Recurrent Neural Networks

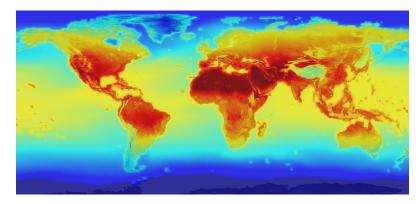
RNN basics

Yingzhen Li (yingzhen.li@imperial.ac.uk)

Video data

Speech data

Financial time series data

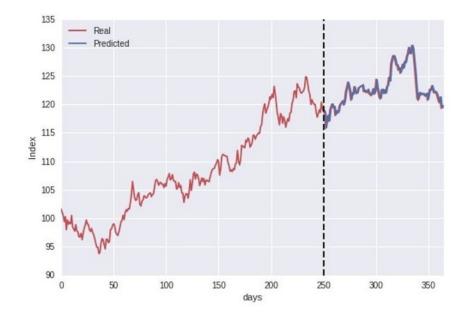


Climate science data (spatial-temporal)

Time series prediction:

- Data sequence: (x_1, \dots, x_T)
 - x_t : data frame at time t
- Goal: predict future values

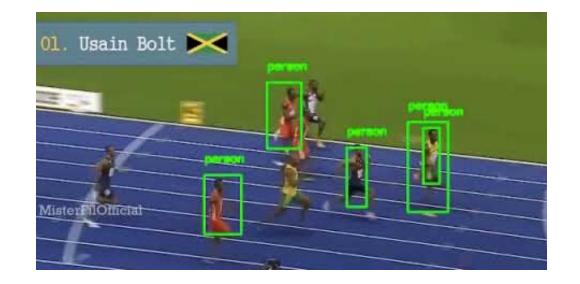
 $(x_1,\ldots,x_T)\to x_{T+1},x_{T+2},\ldots$



Object tracking in videos:

- Data sequence: (x_1, \dots, x_T)
 - *x_t*: video frame at time *t*
- Label sequence: (y_1, \dots, y_T)
 - *y_t*: object identifier, bounding box coordinates, ... at time *t*
- Goal: learn a mapping

 $(x_1, \dots, x_T) \to (y_1, \dots, y_T)$



Machine translation (e.g. EN to FR):

- Data sequence: $x = (x_1, ..., x_T)$
 - x_t : the t^{th} word in the English sentence
- Output sequence: $y = (y_1, ..., y_L)$
 - y_l : the l^{th} word in the French sentence
- Goal: learn a mapping

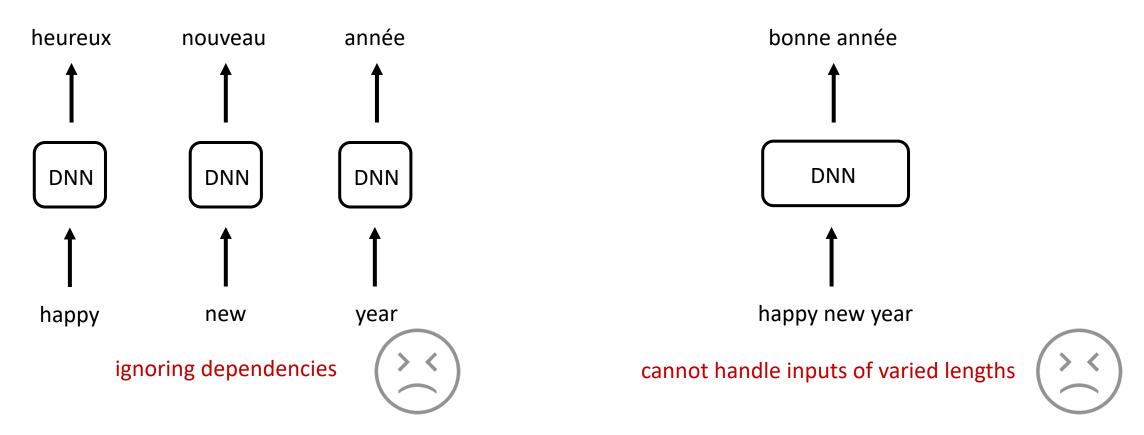
 $x \to y$

how do I say "hello world" in frer	ich		୍ତ୍ୟ ପ୍
🔍 All 🖾 Images 🛷 Shopping	► Video	s 🗉 News : More	Settings Tools
About 2,660,000 results (0.71 second	ls)		
English - detected 👻	÷	→ Fre	ench 👻
hello world	\times	Bonjour le monde	

Deep learning's solution: recurrent neural networks

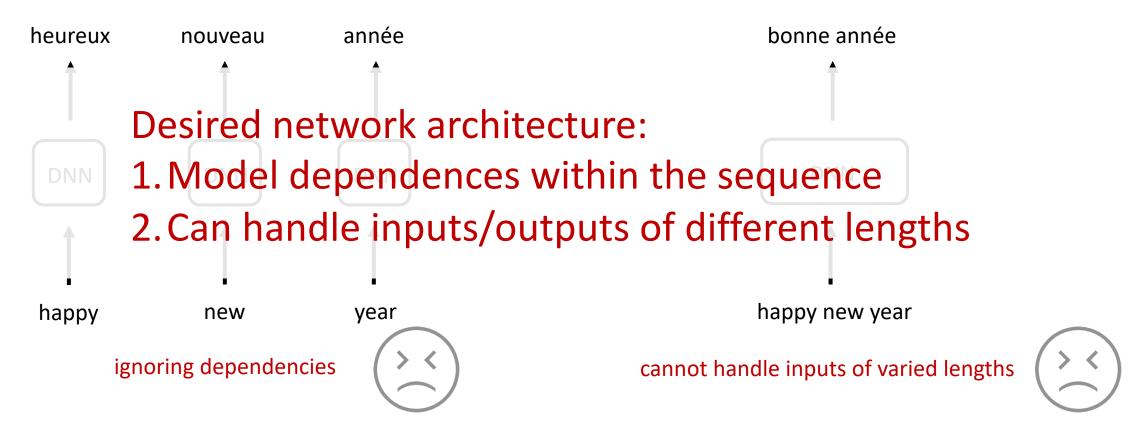
Why Recurrent Neural Networks

Machine translation as a motivating example:



Why Recurrent Neural Networks

Machine translation as a motivating example:



Simple RNNs



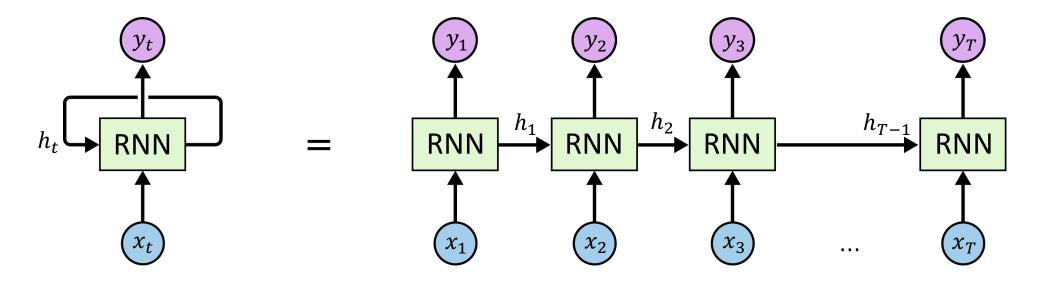
$$h_t = \phi_h(W_h h_{t-1} + W_x x_t + b_h)$$

$$y_t = \phi_y(W_y h_t + b_y)$$

 ϕ_h : activation function for recurrent state ϕ_y : activation function for output

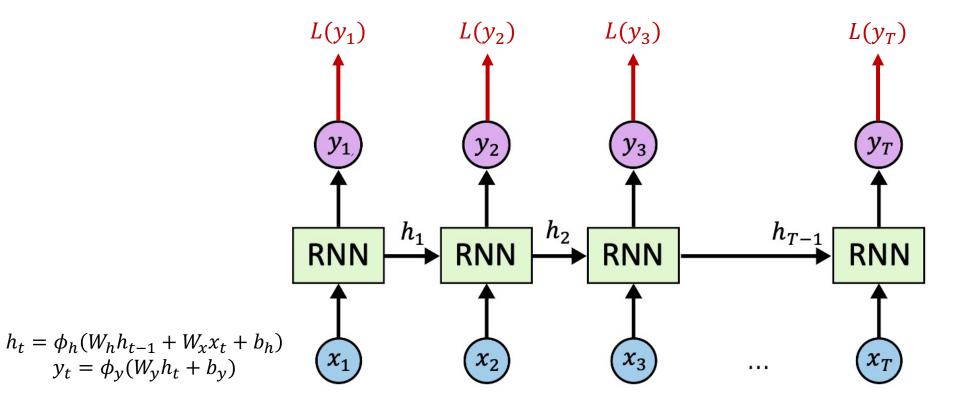
Simple RNNs

Unrolling the RNN architecture through time:

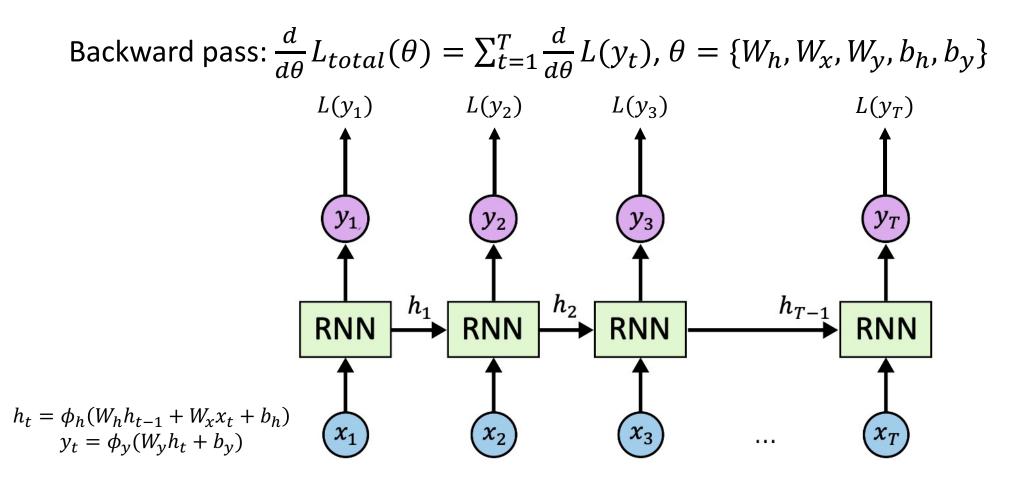


Training RNNs

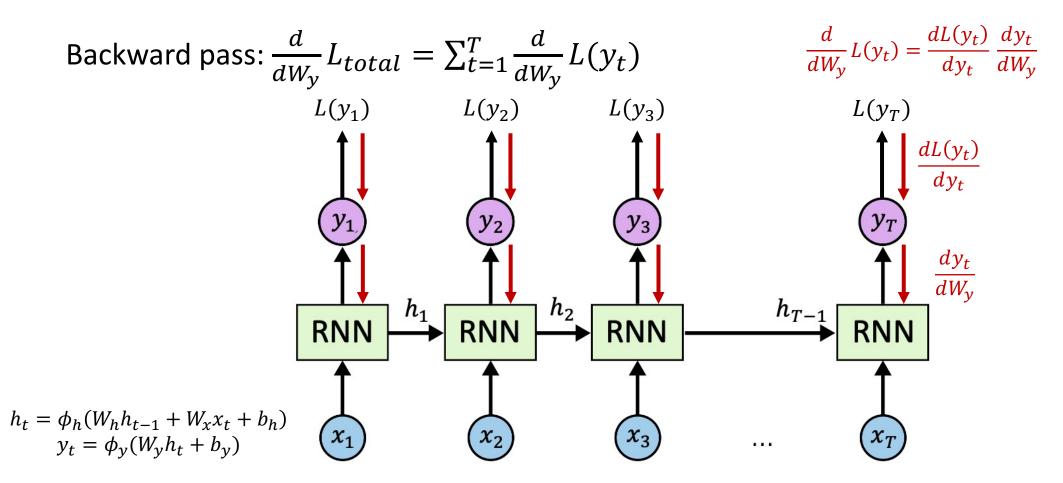
Forward pass: $L_{total}(\theta) = \sum_{t=1}^{T} L(y_t), \ \theta = \{W_h, W_x, W_y, b_h, b_y\}$



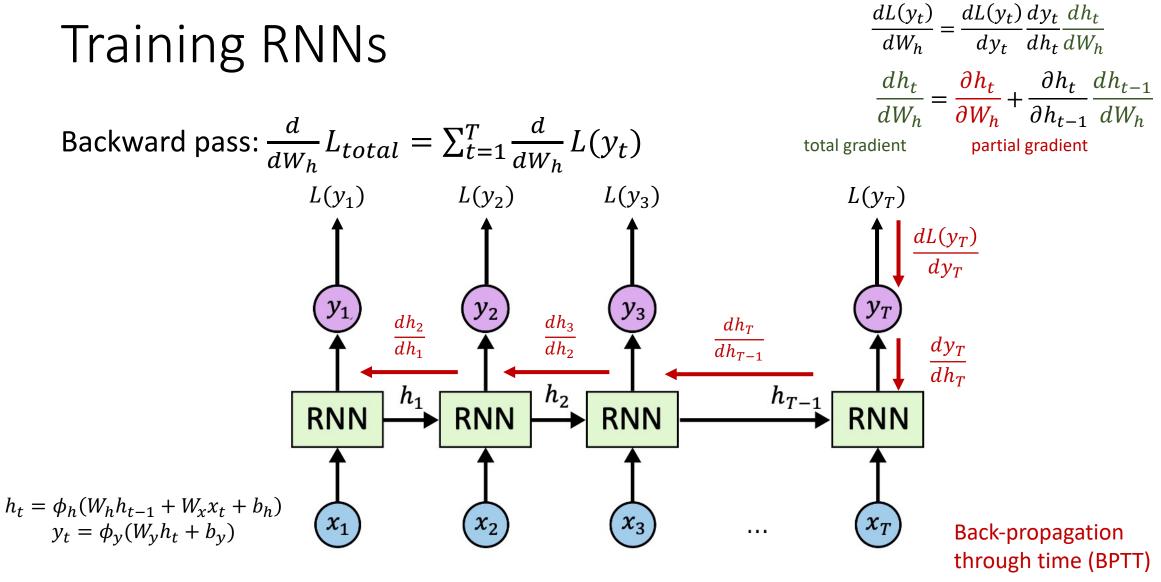
Training RNNs



Training RNNs

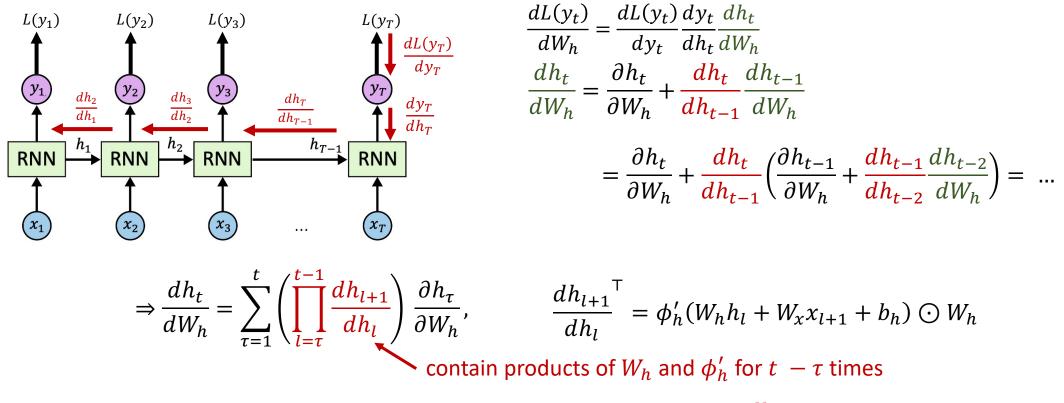


$\frac{dL(y_t)}{dW_x} = \frac{dL(y_t)}{dy_t} \frac{dy_t}{dh_t} \frac{dh_t}{dW_x}$ Training RNNs $\frac{dh_t}{dW_x} = \frac{\partial h_t}{\partial W_x} + \frac{\partial h_t}{\partial h_{t-1}} \frac{dh_{t-1}}{dW_x}$ Backward pass: $\frac{d}{dW_x}L_{total} = \sum_{t=1}^T \frac{d}{dW_x}L(y_t)$ partial gradient total gradient $L(y_1)$ $L(y_2)$ $L(y_3)$ $L(y_T)$ $\frac{dL(y_T)}{dy_T}$ y_1 y_2 y_3 $\frac{dy_T}{dh_T}$ h_2 h_1 h_{T-1} **RNN RNN RNN RNN** $\frac{\partial h_T}{\partial W_x}$ $h_t = \phi_h(W_h h_{t-1} + W_x x_t + b_h)$ x_1 x_2 x_3 χ_{T} $y_t = \phi_v (W_v h_t + b_v)$. . .



Issues of simple RNNs

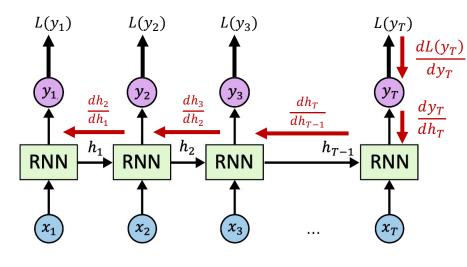
Consider gradient of loss w.r.t. W_h :



Depending on W_h and the non-linearity ϕ_h , when $t \to \infty$, $\prod_{l=1}^{t-1} \frac{dh_{l+1}}{dh_l}$ can vanish or explode!

Issues of simple RNNs

Consider gradient of loss w.r.t. W_h :



$$\Rightarrow \frac{dh_t}{dW_h} = \sum_{\tau=1}^t \left(\prod_{l=\tau}^{t-1} \frac{dh_{l+1}}{dh_l} \right) \frac{\partial h_{\tau}}{\partial W_h},$$

Identity mapping: $\phi_h(t) = t$ $\int \frac{dh_{l+1}}{dh_l} = (W_h^{t-1})^\top$ (explode or vanish depending on the largest singular value) Tanh mapping: $\phi_h(t) = \tanh(t)$ $\phi_h'(t)\approx 0$ $\phi_h'(t) pprox 0$ -10 $\frac{dh_{l+1}}{dh_l}^{\mathsf{T}} = \phi_h'(W_h h_l + W_x x_{l+1} + b_h) \odot W_h$

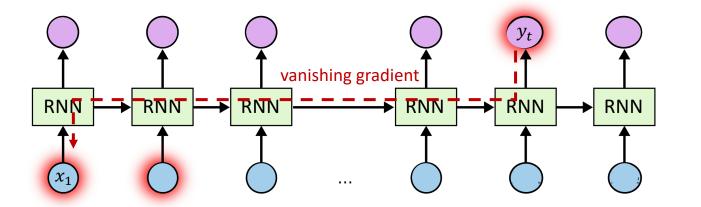
contain products of W_h and ϕ'_h for $t - \tau$ times

Depending on the non-linearity ϕ_h , when $t \to \infty$, $\prod_{l=1}^{t-1} \frac{dh_{l+1}}{dh_l}$ can vanish or explode!

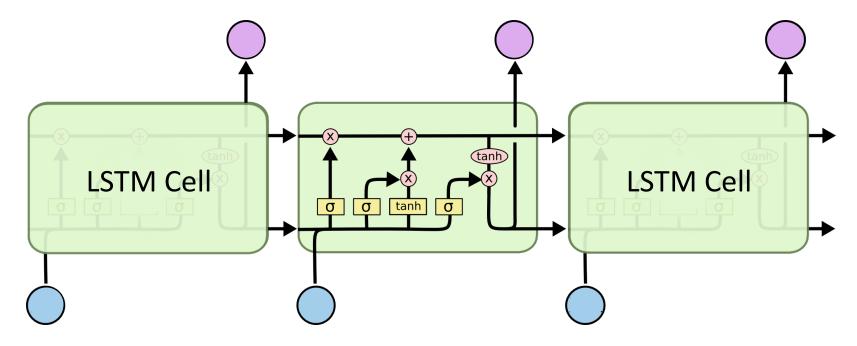
Issues of simple RNNs

• Consider gradient of loss w.r.t. W_h :

 $\Rightarrow \frac{dh_t}{dW_h} = \sum_{\tau=1}^t \left(\prod_{l=\tau}^{t-1} \frac{dh_{l+1}}{dh_l} \right) \frac{\partial h_{\tau}}{\partial W_h}, \qquad \frac{dh_{l+1}}{dh_l}^{\mathsf{T}} = \phi_h'(W_h h_l + W_x x_{l+1} + b_h) \odot W_h$ can vanish or explode (especially when $t \gg \tau$)

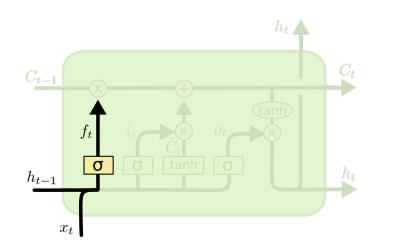


Dependency of y_t on x_1 gets harder to learn as t increases



Key ideas of LSTM:

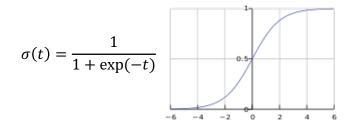
- Introduce cell state C_t
- Gating mechanisms to control cell state updates and output values

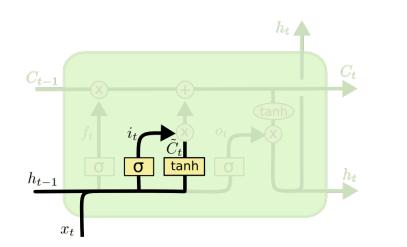


Forget gate f_t :

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$
concatenate

sigmoid activation function

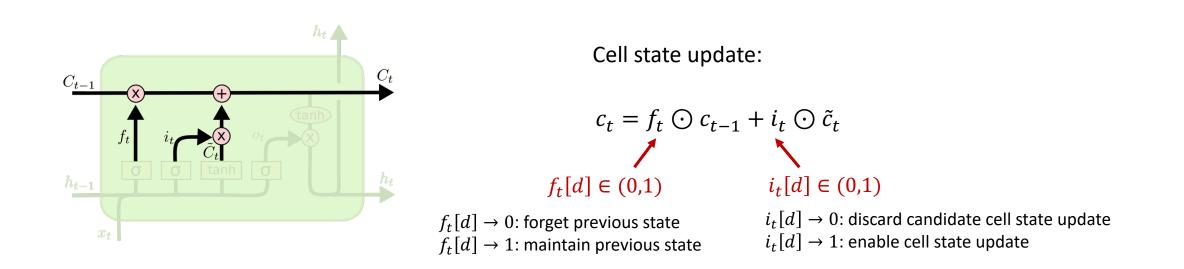


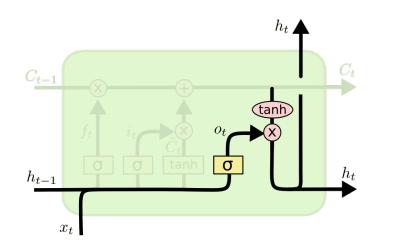


Input gate: i_t Candidate cell state update: \tilde{c}_t

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{c}_t = \tanh(W_c \cdot [h_{t-1}, x_t] + b_c)$$





Update the hidden state h_t with output gating o_t

$$o_{t} = \sigma(W_{o} \cdot [h_{t-1}, x_{t}] + b_{o})$$

$$h_{t} = o_{t} \odot \tanh(c_{t})$$

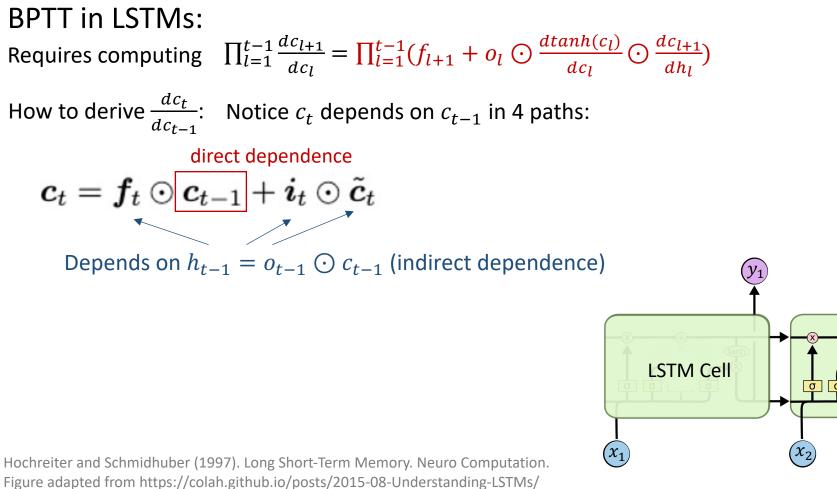
$$o_{t}[d] \in (0,1)$$

$$o_{t}[d] \rightarrow 0: \text{ zero output}$$

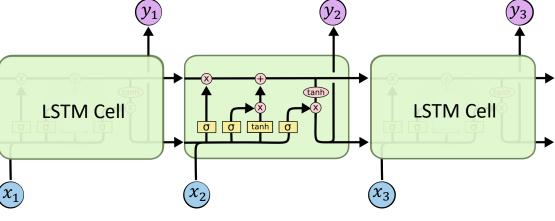
$$o_{t}[d] \rightarrow 1: \text{ output cell state (squashed in (-1, 1))}$$

Prediction of y_t can proceed in a similar way as in simple RNNs:

$$y_t = \phi_y(W_y h_t + b_y)$$



 $f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$ $i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$ $\tilde{c}_t = \tanh(W_c \cdot [h_{t-1}, x_t] + b_c)$ $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$ $o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$ $h_t = o_t \odot \tanh(c_t)$ $y_t = \phi_y(W_y h_t + b_y)$



BPTT in LSTMs: Requires computing $\prod_{l=1}^{t-1} \frac{dc_{l+1}}{dc_l} = \prod_{l=1}^{t-1} (f_{l+1} + o_l \odot \frac{dtanh(c_l)}{dc_l} \odot \frac{dc_{l+1}}{dh_l})$

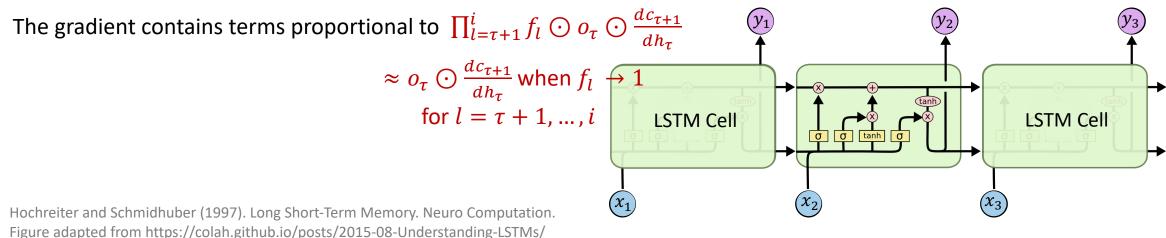
Alleviating gradient explosion:

The gradient contains terms proportional to $f_{i+1} \prod_{l=1}^{i-1} o_l \odot \frac{dc_{l+1}}{dh_l}$

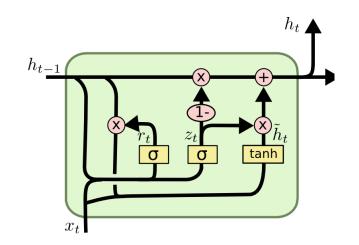
pprox 0 when $f_{i+1} pprox 0$

 $f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$ $i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$ $\tilde{c}_t = \tanh(W_c \cdot [h_{t-1}, x_t] + b_c)$ $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$ $o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$ $h_t = o_t \odot \tanh(c_t)$ $y_t = \phi_y(W_y h_t + b_y)$

Alleviating gradient vanishing:



Gated Recurrent Unit (GRU)



 $z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z)$ $r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r)$ $\tilde{h}_t = \tanh(W_h \cdot [r_t \odot h_{t-1}, x_t] + b_h)$ $h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t$

Cho et al. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. EMNLP 2014 Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

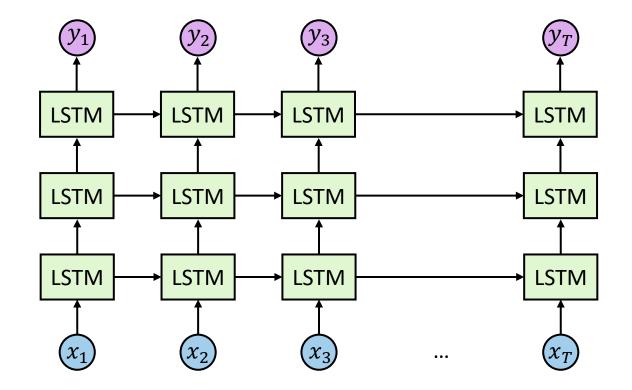
LSTM vs GRU

- Other gated RNN variants exists, but LSTM and GRU are the most widely-used
- GRU is quicker to compute and has fewer parameters
- No conclusive evidence for LSTM > GRU or vice versa
- LSTM is a good default choice (especially if your data has particularly long dependencies, or you have lots of training data)
- Switch to GRU if you want more efficient compute & less overfitting

Stacking LSTMs

Stacking multiple LSTM layers:

- Hidden states of the previous LSTM later as inputs to the next LSTM layer;
- No need to wait for previous LSTM layer to finish forward pass;



Bidirectional LSTMs

Bidirectional LSTM:

- Stacking some LSTM layers;
- For some LSTM layers, the forward pass is reversed from time t = T to t = 1;
- If two consecutive LSTM layers are of reversed time ordering, then the top layer needs to wait for the bottom one to finish forward pass.

