Generative Models

Introduction

Yingzhen Li (yingzhen.li@imperial.ac.uk)

Supervised Learning

Data: $(x_1, y_1), ..., (x_N, y_N) \sim p_{data}(x, y)$

Cat

Goal: learn a function to map $x \rightarrow y$

Regression

Classification

GRASS, CAT, TREE, SKY Semantic Segmentation

DOG, **DOG**, **CAT** Object detection

95m

photos and videos are shared on Instagram

Instagram Business

of data will be created every day by 2025

IDC

tweets are sent every day

Twitter

Most of the data are unlabelled

Unsupervised Learning

Data: $x_1, ..., x_N \sim p_{data}(x)$ (no supervision signal)

Goal: inferring a function that describes the hidden structure of unlabelled data

Examples:

- Probability distribution/density estimation
- Dimensionality Reduction
- Clustering

All of them can be achieved by generative modelling!

Probability distribution/density estimation

Data: $x_1, \dots, x_N \sim p_{data}(x)$

Goal: learn a distribution $p_{\theta}(x) \approx p_{data}(x)$ with data x_1, \dots, x_N

https://www.r-bloggers.com/2016/03/ballr-interactive-nba-shot-charts-with-r-and-shiny/

Generative Latent Variable Models

• Design $p_{\theta}(x)$ as a generative latent variable model (LVM):

 $z \sim p_{\theta}(z), \qquad x \sim p_{\theta}(x|z)$ $\Rightarrow p_{\theta}(x) = \int p_{\theta}(x|z)p_{\theta}(z)dz$

z: latent variable (unobserved)

x: observation variable

z: digit label, writing style, ... *x*: hand-written digit

z: scene, viewing angle, lighting condition, ... x: photo image

Ζ

 $\boldsymbol{\chi}$

z: semantics, sentiment, ... x: generated text

• High-dimensional raw data are often sparse, perhaps lying on a low-dimensional manifold:

natural images vs all RGB images

• Principal Component Analysis (PCA):

Find principal components – orthogonal directions that capture most of the variance in the data

- 1st principal component direction of greatest variability
- 2nd principal component next orthogonal (uncorrelated) direction of greatest variability
- And so on ...

2nd PC 1st PC

Dimensionality reduction is achieved by projecting the data on the top K < d principal components ($x \in R^d$)

• Probabilistic Principal Component Analysis (Prob PCA):

 $p(z) = N(z; 0, I), z \in \mathbb{R}^{K}, K < d$ $p_{\theta}(x|z) = N(x; Wz, \sigma^{2}I), x \in \mathbb{R}^{d}$

- Parameters to optimize: $\theta = W \in \mathbb{R}^{d \times K}$, with the row vectors in W orthogonal to each other
- Trained using Maximum Likelihood
- Optimal *W* contains the top *K* principal components the top *K* eigenvectors of the data covariance matrix

Tipping and Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B, 1999

- Auto-encoders for dimensionality reduction: •
 - Encoder network to extract data representations • (often with lower dimensionality)
 - Decoder network to reconstruct data given the representations ٠

networks trained by minimising reconstruction loss (e.g. L2 loss)

Clustering

- Clustering: discover "group structure"
 - grouping datapoints into several clusters
 - Datapoints in the same cluster are similar
 - Datapoints in different clusters are "dissimilar"

gene data analysis

Clustering

• Gaussian mixture model (GMM):

 $p_{\theta}(z) = Categorical(\pi),$ $\pi = (\pi_1, \dots, \pi_K), \pi_i = p_{\theta}(z = i), \sum_{i=1}^K \pi_i = 1$ $p_{\theta}(x|z) = N(x; \mu_z, \Sigma_z)$

- $z \in \{1, ..., K\}$: index of the Gaussian component
- μ_z : mean of the *i*th Gaussian component if z = i
- Σ_z : Covariance matrix of the i^{th} Gaussian component if z = i

 \Rightarrow Clustering can be done by fitting a GMM model to the data

Representation learning

- Both dimensionality reduction and clustering can be viewed as representation learning
 - Hope: useful for downstream tasks

Representations used in downstream tasks:

• Classification (cat vs dog)

