
Lecture notes on variational auto-encoders (VAEs)

1.1 Prerequisites

Divergence minimisation

Given a set of probability distributions P on a random variable X, a divergence is defined as a
function D[·||·] : P × P → R such that D[P ||Q] ≥ 0 for all P,Q ∈ P, and D[P ||Q] = 0 iff. P = Q.

The definition of divergence is much weaker than that for a distance such as the ℓ2-norm, since it
does not need to satisfy either symmetry in arguments or the triangle inequality. There exist many
available divergences to use, some of them will be introduced throughout this course.

In this course we assume the probability distributions/measures in P are dominated by the
Lebesgue measure of the underlying Eucledean space, so that we can work with probability density
functions (PDFs)

p(x) =
dP

dx
,∀P ∈ P. (1)

In the following we will also write P as the set of PDFs w.l.o.g., and use the terms probability
distribution and probability density functions interchangeably (unless specifically mentioned).

Probabilistic graphical models

In machine learning tasks we may define the model as a distribution on a set of random variables with
particular dependency structures. Some of the variables might be unobserved as well. Probabilistic
graphical models are powerful models that use graphs to describe the dependency structure of the
random variables. In particular we consider direct acyclic graphs (DAGs) which are graphs with
directed edges and without directed cycles. By assuming Markov properties, DAGs can be used
to describe the factorisation structure of the joint distribution. Interested readers are referred to
e.g. Chapter 8 of Bishop [2007] for a formal introduction of probabilistic graphical models. For
this course we only introduce the principles for reading joint distributions from a DAG (and vice
versa). Assuming we are interested in the distribution p(x1, ...,xD) for a given DAG with nodes
{x1, ...,xD} and directed edges between them, then the joint distribution is:

p(x1, ...,xD) =

D∏
i=1

p(xi|pa(xi)), (2)

where pa(xi) ⊂ {x1, ...,xD} represents the parent nodes of xi in the DAG. For a DAG there always
exists root node(s) that have no parents (i.e. pa(xi) = ∅), and in such case p(xi|pa(xi)) = p(xi).
Conversely, given a joint distribution in the form of (2), we can also draw the corresponding DAG
by adding arrows from nodes in pa(xi) to xi. A number of examples are visualised in Figure 1.

Figure 1: Examples of probabilistic graphical models: graphs & the corresponding factorisations of
the joint distributions. Shaded nodes represent observed variables and the other nodes represent
unobserved/latent variables. Example (a) corresponds to the latent variable model used in VAEs
& GANs, and example (b) corresponds to to the latent variable model used in conditional VAEs &
GANs where y represents additional information that the generative model is conditioned on.

1

Jensen’s inequality

Below we introduce Jensen’s inequality as a prerequisite for later discussions on divergences.

Proposition 1. (Jensen’s inequality) If f : R → R is a convex function, then for any distribution
p(x),

Ep(x)[f(x)] ≥ f(Ep(x)[x]),

with equality holds iff. f is linear or p(x) is a delta measure.

A visual proof is provided in the below figures.

(a) for discrete distributions (b) for continuous distributions

Jensen’s inequality can be generalised to functions formed by compositions of functions. To see
this, we first introduce the law of the unconscious statisticians (LOTUS) rule:

Proposition 2. (LOTUS) Given a distribution pX(x) and a function y = g(x) such that EpX(x)[g(x)] <
+∞, the random variable Y = g(X) has its distribution pY (y) satisfying EpY (y)[y] = EpX(x)[g(x)].

Then a generalised version of Jensen’s inequality reads as follows.

Proposition 3. (Generalised Jensen’s inequality) If a function g(x) maps inputs to scalar outputs
in R and f : R → R is a convex function, then for any distribution pX(x),

EpX(x)[f(g(x))] ≥ f(EpX(x)[g(x)]),

with equality holds iff. f is linear or pX(x) is a delta measure.

Proof.
EpX(x)[f(g(x))] = EpY (y)[f(y)] (LOTUS applied to y = g(x))

≥ f [EpY (y)[y]] (Jensen’s inequality)

= f(EpX(x)[g(x)]). (LOTUS applied to y = g(x))

Kullback-Leibler (KL) divergence

Kullback-Leibler divergence [Kullback and Leibler, 1951; Kullback, 1959], or KL divergence, is ar-
guably one of the most widely used divergence measures in machine learning, statistics, and infor-
mation theory.

Definition 1. (Kullback-Leibler Divergence) The Kullback-Leibler (KL) divergence on P is defined
as a function KL[·||·] : P × P → R with the following form

KL[p||q] =
∫

p(x) log
p(x)

q(x)
dx, p, q ∈ P, (3)

where log is the natural logarithm (to base e).

2

One can easily check that indeed the above definition is a valid divergence: define f(x) = − log x
(which is convex) and g(x) = q(x)/p(x), we have

KL[p||q] = Ep(x)[− log g(x)]

≥ − logEp(x)[g(x)] (Jensen’s inequality)

= − log

∫
p(x)

q(x)

p(x)
dx = − log 1 = 0,

and the equality holds iff. p(x) = q(x).1 This means one can minimise the KL divergence in
order to fit a distribution to a target one. Also notice that the KL divergence is asymmetric,
i.e. KL[p||q] ̸= KL[q||p] in general.

Maximum likelihood estimation (MLE)

Given a dataset {(xn)}Nn=1 ∼ pdata(x), we would like to fit to it a generative model pθ(x) with
parameter θ. Since the KL divergence can be used to measure the closeness of the model to the
underlying data distribution, it makes sense to find the optimal parameters by minimising the KL
divergence:

θ∗ = argminKL[pdata(x)||pθ(x)]. (4)

Expanding the above objective and re-arranging terms, we have

KL[pdata(x)||pθ(x)] = Epdata(x)[log pdata(x)]︸ ︷︷ ︸
constant w.r.t. θ

−Epdata(x)[log pθ(x)].︸ ︷︷ ︸
dependent on θ

This means we can ignore the constant terms w.r.t. θ and instead work with the following maximum
likelihood objective:

θ∗ = argmaxEpdata(x)[log pθ(x)]. (5)

The obtained optimal parameters θ∗ is called the maximum likelihood estimate (MLE) of the pa-
rameters. In practice the data distribution is approximated by the empirical distribution on the
dataset {xn}Nn=1 ∼ pdata(x), leading to

θ∗ = argmax
1

N

N∑
n=1

log pθ(xn). (6)

1.2 Variational inference

We are interested in fitting the following latent variable model (LVM) to the data:

pθ(x) =

∫
pθ(x|z)p(z)dz. (7)

See Figure 1 (a) for a visualisation of the graphical model. In deep generative modelling context,
this LVM is often constructed as (for continuous data)

p(z) = N (z;0, I), pθ(x|z) = N (x;Gθ(z), σ
2I), (8)

with Gθ(·) define as a neural network transform that is parameterised by weights θ. For discrete
variables pθ(x|z) is usually defined as a categorical distribution with a neural network generator in
use accordingly. Now to fit pθ(x) to pdata(x) we optimise the MLE objective (5) w.r.t. θ, which
involves computing the integral (7). This is intractable as it involves computing the non-linear
transformation Gθ(z) for every single configuration of z within the support of the Gaussian prior
p(z), which is the full space z ∈ Rd.

1Technically speaking: p(x) = q(x) almost everywhere.

3

Variational inference provides a variational lower-bound of log pθ(x) as an approximation to it.
For any distribution q(z) satisfying q(z) > 0 whenever pθ(z|x) > 0, we have

log pθ(x) = log

∫
pθ(x|z)p(z)dz

= log

∫
q(z)

pθ(x|z)p(z)
q(z)

dz

≥
∫

q(z) log
pθ(x|z)p(z)

q(z)
dz (Jensen’s inequality)

= Eq(z)[log pθ(x|z)]−KL[q(z)||p(z)] := L(x, q,θ).

(9)

With suitable choice of q(z) and tricks that will be introduced later, this varitational lower-bound
can be used as a tractable approximation to the marginal log-likelihood log pθ(x).

The choice of the q(z) distribution is crucial to the quality of the approximation (or the tightness
of the lower-bound). To see this, note that

pθ(z|x) =
pθ(x|z)p(z)

pθ(x)
, (Bayes’ rule) (10)

log pθ(x)−KL[q(z)||pθ(z|x)] = log pθ(x)− Eq(z)

[
log

q(z)

pθ(z|x)

]
= log pθ(x) + Eq(z)

[
log

pθ(x|z)p(z)
q(z)pθ(x)

]
(Bayes’ rule)

= Eq(z)[log pθ(x|z)]−KL[q(z)||p(z)] = L(x, q,θ).

(11)

This means the gap (or the approximation error) between the variational lower-bound L(x, q,θ) and
the marginal log-likelihood log pθ(x) is the KL divergence KL[q(z)||pθ(z|x)]. Therefore the lower-
bound improves as q(z) approaches to the exact posterior pθ(z|x). It also motivates the optimisation
of the variational lower-bound w.r.t. the q distribution to obtain an approxiate posterior: since
log pθ(x) is constant w.r.t. q, maximising L(x, q,θ) is equivalent to minimising KL[q(z)||pθ(z|x)].

1.3 Variational auto-encoders

As discussed so far, we wish to fit the generative model (7) to the data by maximum likelihood (5),
and variational inference provides a useful approximation L(x, q,θ) ≤ log pθ(x) for a given datum
x. Since this approximation is required for every datapoint in {xn}Nn=1, having N separated q
distributions q1(z1), ..., qN (zn) to pair with x1, ...,xN can be memory inefficient. However, notice
that the exact posterior pθ(z|x) depends on the input x, and the variational lower-bound is tight
when qn(zn) ≈ pθ(zn|xn). This motivates the variational auto-encoder (VAE) approach [Kingma
and Welling, 2014; Rezende et al., 2014] which defines the q distribution as q(z) := qϕ(z|x), with
the distribution often defined by a neural network:

qϕ(z|x) = N (z;µϕ(x), diag(σ
2
ϕ(x))), µϕ(x), log σϕ(x) = NNϕ(x). (12)

This allows us to define the VAE optimisation objective:

ϕ∗,θ∗ = argmaxL(ϕ,θ), L(ϕ,θ) = Epdata(x)[Eqϕ(z|x)[log pθ(x|z)]−KL[qϕ(z|x)||p(z)]︸ ︷︷ ︸
:=L(x,ϕ,θ)

]. (13)

Analytic KL between factorised Gaussians

Given that both qϕ(z|x) and p(z) are all factorised Gaussian distributions, the KL divergence term
in (13) has an analytic form (assuming z ∈ Rd):

KL[qϕ(z|x)||p(z)] =
1

2

(
||µϕ(x)||22 + ||σϕ(x)||22 − 2⟨logσϕ(x),1⟩ − d

)
. (14)

4

To see this, let us assume two factorised distributions p(z) =
∏d

i=1 p(zi) and q(z) =
∏d

i=1 q(zi).
Then the KL divergence from q to p can be written as a sum of KL divergences:

KL[q(z)||p(z)] = Eq(z)

[
log

∏d
i=1 q(zi)∏d
i=1 p(zi)

]
= Eq(z)

[
d∑

i=1

log
q(zi)

p(zi)

]

=

d∑
i=1

Eq(zi)

[
log

q(zi)

p(zi)

]
=

d∑
i=1

KL[q(zi)||p(zi)].

(15)

Then, assuming each q(zi) and p(zi) distributions are Gaussians: q(zi) = N (zi;µi, σ
2
i), p(zi) =

N (zi; 0, 1), we have the KL divergence as:

KL[q(zi)||p(zi)] = Eq(zi)

log 1√
2πσ2

i

exp[− 1
2σ2

i
(zi − µi)

2]

1√
2π

exp[− 1
2z

2
i]


= Eq(zi)

[
− log σi −

1

2σ2
i

(zi − µi)
2 +

1

2
z2i

]
= − log σi −

1

2σ2
i

Eq(zi)

[
(zi − µi)

2
]
+

1

2
Eq(zi)

[
(zi − µi)

2 − µ2
i + 2µizi

]
= − log σi −

1

2
+

1

2
[σ2

i + µ2
i].

(16)

Writing µϕ(x) = [µ1, ..., µd], σϕ(x) = [σ1, ..., σd], we can sum up the KL divergence (16) over
i = 1, ..., d and write the resulting KL[q(z)||p(z)] as (14). This is done by noticing e.g. ||µϕ(x)||22 =∑d

i=1 µ
2
i and

∑d
i=1 log σi = ⟨logσϕ(x),1⟩.

Monte Carlo estimation

The VAE objective L(ϕ,θ) in (13) is still intractable since the expectation computation Eqϕ [·]
requires evaluating neural network transformations for all possible z. Monte Carlo (MC) estimation
comes into rescue, as we can replace the expectation with MC approximations:

Eqϕ(z|x)[log pθ(x|z)] ≈ log pθ(x|z), z ∼ qϕ(z|x). (17)

By doing so, the gradient of the objective w.r.t. θ can be estimated as

∇θL(x,ϕ,θ) ≈ ∇θ log pθ(x|z), z ∼ qϕ(z|x). (18)

It remains to compute the gradient of the objective w.r.t. ϕ

∇ϕL(x,ϕ,θ) ≈ ∇ϕEqϕ(z|x)[log pθ(x|z)]−∇ϕKL[qϕ(z|x)||p(z)]. (19)

While the gradient w.r.t. the KL term tractable (by differentiate eq. (14) w.r.t. ϕ), MC approxima-
tion is still required for the first term in (19).

Reparameterisation trick 2

The MC approximation to ∇ϕEqϕ(z|x)[log pθ(x|z)] is further assisted by the reparameterisation trick
[Kingma and Welling, 2014; Rezende et al., 2014]. Note that the sampling procedure of a Gaussian
variable is the following:

z ∼ qϕ(z|x) ⇔ z = µϕ + σϕ ⊙ ϵ, ϵ ∼ N (ϵ;0, I), (20)

2Please note that the reparameterisation trick is not the only method to enable MC estimation of VAE gradients
w.r.t. ϕ even when we use Gaussian q distributions. *If interested, see e.g., Section 2.2.3 of this note.

5

http://yingzhenli.net/home/pdf/topics_approx_infer.pdf

with ⊙ denoting element-wise product. Writing π(ϵ) := N (ϵ;0, I) and Tϕ(x, ϵ) := µϕ +σϕ ⊙ ϵ, we
have, by LOTUS,

Eqϕ(z|x)[log pθ(x|z)] = Eπ(ϵ)[log pθ(x|Tϕ(x, ϵ))], (21)

∇ϕEqϕ(z|x)[log pθ(x|z)] = Eπ(ϵ)[∇ϕ log pθ(x|Tϕ(x, ϵ))] = Eπ(ϵ)[∇ϕz∇z log pθ(x|z)|z=Tϕ(x,ϵ)].
(22)

Then with MC estimation:

Eπ(ϵ)[∇ϕ log pθ(x|Tϕ(x, ϵ))] ≈ ∇ϕz∇z log pθ(x|z)|z=Tϕ(x,ϵ), ϵ ∼ π(ϵ). (23)

Combined with eq. (18) and mini-batch training, one can compute an MC estimation of the VAE
objective (13) as

L(ϕ,θ) ≈ 1

M

M∑
m=1

log pθ(xm|Tϕ(xm, ϵm))−KL[qϕ(zm|xm)||p(zm)],

x1, ...,xm ∼ {xn}M , ϵ1, ..., ϵM ∼ N (0, I),

(24)

and apply e.g. automatic differentiation to obtain the (MC estimation of) gradient of the VAE
objective w.r.t. parameters θ and ϕ.

1.4 Conditional VAE

For conditional generative models, the goal is to generate data (e.g. images) conditioned on additional
information. Such additional information can be class labels (which is discrete) or the viewing angle
for the image (which is continuous). Mathematically, this corresponds to learning a generative model
pθ(x|y) which approximates the data distribution pdata(x|y). Here x is the random variable for data
(e.g. images) and y is the random variable corresponding to the additional information (e.g. label
or viewing angle).

For the design of the generative model pθ(x|y), we use a conditional LVM as follows:

pθ(x|y) =
∫

pθ(x|z,y)p(z)dz, (25)

See Figure 1 (b) for a visualisation of the graphical model. Often we set p(z) = N (z;0, I). If x is
continuous, then we can define e.g.

pθ(x|z,y) = N (x;Gθ(z,y), σ
2I), (26)

with Gθ(z,y) defined by a neural network that takes both z and y as inputs. Similar to VAEs,
learning is done by maximising a variational lower-bound:

ϕ∗,θ∗ = argmaxL(ϕ,θ), L(ϕ,θ) = Epdata(x,y)[Eqϕ(z|x,y)[log pθ(x|z,y)]−KL[qϕ(z|x,y)||p(z)]],
(27)

Epdata(x,y)[log pθ(x|y)] ≥ L(ϕ,θ). (28)

Although in principle the choice of the q distribution is flexible (since the variational lower-bound
holds for almost any q distribution satisfying mild conditions, see Section 1.2), using qϕ(z|x,y)
and parameterising it with flexible neural networks would return the best posterior approximation.
Using Bayes’ rule

pθ(z|x,y) =
pθ(x|z,y)p(z)

pθ(x|y)
, (29)

6

we can show that maximising variational lower-bound w.r.t. q is also equivalent to minimising the
KL divergence KL[qϕ(z|x,y)||pθ(z|x,y)]:

log pθ(x|y)−
(
Eqϕ(z|x,y)[log pθ(x|z,y)]−KL[qϕ(z|x,y)||p(z)]

)
=Eqϕ(z|x,y)

[
log

pθ(x|y)qϕ(z|x,y)
pθ(x|z,y)p(z)

]
=Eqϕ(z|x,y)

[
log

qϕ(z|x,y)
pθ(z|x,y)

]
= KL[qϕ(z|x,y)||pθ(z|x,y)].

(30)

Therefore if we were to replace qϕ(z|x,y) with qϕ(z|x), then the optimal solution does not return
the exact posterior approximation, unless the learned generator is degenerate: Gθ(z,y) = Gθ(z).
In such case the y information is ignored (i.e. pθ(x|z,y) = pθ(x|z)) and the model is no longer a
conditional generative model.

1.5 *Practical interpretations & KL annealing

Comparisons with auto-encoders

Looking at the likelihood part of the VAE objective (13), under Gaussian likelihood assumption we
have (by using the reparam. trick)

Eqϕ(z|x)[log pθ(x|z)] = Ep(ϵ)

[
− 1

2σ2
||x−Gθ(Tϕ(x, ϵ))||22

]
+ const. (31)

On the other hand, an auto-encoder contains a pair of encoder Eϕ(·) and decoder Dθ(·) which are
trained using e.g. ℓ2 reconstruction loss:

min
θ,ϕ

Epdata(x)[||x−Dθ(Eϕ(x))||22]. (32)

Comparing the reconstruction loss of the auto-encoder training objective to (31), we see that VAEs
can be viewed from a viewpoint of stochastic auto-encoder. Architecture-wise, the main difference is
the usage of stochastic encoder Tϕ(x, ϵ) that injects random noise ϵ to the encoding of x. Training
objective-wise, the VAE objective has the extra KL[qϕ(z|x)||p(z)] term which regularises the q
distribution towards the prior p(z). When p(z) is non-degenerate (e.g. p(z) = N (z;0, I)) the
resulting qϕ(z|x) at optimum is non-degenerate as well, i.e. σϕ(x) > 0.

KL annealing

Practitioners sometimes find that training VAEs with the original variational lower-bound objective
(13) leads to under-fitting issues, in such case often the reconstructed images using the model are
blurry. A practical strategy to alleviate this is to introduce a “KL annealing” coefficient β and
optimise the θ,ϕ parameters using the following objective:

ϕ∗,θ∗ = argmaxL(ϕ,θ, β), L(ϕ,θ, β) = Epdata(x)[Eqϕ(z|x)[log pθ(x|z)]− βKL[qϕ(z|x)||p(z)]︸ ︷︷ ︸
:=L(x,ϕ,θ,β)

].

(33)
If using 0 < β < 1, this objective introduces less regularisation for the qϕ(z|x) to be close to the
prior p(z). In particular when β = 0, it results in a stochastic auto-encoder which is trained by the
reconstruction loss only. Since stochasticity in z naturally degrades the quality of reconstruction,
training with reconstruction loss only will drive ϕ towards making σϕ(x) → 0 for any x, which also
means qϕ(z|x) → δ(z = µϕ(x)). In such case the resulting model is simply an auto-encoder which
cannot be used directly as a generative model for new images.

We should also emphasise that for β < 1, L(x,ϕ,θ, β) is no longer a lower-bound for log pθ(x),
and the training objective (33) cannot be well justified using (approximate) MLE for learning pθ(x) ≈

7

pdata(x). In fact for small β the learned generative distribution pθ(x) =
∫
pθ(x|z)p(z)dz can be

very different from pdata(x), again explaining why generation quality can be worse when using
such small β values. Therefore β needs to be carefully chosen to achieve the trade of between good
reconstruction & good generation. Another strategy is to use different βt values for different training
epochs t = 0, ..., T ; a recommended recipe is to select increasing values 0 ≤ β1 ≤ ... ≤ βT .

Sometimes β > 1 values are also used but for a different purpose. Although there is no theoretical
guarantee, existing research shows that empirically, with factorised prior p(z) and β > 1, one can
train a VAE to obtain a disentangled representation, so that controlled generation can be achieved
by varying different dimensions of the z variable [Higgins et al., 2017].

References

Bishop, C. M. (2007). Pattern Recognition and Machine Learning. Springer.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner,
A. (2017). beta-vae: Learning basic visual concepts with a constrained variational framework. In
International Conference on Learning Representations.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational Bayes. In International Conference
on Learning Representations.

Kullback, S. (1959). Information theory and statistics. John Wiley & Sons.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals of mathematical
statistics, 22(1):79–86.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approxi-
mate inference in deep generative models. In Proceedings of the 31st International Conference on
Machine Learning, pages 1278–1286.

8

	Prerequisites
	Variational inference
	Variational auto-encoders
	Conditional VAE
	*Practical interpretations & KL annealing

