supp(pθ(x)). Also it
can be shown that the optimal discriminator of the objective (24) satisfies ||∇xDϕ(x)||2 = 1 for x ∈
supp(pdata(x)) ∪ supp(pθ(x)). Now the alternative constraint (25) is satisfied iff. ||∇xDϕ(x)||2 = 1
for x ∈ supp(p̂(x)). Given that supp(pdata(x)) ∪ supp(pθ(x)) ⊂ supp(p̂(x)) by construction, this
indicates that the constraint in the Wasserstein distance object (24) is satisfied if the constraint (25)
is satisfied. The optimisation of the objective (24) with alternative constraint (25) can be solved
by the Lagrange multiplier method, resulting in the WGAN-GP (“Wasserstein GAN with gradient
penalty”) objective [Gulrajani et al., 2017]:

min
θ

max
ϕ

Epdata(x)[Dϕ(x)]− Epθ(x)[Dϕ(x)] + λEp̂(x)[(||∇xDϕ(x)||2 − 1)2]. (27)

Integral probability metrics (IPMs)

Wasserstein distance is an instance of a family of distance measures between distributions, named
integral probability metrics (IPMs).

Definition 1. (Integral probability metric (IPM)) Given a set of test functions F , consider the
following quantity:

D[p, q] = sup
f∈F

|Ep[f(x)]− Eq[f(x)]|, (28)

where | · | denotes a norm in the output space of f . If F is sufficiently large such that D[p, q] = 0
iff. p = q, then D[p, q] is said to be an integral probability metric defined by the test functions in F .

To provide an intuition of IPMs, consider a strategy of comparing distributions by comparing
their moments, e.g. mean, variance, kurtosis, etc. Loosely speaking, if two distributions p and q have
the same moments for all orders then p and q should be identical.1 Therefore, to check whether p
and q are identical or not, one can find the best moment, or in a broader sense the best test function
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f that can distinguish p from q the most, and if such optimal test function still fails to distinguish
between p and q, then the two distributions p and q are identical.2

The intuition is further visualised in the above figure.3 We see from the visualisation that the
optimal test function f∗ takes positive values in the region where p(x) > q(x) and vise versa.
In other words, the optimal test function tells us more than whether p = q or not; it also provides
information on how p and q differ from each other. This is a useful property for IPMs for applications
in adversarial learning: as f∗ describes in detail the difference between p and q, we can optimise
the q distribution in a guided way towards approximating the target distribution p. Indeed various
versions of IPMs have been used as optimisation objectives in the GAN literature, e.g. see Li et al.
[2017]; Mroueh and Sercu [2017]; Mroueh et al. [2018].
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