Recurrent Neural Networks

RNN basics
Yingzhen Li (yingzhen.li@imperial.ac.uk)

mailto:yingzhen.li@imperial.ac.uk

Sequential data is everywhere

HBO
NOW

HBO NOW

WATCH

ESFi

Video data Speech data

Financial time series data Climate science data (spatial-temporal)

Deep Learning - Yingzhen Li

Sequential data is everywhere

135

Time series prediction:

130

* Datasequence: (x4, ..., X7) "
* Xx;:dataframeattimet 120
e Goal: predict future values 15

(xl, ...,xT) = XT41) XT+2) - A

105

Deep Learning - Yingzhen Li

Sequential data is everywhere

Object tracking in videos:
* Datasequence: (x4, ..., X7)
* Xx;:video frame attime t
* Label sequence: (y4, ..., Y1)
* y;:object identifier, bounding box
coordinates, ... at time t
* Goal: learn a mapping

(x1; ---;xT) - (}’1, ""yT)

01. Usain Bolt ><

Deep Learning - Yingzhen Li 4

Sequential data is everywhere

Machine translation (e.g. EN to FR): how do | say "hello world" in french v Q

¢ Data Seq uencg X = (xl’) xT) Q Al [Images) Shopping [] Videos [News i More Settings Tools
« x,:the t™ word in the English sentence

« Output sequence: y = (yq, ..., V1)

About 2,660,000 results (0.71 seconds)

* y;:the I word in the French sentence I TEE ¢ =
* Goal:learn a mapping hello world X Bonjour le monde
Xy
0 ¢ © 0
Open in Google Translate Feedback

Deep learning’s solution: recurrent neural networks

Deep Learning - Yingzhen Li 5

Why Recurrent Neural Networks

Machine translation as a motivating example:

heureux nouveau année bonne année

I T
o)
I B T

happy new year happy new year

ignoring dependencies cannot handle inputs of varied lengths

Why Recurrent Neural Networks

Machine translation as a motivating example:

heureux nouveau année bonne année

A A A A

Desired network architecture:
1.Model dependences within the sequence
2.Can handle inputs/outputs of different lengths

happy new year happy new year

ignoring dependencies @ cannot handle inputs of varied lengths @

Deep Learning - Yingzhen Li 7

Simple RNNs

@ he = pp(Wrheoq + Wexe + by)
N ! ye = by (Wyh, + by)
hy RNN

¢y : activation function for recurrent state
¢,,: activation function for output

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Simple RNNs

Unrolling the RNN architecture through time:

@)

]

s

RNN

b

@
1

RNN

3
1

6

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN

5

G
1

RNN

b

Training RNNSs

Forward pass: Lot (0) = Xi=q1 L(ye), 0 = Wy, Wy, Wy, by, by}

L(y,)

RNN

hy
—

L(y,)

I

RNN

h,
—

L(ys)

I

RNN

L(yr)

RNN

he = op(Wyheq + Wiex; + bp)
Vi = ¢y(Wyhe + by)

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep Learning - Yingzhen Li

10

Training RNNSs

Backward pass: - Liocai (6) = Sy 2= L(¥e), 0 = {(Wy, Wy, Wy, by, by}

t=1 d9
L(y,) L(y,) L(ys) L(yr)
T hy T h, T hr_q
RNN —»| RNN —»| RNN » RNN

he = op(Wyheq + Wiex; + bp)
Vi = ¢y(Wyhe + by)

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep Learning - Yingzhen Li

Training RNNSs

d T d i _dL(yy) dy;
Backward pass: MLtotal — t:1ML(3’t) dWyL(y'f) T dy, dw,
L(y,) L(y,) L(ys) L(yr)

A B
o1 fl . fle

h
RNN —> RNN —»| RNN » RNN

hy = ¢p(Whphe_q + Wex, + bp)
Vi = ¢y(Wyhe + by)

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep Learning - Yingzhen Li

Training RNNSs

d
Backward pass: WLtotal = Yio1

X

L(y,)

|
i

RNN

he = ¢p(Whhe—q + Wyxy + by) l
Ve = ¢y(Wyht + by)

L(y,)

dWx L(y¢)
L(y3)

Ll

i

RNN

1l

dL(y) _ dL(y.) dy, dh;

dW, dy, dh,dW,
dh _ Oh Ohy dhey
aw, oW, 0Oh,_, dW,
total gradient partial gradient
L(yr)

dL(yr)
dyr

RNN

l

l

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep Learning - Yingzhen Li

dyr

s
—| RNN

l dhy

FI7A

13

Training RNNSs

Backward pass: dL

he = ¢p(Whhe—q + Wyxy + by)

Ve = ¢y(Wyht + by)

dL(y;) dL(y¢) dy, dh;

dw, dy, dh,dw,
dh; _ dh; N dh; dhy_4
aw, oW, = 0h,_, dW,
Wh Ltotal — ;1; 1dW L()’t) total gradient partial gradient
L(y,) L(y,) L(ys) L(yr)
dL(yr)
dyr
dh, dhs dhr
T dh; dh; dhr_, ‘N dyr
-— < dh
h’l h2 h’T—l '
RNN —» — » RNN

i gip

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep Learning - Yingzhen Li

Back-propagation
through time (BPTT)

14

Issues of simple RNNs

Consider gradient of loss w.r.t. Wy,:

L(y1) L(y2) L(y3) L(yr)

1 dL(yr)
dyr

dyr
Tl dhr
hT—l

RNN — RNN —>» RNN — | RNN

_ dhy _Zt: ﬁalh,+1 o,
aw, dh, | ow,,’

7=1 \l=71

dhr_,

Depending on W}, and the non-linearity ¢, whent — oo,]_[f;%

dL(y¢) _ dL(y) dy, dh;

dw, dy; dh;dW,
dhy Oh, . dh, dh,_,
aw, — owy = dh,_, dW,
oW, dh,_\OW, dh,_, dW, /)
dhi'
d;: = ¢ (Wphy + Wexi 1 + bp) O Wy,

N contain products of W, and ¢, fort — 7 times

dhyyq
dh;

can vanish or explode!

Deep Learning - Yingzhen Li 15

Issues of simple RNNs

Consider gradient of loss w.r.t. Wy,:

L(y1) L(y2) L(y3) L(yr)
é é é él -
dyr
T4<._;L. T!4___i_ e th
hy 2 hT—l

RNN — RNN —» RNN |—m RNN

6 & & o

Identity mapping: ¢, (t) =t
t—1

1=1
(explode or vanish depending on the largest singular value)

7=1 \l=71

Depending on the non-linearity ¢, when t — oo, Hf;l

_ dhy _Zt: ﬁalh,+1 o,
aw, dh, | ow,,’

(" Tanh mapping: ¢, (t) = tanh(t))
™S g0 ~ 0
Bh(®) ~ 0_ .
N
_ ¥ J
dhi'
d;ltl = ¢p(Wrhy + Wexp 1 + bp) © Wy

N contain products of W, and ¢, fort — 7 times

1 dhiyq
dh;

can vanish or explode!

Deep Learning - Yingzhen Li

Issues of simple RNNs

* Consider gradient of loss w.r.t. W, :

t ,t-1
dhe _ dhip) Ohe dhT
= dWy, B Z (11_[dh; | oWy’ dh, = ¢pp(Wphy + Wyxy g1 + bp) O Wy
T= =T

\ can vanish or explode (especially when t > 1)

O O O O(f?@

T 1 T _ T ian_iSh_inigfd_ientT 3 -7 T Dependency of y; on x; gets
RNF —> RNN = RNN > RNN—> RNN —»| RNN harder to learn as t increases

5 & 45 & &4

Deep Learning - Yingzhen Li 17

Long Short-Term Memory (LSTM)
O O O

A
a T\ a4 N\ T\
—»>—® ® > >
GEanh>
LSTM Cell T r’% LSTM Cell
REZETHUIN N
_, J o\ J

| |
O O O

Key ideas of LSTM:

* Introduce cell state C;
e Gating mechanisms to control cell state updates and output values

Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Neuro Computation.
Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep Learning - Yingzhen Li

18

Long Short-Term Memory (LSTM)

Forget gate f;:

fr = oWy - [he_q,] + by)

It
concatenate
hi—1 sigmoid activation function
Tt 1 /
ot) =—7—"—""F"7 0.51
©® 1+ exp(—t) ‘

Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Neuro Computation.
Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep Learning - Yingzhen Li

19

Long Short-Term Memory (LSTM)

Input gate: i;
Candidate cell state update: ¢;

ir = a(W; - [heoq, x¢] + by)
s ¢¢ = tanh(W; - [hy_q, x| + b)

Tt

Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Neuro Computation.
Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep Learning - Yingzhen Li

20

Long Short-Term Memory (LSTM)

Cell state update:

—® @ >
ftT itr-k ¢ =ft Oc1+i; O&
C. / N\
ftld] € (0,1) i[d] € (0,1)
f:[d] = 0: forget previous state i.[d] — 0: discard candidate cell state update
f.[d] = 1: maintain previous state i¢[d] — 1: enable cell state update

Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Neuro Computation.
Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep Learning - Yingzhen Li 21

Long Short-Term Memory (LSTM)

he M\ Update the hidden state h;
with output gating o,

) San> 0p = Wy - [he—q, x¢] + by)
® h; = o, © tanh(c;)
hi—1 hi
/ o.[d] — 0: zero output
N r o¢ld] € (0,1) o.[d] = 1: output cell state (squashed in (—1,1))

Prediction of y, can proceed in a similar way as in simple RNNs:

Ve = (py(Wyht + by)

Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Neuro Computation.
Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep Learning - Yingzhen Li 22

Long Short-Term Memory (LSTM)

fe = oW - [he_y, x¢] + by)

BPTT in LSTMs: i = oW - [he—y,xc] + b)
_ _ _q1dc _ dtanh(cy) dc ¢; = tanh(W, - [hy_1, x¢] + b)
Requires computing 127 ﬁ =2i(fisr + 0, © ac L0 d;:rll) ¢=f Oc1+i 06
de op = oW, - [he—q, x¢] + by)
How to derive —=: Notice ¢, depends on c,_ in 4 paths: hy = o, © tanh(c)
Ct—1 Ve = (py(vvyht + by)

direct dependence
ct = ft Oci—1|+ 1 © ¢t
T //v

Depends on hy_; = 0,1 © c;_4 (indirect dependence) @ @ @
t | |
)
X ©), >
Eanh>
LSTM Cell EL @ ® LSTM Cell
[o] [o]
>
| T
Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Neuro Computation. @ @ @

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/
Deep Learning - Yingzhen Li 23

Long Short-Term Memory (LSTM)

BPTT in LSTMs:

—14C141 t—1 dtanh(cl) dcCryq
Requires computing [[5Z3 ac, = [[;21(fiz1 + 0, O ac ©, dh)

Alleviating gradient explosion:
dCl+1

The gradient contains terms proportional to f;, 4 H 0; ©
~ 0when f;,, = O
Alleviating gradient vanishing:

M . . . d
The gradient contains terms proportional to [[j_,.; f; © 0, © C‘;lﬂ
T

fe = oW - [he_y, x¢] + by)
i =o(W; - [he—q,x¢] + by)
¢ = tanh(W, - [he—y, x] + b.)
=t Oc1 i OC
or = oWy - [he—q, x] + by)
h; = o; O tanh(c;)
Ve = (py(Wyht + by)

@ ®
T

dc
~ 0, O d:’l when f; 1

Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Neuro Computation. @
Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/
Deep Learning - Yingzhen Li

forl=1t+1,..,1i LSTM Cell ﬁ]dﬁ LSTM Cell
>
I

|
® &

24

Gated Recurrent Unit (GRU)

zy = o(W, - [he—q, x¢] + by)

M~ re = o(Ws - [he—1, %] + by)
Tt 2t hy ~
hy = tanh(Wj, - [1e O he_q, x¢] + by)

J
- J he=0—-2) QOhey +2, Ohy

Cho et al. Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation. EMNLP 2014

Figure adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/
Deep Learning - Yingzhen Li

25

LSTM vs GRU

* Other gated RNN variants exists, but LSTM and GRU are the most
widely-used

* GRU is quicker to compute and has fewer parameters
* No conclusive evidence for LSTM > GRU or vice versa

e LSTM is a good default choice (especially if your data has particularly
long dependencies, or you have lots of training data)

e Switch to GRU if you want more efficient compute & less overfitting

Stacking LSTMs

Stacking multiple LSTM layers:

* Hidden states of the previous LSTM later
as inputs to the next LSTM layer;

* No need to wait for previous LSTM layer
to finish forward pass;

\ 4

LSTM —{ LSTM [—>{ LSTM
LSTM —{ LSTM [——>{ LSTM
LSTM —{ LSTM [—>{ LSTM

\ 4

A 4

Bidirectional LSTMSs

Bidirectional LSTM:

Stacking some LSTM layers;

For some LSTM layers, the forward pass is
reversed fromtimet=T tot = 1;

If two consecutive LSTM layers are of
reversed time ordering, then the top layer
needs to wait for the bottom one to finish
forward pass.

?

LSTM

D
T

?

LSTM

\ 4

?

A

LSTM

A

\ 4

LSTM

\ 4

LSTM » LSTM
LSTM [« LSTM
LSTM » LSTM

A

LSTM

A

© © ©

A 4

LSTM

®

