MML lecture extra notes, Nov 19, 2021

Further discussions on finding stationary points for PCA's Lagrangian

The constrained optimisation problem for PCA (from the maximum variance perspective) is:

$$\min_{\{\mathbf{b}_1,\dots,\mathbf{b}_M\}} - \sum_{m=1}^M \mathbf{b}_m^\top \mathbf{S} \mathbf{b}_m,$$
subject to $||\mathbf{b}_m||_2^2 = 1, \ m = 1, \dots, M$
 $\mathbf{b}_i \perp \mathbf{b}_i, \quad \forall i \neq j.$
(1)

The corresponding Lagrangian is:

$$L(\{\mathbf{b}_{m}\},\{\lambda_{m}\},\{\gamma_{ij}\}) = -\sum_{m=1}^{M} \mathbf{b}_{m}^{\top} \mathbf{S} \mathbf{b}_{m} + \sum_{m=1}^{M} \lambda_{m}(||\mathbf{b}_{m}||_{2}^{2} - 1) + \sum_{i < j} \gamma_{ij} \mathbf{b}_{i}^{\top} \mathbf{b}_{j}.$$
 (2)

To find the minimum of the constrained optimisation problem we need to find the stationary points for L first, i.e. we need to find $\{\mathbf{b}_m\}, \{\lambda_m\}, \{\gamma_{ij}\}$ to satisfy both the stationarity and primal feasibility conditions:

- stationarity: $\nabla_{\mathbf{b}_m} L(\{\mathbf{b}_m\}, \{\lambda_m\}, \{\gamma_{ij}\}) = \mathbf{0}, m = 1, ..., M;$
- primal feasibility: $||\mathbf{b}_m||_2^2 = 1, m = 1, ..., M, \mathbf{b}_i \perp \mathbf{b}_j, \forall i \neq j.$

In the lecture, when we find the solutions for $\{\mathbf{b}_m\}$ to satisfy the stationarity condition

$$\nabla_{\mathbf{b}_m} L(\{\mathbf{b}_m\}, \{\lambda_m\}, \{\gamma_{ij}\}) = -2\mathbf{S}\mathbf{b}_m + 2\lambda_m \mathbf{b}_m + \sum_{i < m} \gamma_{im} \mathbf{b}_i + \sum_{j > m} \gamma_{mj} \mathbf{b}_j = \mathbf{0},$$
(3)

we make use of the primal feasibility condition and left-multiply the gradient with \mathbf{b}_j (for some $j \neq m$) to obtain a new condition for \mathbf{b}_m :

$$-\mathbf{b}_m^{\top}(\mathbf{S}\mathbf{b}_m - \lambda_m \mathbf{b}_m) = 0.$$
⁽⁴⁾

As primal feasibility also requires $||\mathbf{b}_m||_2^2 = 1$, we concluded that a solution of this stationarity condition would be to set $(\mathbf{b}_m, \lambda_m) = (\mathbf{q}_d, \Lambda_{dd})$ for one of the eigenvector-eigenvalue pair of $\mathbf{S} = \mathbf{Q}\Lambda\mathbf{Q}^{\top}$. In such case we can also set $\gamma_{ij} = 0$ and this will ensure $\nabla_{\mathbf{b}_m} L(\{\mathbf{b}_m\}, \{\lambda_m\}, \{\gamma_{ij}\}) = 0$.

Here we justify why eigenvectors are the only possible solutions for \mathbf{b}_m when concerning the stationarity and primal feasibility conditions. The reduced condition (4) only requires the two vectors \mathbf{b}_m and $\mathbf{Sb}_m - \lambda_m \mathbf{b}_m$ to have inner product zero, which does not necessarily require $\mathbf{Sb}_m - \lambda_m \mathbf{b}_m = \mathbf{0}$. Indeed, by representing \mathbf{b}_m using the orthonormal basis \mathbf{Q} (i.e. $\mathbf{b}_m = \sum_{d=1}^D \beta_{md} q_d$ for some coordinates $\{\beta_{md}\}$), one can show that (recall that $||\mathbf{b}_m||_2^2 = 1$ means $\sum_{d=1}^D \beta_{md}^2 = 1$)

$$-\mathbf{b}_{m}^{\top}(\mathbf{S}\mathbf{b}_{m}-\lambda_{m}\mathbf{b}_{m})=\sum_{d=1}^{D}\beta_{md}^{2}(\Lambda_{dd}-\lambda_{m})=0 \quad \Rightarrow \quad \lambda_{m}=\sum_{d=1}^{D}\beta_{md}^{2}\Lambda_{dd}.$$
(5)

In other words, if we have $M \ll D$, e.g. M = 2, D = 50, one can still design $\mathbf{b}_1 = \sum_{d=1}^2 \beta_{1d} q_d$ and $\mathbf{b}_2 = \sum_{d=3}^4 \beta_{2d} q_d$ and the corresponding λ_1, λ_2 to satisfy condition (4) and primal feasibility. However, notice that $\mathbf{Sb}_m - \lambda_m \mathbf{b}_m = \sum_{d=1}^D \beta_{md} (\Lambda_{dd} - \lambda_m) q_d$ which means the designed $\mathbf{b}_1 \in span\{q_1, q_2\}$ and $\mathbf{b}_2 \in span\{q_3, q_4\}$. This also means for any value of γ_{ij} , we can show that $\nabla_{\mathbf{b}_1} L \neq 0$ and $\nabla_{\mathbf{b}_2} L \neq 0$ (see eq. (3)), as \mathbf{b}_2 is perpendicular to $\mathbf{Sb}_1 - \lambda_1 \mathbf{b}_1$ when $\mathbf{Sb}_1 - \lambda_1 \mathbf{b}_1 \neq \mathbf{0}$, and vice versa. Therefore the only way to satisfy both the stationarity and primal feasibility conditions is to make $\mathbf{Sb}_m - \lambda_m \mathbf{b}_m = \mathbf{0}$ which returns eigenvectors as solutions.