
Recurrent Neural Networks
RNN basics

Yingzhen Li (yingzhen.li@imperial.ac.uk)

Deep Learning - Yingzhen Li 1

mailto:yingzhen.li@imperial.ac.uk

Sequential data is everywhere

Deep Learning - Yingzhen Li 2

Video data Speech data

Financial time series data Climate science data (spatial-temporal)

Sequential data is everywhere

Deep Learning - Yingzhen Li 3

Time series prediction:
• Data sequence: 𝑥!, … , 𝑥"

• 𝑥#: data frame at time 𝑡
• Goal: predict future values

𝑥!, … , 𝑥" → 𝑥"$!, 𝑥"$%, …

Sequential data is everywhere

Deep Learning - Yingzhen Li 4

Object tracking in videos:
• Data sequence: 𝑥!, … , 𝑥"

• 𝑥#: video frame at time 𝑡
• Label sequence: 𝑦!, … , 𝑦"

• 𝑦#: object identifier, bounding box
coordinates, … at time 𝑡

• Goal: learn a mapping
𝑥!, … , 𝑥" → (𝑦!, … , 𝑦")

Sequential data is everywhere

Deep Learning - Yingzhen Li 5

Machine translation (e.g. EN to FR):
• Data sequence: 𝑥 = (𝑥!, … , 𝑥")

• 𝑥#: the 𝑡#& word in the English sentence
• Output sequence: 𝑦 = (𝑦!, … , 𝑦')

• 𝑦(: the 𝑙#& word in the French sentence
• Goal: learn a mapping

𝑥 → 𝑦

Deep learning’s solution: recurrent neural networks

Why Recurrent Neural Networks

Deep Learning - Yingzhen Li 6

Machine translation as a motivating example:

DNN

happy new year

DNN DNN

heureux nouveau année

ignoring dependencies

bonne année

happy new year

DNN

cannot handle inputs of varied lengths

Why Recurrent Neural Networks

Deep Learning - Yingzhen Li 7

Machine translation as a motivating example:

DNN

happy new year

DNN DNN

heureux nouveau année

ignoring dependencies

bonne année

happy new year

DNN

cannot handle inputs of varied lengths

Desired network architecture:
1.Model dependences within the sequence
2.Can handle inputs/outputs of different lengths

Simple RNNs

Deep Learning - Yingzhen Li 8

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN

𝑥!

𝑦!

ℎ!

ℎ+ = 𝜙, 𝑊,ℎ+-. +𝑊/𝑥+ + 𝑏,
𝑦+ = 𝜙0(𝑊0ℎ+ + 𝑏0)

𝜙,: activation function for recurrent state
𝜙0: activation function for output

Simple RNNs

Deep Learning - Yingzhen Li 9

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN RNN RNN RNN RNN

𝑥!

𝑦!

𝑥" 𝑥# 𝑥$ 𝑥%

𝑦" 𝑦# 𝑦$ 𝑦%

ℎ!
ℎ" ℎ# ℎ%&"

Unrolling the RNN architecture through time:

Training RNNs

Deep Learning - Yingzhen Li 10

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝐿(𝑦%)𝐿(𝑦$)𝐿(𝑦#)𝐿(𝑦")

Forward pass: 𝐿'(')*(𝜃) = ∑'+,- 𝐿(𝑦'), 𝜃 = {𝑊.,𝑊/,𝑊0, 𝑏., 𝑏0}

ℎ! = 𝜙" 𝑊"ℎ!#$ +𝑊%𝑥! + 𝑏"
𝑦! = 𝜙&(𝑊&ℎ! + 𝑏&)

Training RNNs

Deep Learning - Yingzhen Li 11

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝐿(𝑦%)𝐿(𝑦$)𝐿(𝑦#)𝐿(𝑦")

Backward pass: 1
12
𝐿'(')*(𝜃) = ∑'+,- 1

12
𝐿(𝑦'), 𝜃 = {𝑊.,𝑊/,𝑊0, 𝑏., 𝑏0}

ℎ! = 𝜙" 𝑊"ℎ!#$ +𝑊%𝑥! + 𝑏"
𝑦! = 𝜙&(𝑊&ℎ! + 𝑏&)

Training RNNs

Deep Learning - Yingzhen Li 12

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝐿(𝑦%)𝐿(𝑦$)𝐿(𝑦#)𝐿(𝑦")

Backward pass: 1
13!

𝐿'(')* = ∑'+,- 1
13!

𝐿(𝑦')
𝑑
𝑑𝑊&

𝐿 𝑦! =
𝑑𝐿 𝑦!
𝑑𝑦!

𝑑𝑦!
𝑑𝑊&

𝑑𝐿 𝑦!
𝑑𝑦!

𝑑𝑦!
𝑑𝑊&

ℎ! = 𝜙" 𝑊"ℎ!#$ +𝑊%𝑥! + 𝑏"
𝑦! = 𝜙&(𝑊&ℎ! + 𝑏&)

Training RNNs

Deep Learning - Yingzhen Li 13

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝐿(𝑦%)𝐿(𝑦$)𝐿(𝑦#)𝐿(𝑦")

Backward pass: 1
13"

𝐿'(')* = ∑'+,- 1
13"

𝐿(𝑦')

ℎ! = 𝜙" 𝑊"ℎ!#$ +𝑊%𝑥! + 𝑏"
𝑦! = 𝜙&(𝑊&ℎ! + 𝑏&)

𝜕ℎ'
𝜕𝑊%

𝑑𝐿 𝑦!
𝑑𝑊%

=
𝑑𝐿 𝑦!
𝑑𝑦!

𝑑𝑦!
𝑑ℎ!

𝑑ℎ!
𝑑𝑊%

𝑑ℎ!
𝑑𝑊'

=
𝜕ℎ!
𝜕𝑊'

+
𝜕ℎ!
𝜕ℎ!&"

𝑑ℎ!&"
𝑑𝑊'

total gradient partial gradient

𝑑𝐿 𝑦'
𝑑𝑦'

𝑑𝑦'
𝑑ℎ'

Training RNNs

Deep Learning - Yingzhen Li 14

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝐿(𝑦%)𝐿(𝑦$)𝐿(𝑦#)𝐿(𝑦")

Backward pass: 1
13#

𝐿'(')* = ∑'+,- 1
13#

𝐿(𝑦')

𝑑𝐿 𝑦!
𝑑𝑊"

=
𝑑𝐿 𝑦!
𝑑𝑦!

𝑑𝑦!
𝑑ℎ!

𝑑ℎ!
𝑑𝑊"

ℎ! = 𝜙" 𝑊"ℎ!#$ +𝑊%𝑥! + 𝑏"
𝑦! = 𝜙&(𝑊&ℎ! + 𝑏&)

𝑑ℎ!
𝑑𝑊(

=
𝜕ℎ!
𝜕𝑊(

+
𝜕ℎ!
𝜕ℎ!&"

𝑑ℎ!&"
𝑑𝑊(

𝑑ℎ!
𝑑ℎ!"#

𝑑ℎ$
𝑑ℎ%

𝑑ℎ%
𝑑ℎ#

Back-propagation
through time (BPTT)

total gradient partial gradient

𝑑𝐿 𝑦'
𝑑𝑦'

𝑑𝑦'
𝑑ℎ'

Issues of simple RNNs
Consider gradient of loss w.r.t. 𝑊.:

Deep Learning - Yingzhen Li 15

Depending on 𝑊& and the non-linearity 𝜙&, when 𝑡 → ∞, ∏()!
#*! +&()*

+&(
can vanish or explode!

𝑑ℎ!
𝑑𝑊(

=
𝜕ℎ!
𝜕𝑊(

+
𝑑ℎ!
𝑑ℎ!&"

𝑑ℎ!&"
𝑑𝑊(

=
𝜕ℎ!
𝜕𝑊(

+
𝑑ℎ!
𝑑ℎ!&"

𝜕ℎ!&"
𝜕𝑊(

+
𝑑ℎ!&"
𝑑ℎ!&#

𝑑ℎ!&#
𝑑𝑊(

= …

⇒
𝑑ℎ!
𝑑𝑊(

=;
)*"

!

<
+*)

!&"
𝑑ℎ+,"
𝑑ℎ+

𝜕ℎ)
𝜕𝑊(

,

contain products of 𝑊(and 𝜙(- for 𝑡 − 𝜏 times

𝐿(𝑦!)𝐿(𝑦")𝐿(𝑦#)𝐿(𝑦$)
𝑑𝐿 𝑦!
𝑑𝑦!

𝑑𝑦!
𝑑ℎ!

𝑑ℎ!
𝑑ℎ!"#

𝑑ℎ$
𝑑ℎ%

𝑑ℎ%
𝑑ℎ#

𝑑𝐿 𝑦!
𝑑𝑊"

=
𝑑𝐿 𝑦!
𝑑𝑦!

𝑑𝑦!
𝑑ℎ!

𝑑ℎ!
𝑑𝑊"

𝑑ℎ+,"
𝑑ℎ+

.

= 𝜙(- 𝑊(ℎ+ +𝑊'𝑥+," + 𝑏(⊙𝑊(

Issues of simple RNNs
Consider gradient of loss w.r.t. 𝑊.:

Deep Learning - Yingzhen Li 16

Depending on the non-linearity 𝜙&, when 𝑡 → ∞, ∏()!
#*! +&()*

+&(
can vanish or explode!

contain products of 𝑊(and 𝜙(- for 𝑡 − 𝜏 times

Identity mapping: 𝜙(𝑡 = 𝑡

)
)*#

+"#
𝑑ℎ),#
𝑑ℎ)

= (𝑊(
+"#)-

(explode or vanish depending on the largest singular value)

Tanh mapping: 𝜙(𝑡 = tanh(𝑡)

𝜙(. 𝑡 ≈ 0
𝜙(. 𝑡 ≈ 0

𝐿(𝑦!)𝐿(𝑦")𝐿(𝑦#)𝐿(𝑦$)
𝑑𝐿 𝑦!
𝑑𝑦!

𝑑𝑦!
𝑑ℎ!

𝑑ℎ!
𝑑ℎ!"#

𝑑ℎ$
𝑑ℎ%

𝑑ℎ%
𝑑ℎ#

⇒
𝑑ℎ!
𝑑𝑊(

=;
)*"

!

<
+*)

!&"
𝑑ℎ+,"
𝑑ℎ+

𝜕ℎ)
𝜕𝑊(

, 𝑑ℎ+,"
𝑑ℎ+

.

= 𝜙(- 𝑊(ℎ+ +𝑊'𝑥+," + 𝑏(⊙𝑊(

Issues of simple RNNs

Deep Learning - Yingzhen Li 17

RNN RNN RNN RNN RNN RNN
Dependency of 𝑦! on 𝑥" gets
harder to learn as 𝑡 increases

• Consider gradient of loss w.r.t. 𝑊,:

⇒
𝑑ℎ!
𝑑𝑊(

=;
)*"

!

<
+*)

!&"
𝑑ℎ+,"
𝑑ℎ+

𝜕ℎ)
𝜕𝑊(

,

can vanish or explode (especially when 𝑡 ≫ 𝜏)

𝑥#

𝑦+

vanishing gradient

𝑑ℎ+,"
𝑑ℎ+

.

= 𝜙(- 𝑊(ℎ+ +𝑊'𝑥+," + 𝑏(⊙𝑊(

Long Short-Term Memory (LSTM)

Deep Learning - Yingzhen Li 18

LSTM Cell LSTM Cell

Key ideas of LSTM:
• Introduce cell state 𝐶#
• Gating mechanisms to control cell state updates and output values

Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Neuro Computation.
Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

Deep Learning - Yingzhen Li 19

Forget gate 𝑓!:

𝑓! = 𝜎(𝑊/ ⋅ ℎ!&", 𝑥! + 𝑏/)
concatenate

sigmoid activation function

𝜎 𝑡 =
1

1 + exp(−𝑡)

Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Neuro Computation.
Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

Deep Learning - Yingzhen Li 20

Input gate: 𝑖!
Candidate cell state update: �̃�!

𝑖! = 𝜎(𝑊0 ⋅ ℎ!&", 𝑥! + 𝑏0)
�̃�! = tanh(𝑊1 ⋅ ℎ!&", 𝑥! + 𝑏1)

Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Neuro Computation.
Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

Deep Learning - Yingzhen Li 21

Cell state update:

𝑐! = 𝑓! ⊙ 𝑐!&" + 𝑖! ⊙ �̃�!

𝑓! 𝑑 ∈ (0,1)
𝑓+ 𝑑 → 0: forget previous state
𝑓+ 𝑑 → 1: maintain previous state

𝑖! 𝑑 ∈ (0,1)
𝑖+ 𝑑 → 0: discard candidate cell state update
𝑖+ 𝑑 → 1: enable cell state update

Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Neuro Computation.
Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

Deep Learning - Yingzhen Li 22

𝑜! = 𝜎(𝑊2 ⋅ ℎ!&", 𝑥! + 𝑏2)
ℎ! = 𝑜! ⊙ tanh(𝑐!)

Update the hidden state ℎ!
with output gating 𝑜!

𝑜! 𝑑 ∈ (0,1)
𝑜+ 𝑑 → 0: zero output
𝑜+ 𝑑 → 1: output cell state (squashed in (−1, 1))

Prediction of 𝑦! can proceed in a similar way as in simple RNNs:

𝑦! = 𝜙&(𝑊&ℎ! + 𝑏&)

Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Neuro Computation.
Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

Deep Learning - Yingzhen Li 23

LSTM Cell LSTM Cell

Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Neuro Computation.
Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

BPTT in LSTMs:

𝑜+ = 𝜎(𝑊/ ⋅ ℎ+"#, 𝑥+ + 𝑏/)
ℎ+ = 𝑜+ ⊙ tanh(𝑐+)
𝑦+ = 𝜙0(𝑊0ℎ+ + 𝑏0)

𝑐+ = 𝑓+ ⊙𝑐+"# + 𝑖+ ⊙ �̃�+

𝑖+ = 𝜎(𝑊1 ⋅ ℎ+"#, 𝑥+ + 𝑏1)
�̃�+ = tanh(𝑊2 ⋅ ℎ+"#, 𝑥+ + 𝑏2)

𝑓+ = 𝜎(𝑊3 ⋅ ℎ+"#, 𝑥+ + 𝑏3)

𝑥# 𝑥% 𝑥$

𝑦# 𝑦% 𝑦$

∏+*"
!&" 31!"#

31!
= ∏+*"

!&"(𝑓+," + 𝑜+ ⊙
3!45((1!)

31!
⊙ 31!"#

3(!
)Requires computing

How to derive 31$
31$%#

: Notice 𝑐! depends on 𝑐!&" in 4 paths:

direct dependence

Depends on ℎ!&" = 𝑜!&"⊙ 𝑐!&" (indirect dependence)

Long Short-Term Memory (LSTM)

Deep Learning - Yingzhen Li 24

LSTM Cell LSTM Cell

Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Neuro Computation.
Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

BPTT in LSTMs:

𝑜+ = 𝜎(𝑊/ ⋅ ℎ+"#, 𝑥+ + 𝑏/)
ℎ+ = 𝑜+ ⊙ tanh(𝑐+)
𝑦+ = 𝜙0(𝑊0ℎ+ + 𝑏0)

𝑐+ = 𝑓+ ⊙𝑐+"# + 𝑖+ ⊙ �̃�+

𝑖+ = 𝜎(𝑊1 ⋅ ℎ+"#, 𝑥+ + 𝑏1)
�̃�+ = tanh(𝑊2 ⋅ ℎ+"#, 𝑥+ + 𝑏2)

𝑓+ = 𝜎(𝑊3 ⋅ ℎ+"#, 𝑥+ + 𝑏3)

𝑥# 𝑥% 𝑥$

𝑦# 𝑦% 𝑦$

Requires computing

The gradient contains terms proportional to 𝑓0,"∏+*"
0&" 𝑜+ ⊙

31!"#
3(!

≈ 0 when 𝑓0," ≈ 0

Alleviating gradient explosion:

The gradient contains terms proportional to ∏+*),"
0 𝑓+ ⊙𝑜)⊙

31&"#
3(&

≈ 𝑜)⊙
31&"#
3(&

when 𝑓+ → 1
for 𝑙 = 𝜏 + 1,… , 𝑖

Alleviating gradient vanishing:

∏+*"
!&" 31!"#

31!
= ∏+*"

!&"(𝑓+," + 𝑜+ ⊙
3!45((1!)

31!
⊙ 31!"#

3(!
)

Gated Recurrent Unit (GRU)

Deep Learning - Yingzhen Li 25

Cho et al. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. EMNLP 2014
Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝑧! = 𝜎(𝑊8 ⋅ ℎ!&", 𝑥! + 𝑏8)

𝑟! = 𝜎(𝑊9 ⋅ ℎ!&", 𝑥! + 𝑏9)
Wℎ! = tanh(𝑊(⋅ 𝑟! ⊙ℎ!&", 𝑥! + 𝑏()

ℎ! = 1 − 𝑧! ⊙ℎ!&" + 𝑧! ⊙ Wℎ!

LSTM vs GRU

• Other gated RNN variants exists, but LSTM and GRU are the most
widely-used
• GRU is quicker to compute and has fewer parameters
• No conclusive evidence for LSTM > GRU or vice versa
• LSTM is a good default choice (especially if your data has particularly

long dependencies, or you have lots of training data)
• Switch to GRU if you want more efficient compute & less overfitting

Deep Learning - Yingzhen Li 26

Stacking LSTMs

Deep Learning - Yingzhen Li 27

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

𝑥" 𝑥# 𝑥$ 𝑥%

𝑦%𝑦$𝑦" 𝑦#

…

Stacking multiple LSTM layers:
• Hidden states of the previous LSTM later

as inputs to the next LSTM layer;
• No need to wait for previous LSTM layer

to finish forward pass;

Bidirectional LSTMs

Deep Learning - Yingzhen Li 28

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

𝑥" 𝑥# 𝑥$ 𝑥%

𝑦%𝑦$𝑦" 𝑦#

…

Bidirectional LSTM:
• Stacking some LSTM layers;
• For some LSTM layers, the forward pass is

reversed from time t = 𝑇 to t = 1;
• If two consecutive LSTM layers are of

reversed time ordering, then the top layer
needs to wait for the bottom one to finish
forward pass.

