Gradient Descent

Yingzhen Li

Department of Computing
Imperial College London

October 26, 2021

Ya@liyzhen2
yingzhen.li@imperial.ac.uk


yingzhen.li@imperial.ac.uk

Reading for this week

Read MML book: Sections 4.1 - 4.4, 7.1, Chapter 9 up t0 9.2.3
Do MML book exercises: Exercises 4.1 - 4.7
An extra exercise will be uploaded to course materials.
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Optimisation Problems

Polynomial of degree 5

O Data
——— Maximum likelihood estimate

-5 0 5
X

Remember our problem:
» Find a curve that predicts well even for unseen inputs
» Start by minimising loss on training points:
L(8) = D (f(xn; ) — yn)?
n
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Formulating optimisation problems

» Define objective function L : RP — R

» Unconstrained minimisation, state which variable you want to

optimise over

0* = argmin L(0) (2)
0
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Gradient-based optimisation

How do we solve optimisation? We need an algorithm.
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Gradient-based optimisation

How do we solve optimisation? We need an algorithm.
Gradient-based optimisation is a class of methods which all
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Gradient-based optimisation

How do we solve optimisation? We need an algorithm.
Gradient-based optimisation is a class of methods which all

» Pick some starting point 6.
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Gradient-based optimisation

How do we solve optimisation? We need an algorithm.
Gradient-based optimisation is a class of methods which all

» Pick some starting point 6.

» Iteratively update the parameters, resulting in a sequence of
solutions 64, ..., 07.
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Gradient-based optimisation

How do we solve optimisation? We need an algorithm.
Gradient-based optimisation is a class of methods which all

» Pick some starting point 6.

» Iteratively update the parameters, resulting in a sequence of
solutions 64, ..., 07.

» Choose the update of the parameter by computing the gradient
VoL(6;).
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Gradient-based optimisation

How do we solve optimisation? We need an algorithm.
Gradient-based optimisation is a class of methods which all

» Pick some starting point 6.

» Iteratively update the parameters, resulting in a sequence of
solutions 64, ..., 07.

» Choose the update of the parameter by computing the gradient
VoL(6;).

» Usually a stopping criterion (e.g. iteration budget, time budget,
gradient size, ...)
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Gradient descent

Algorithm: Gradient Descent

Define starting point 6y, sequence of step sizes y;, set t < 0.
1. Set 0,1 = 0; — 11 VoL(6;), t — t+1
2. Repeat 1 until stopping criterion.

—15

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021



Gradient descent for linear regression

Fitting linear regression models:
» Dataset: D = {X,y},
X = [x1,...,xn]" € RN*D,
y = [y1, - yn]" e RV
» Goal: find 6 € RP*! such that

y ~ X6
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Gradient descent for linear regression

A typical linear regression model:
» x € RP*1: input features; y € R: output value

» Model and loss:

f(x,0) =x"0, y=f(x,0)+¢ e~N(,)

L(8) = 55 (0, 0) — i )?
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Gradient descent for linear regression

A typical linear regression model:
» x € RP*1: input features; y € R: output value

» Model and loss:

f(x,0) =x"0, y=f(x,0)+¢ e~N(,)

L(8) = 55 (0, 0) — i )?

» Rewriting the loss in matrix form:

1
L(6) = FHY - XGH%
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Gradient descent for linear regression

Optimal solution of 6:

0" = argmin L(0) y — X0 3

ST
p - 207

» Gradient of the loss VL (0):
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Gradient descent for linear regression

Optimal solution of 6:

* : _L 2
0" = argmin  L(0) = 55 ly ~ X0l

» Gradient of the loss VL (0):
1

» Setting VgL(0) = 0:
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Gradient descent for linear regression

Optimal solution of 6:

* : _L 2
0" = argmin  L(0) = 55 ly ~ X0l

» Gradient of the loss VL (0):
Lyt
VeL(0) = ﬁX (X6 —y)
» Setting VgL(0) = 0:
1 T * 1 T
= EX X0* = ﬁx y

= 0" = (X'X)" Xy
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Gradient descent for linear regression

Gradient descent to find 6*:
Assume constant step-sizes y; = :

1. Define starting point 6y, set t — 0
2. Set 0;1 =0, — 'nV(;L(Bt), t—t+1

0i+1 = 0; — 1t VeL(6:)

1
=0, — yﬁxT(xet ~y)
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Gradient descent for linear regression

Gradient descent to find 6*:
Assume constant step-sizes y; = :

1. Define starting point 6y, set t — 0
2. Set 0;1 =0, — 'nV(;L(Bt), t—t+1

0i+1 = 0; — 1t VeL(6:)

1
=0, — yﬁxT(xet ~y)

Y v
=(I1- EXTX)Gt + ﬁxTy

3. Repeat 1 until stopping criterion.
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Gradient descent for linear regression

Gradient descent to find 6*:

Assume constant step-sizes 7y; = :

» GD returns the following iterative updates:

v v
0;1=(1- ;xTx)et + pry

» Solving this iterative update returns:
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Gradient descent for linear regression

Gradient descent to find 6*:

Assume constant step-sizes 7y; = :
» GD returns the following iterative updates:

T XTX)8; +

9t+1 = (I_ ;

Y
2XTy

o2
» Solving this iterative update returns:

0 1 X0 0, 00— (XX

» GD converges (6; — 6%) if (I - LX"X)"(8) — 6*) — 0
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Visualising some mat

X2

e = (0,17

x = (x,%)"

xTe;=x,i=12

Gradient Descent

rix multiplications

R? = span({e;, e;})
e Leyllgll =1

=107 x

= x =x,8) +x€;
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Visualising some matrix multiplications

R? = span({e;, e;})
e Lejllellz =1

V2 = Agaxy

e;= (0,07

e =(1,0)7 Y1 =A11x

x = (x3,2)7

xTei —xi=1,2 = X =x,e, + xe;,
y=Ax
4 0 = Y =y161 + Y26
a=(% ) = Ayyxy,yp = A
»n 11%1, Y2 22%X2
0 A
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Visualising some matrix multiplications

R? = span({e;, e;})
e Leyllgll =1
yz A

e, = (0,0

e1=(L0)T i

x = (x, )7

XTe;=xi=1,2 = x =x,8) +x€;
y=A4x = y=0uy)"

A= (Au A12) V1 = Aq1xy + Agpxy

T \Az Az Y2 = Ap1x + Az,

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021

12



Visualising some matrix multiplications

R? = span({q1, q.})
g; Lgpllgill =1

Z

Z1=q{x
Z=3%
_ (%11 12 _ —1 _ (T11 G211y _ a1
0= (Q21 ‘122) =@ua) Q7= (lhz Q’zz) - (q})
Left multiply Q™1 on x:
Change basis from {ey, e;} to {q1, g2}

z=Q x =
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Visualising some matrix multiplications

R? = span({q1, q.})
g; Lgpllgill =1

Find vector x such that
z=0"x

_ (%11 12 _ —1 _ (T11 G211y _ a1
Q= (Q21 ‘122) =(@q) Q= (lhz Q’zz) - (q}')
Left multiply Q on z:
Change basis from {g;, g, } to {e;, e;}

Qz=x =

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021

12



Visualising some matrix multiplications

R? = span({q1, q.})
g; Lgpllgill =1

Find vector x such that

Qz=x =
z=0Q"x

q q-
Q= (qi qzz) =(q1,92) xX=z1q1 + 2242

(for orthonormal basis, Q=1 = QT)
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Visualising some matrix multiplications

R? = span({q1, q.})
g; Lgpllgill =1

r— aAp-1 7 = R151';-5"
R
Q1= (Q11 ‘hl) - qf
q1z G2z q3
Y ZEE
=5 4)
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Visualising some matrix multiplications

R? = span({ey, e;})
e Lejllellz=1
b — .
€4 _
e xi
¥ = QAQ™'x = Q7 = i =ziq1+2)q
Q1= (Q11 Qm) _ qaf z] =4 x
d1z  qz2 q3 zb = Aq3x

A= ('11 0 ) < 0-1=0T
0 A (for orthonormal basis, 7t = Q")
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Visualising some matrix multiplications

R? = span({ey, e;})
e; Lejlellz=1

X farerennnnnaennaneans

€4

x' = Ax, A= QAQ! = X =ziq+ g
Q1= (Q11 ‘hl) _ a1 z; = A qlx
1z a2 q3 zh = Aq3x

A= ('11 0 ) < 0-1=0T
0 A (for orthonormal basis, 7t = Q")
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Eigen decomposition

Consider ' = Ax for A € RP*P:
» Can we find A = QAQ!
(and how)?
» Key idea: find x such that
x' = Ax and x align on the
same line.

ie. ¥ = Ax forsome A # 0

Gradient Descent

R? = span({ey, e;})
e Lellellz=1

2] PE—

2

€1 Xy
x' = Ax,A=QAQ"! =
T
-1 _ (Q11 G21\ _ (91
Q= (1112 ‘122) - (q;)

A 0
A= (01 lz) (for orthonormal basis, Q1 = QT)

I ,
X =21q1 T 2242
TR §
zl—llqlrx

I

7 = Ayqy %
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Eigen decomposition

R? = span({ey, e2})
e Lejllellz=1

b T

(27 %

x' = Ax,A=QAQ! = X =z +74q;

01= (Qu Q21) _ (qf) 7z} = qf{x

912 922/ \qJ zh = A,q3x

A= (’11 0 ) i« 0-1 T
0 A (for orthonormal basis, Q71 = QT)

Fori=1,..,D,ifx = q;, thenx' = Ax = A;q,.
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Eigen decomposition

Eigenvalue decomposition for a matrix A € RP*D:
Find scalar A and vector g such that

Aq=\q

If solutions exist: A = QAQ ™!, A = diag(A4,..., Ap)
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Eigen decomposition

Eigenvalue decomposition for a matrix A € RP*D:
Find scalar A and vector g such that

Aq=\q

If solutions exist: A = QAQ ™!, A = diag(A4,..., Ap)
If A is symmetric:

» there are D pairs of solutions (A4, q,) such that

» Column vectors in Q = (g, ...,qp) form an
orthonormal basis (so Q7! = QT)

M =A== Ap

» If A is positive semi-definite: Ap > 0

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021
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Eigen decomposition

How to find A = QAQ L
»Ag=Agq = (A—-Al)g=0
» Assume g # 0: find A such that

det(A—AI) =0

» Once A is solved, plugging it back and solve for g4

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021
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Eigen decomposition

Ax

€

€1
V' =|det(4) |V

Why solving det(A — AI) w.r.t. A:

» |det(A)]| tells how volume is scaled by linear transform
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Eigen decomposition

(A—ADx
=

€2 det(4 — A1) = 0

€1
V' = |det(4 — A [V
Why solving det(A — AI) w.r.t. A:
» |det(A)]| tells how volume is scaled by linear transform

» If det(A — AI) = 0: some subspace in RP is squashed to {0}
= there exists g # 0 such that (A —AI)g =0
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Eigen decomposition: Indications

Indications of A = QAQ!:

» If A is an eigenvalue of A, then A is an eigenvalue of A":
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Eigen decomposition: Indications

Indications of A = QAQ!:

» If A is an eigenvalue of A, then A is an eigenvalue of A’

A'=QAQ'QAQ!---Q'AQ T = QA'Q T,
Al = diag(AL, ..., AL)
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Eigen decomposition: Indications

Indications of A = QAQ!:

» If A is an eigenvalue of A, then A is an eigenvalue of A’

A'=QAQ'QAQ!---Q'AQ T = QA'Q T,
Al = diag(AL, ..., AL)

» If A is an eigenvalue of A, then A + « is an eigenvalue of A + al:
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Eigen decomposition: Indications

Indications of A = QAQ!:
» If A is an eigenvalue of A, then A is an eigenvalue of A’
A'=QAQ'QAQ7!---Q7'AQT = QA'Q T,
Al = diag(AL, ..., AL)

» If A is an eigenvalue of A, then A + « is an eigenvalue of A + al:
A+al = QAQ ™'+ QuIQ ™! = Q(A +4aD)Q7,

A + ol = diag(Ay + &, ..., Ap + &)
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Eigen decomposition: Indications

Indications of A = QAQ!:

» If A is an eigenvalue of A, then A is an eigenvalue of A’
A'=QAQ'QAQ7!---Q7'AQT = QA'Q T,
Al = diag(AL, ..., AL)

» If A is an eigenvalue of A, then A + « is an eigenvalue of A + al:
A+al = QAQ ™'+ QuIQ ™! = Q(A +4aD)Q7,

A + ol = diag(Ay + &, ..., Ap + &)

» Combine: If A is an eigenvalue of A,
then (A + &) is an eigenvalue of (A + aI)!

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021

18



Eigen decomposition: Indications

Indications of A = QAQ~!: Assume A is symmetric

» Consider the following Rayleigh quotient

xTAx

(137

T

R(A, x) ][5 = x"x

» We can show that
Amin(A) < R(A, x) < Apax(A)

= )\mm(A)HxH% < x'Ax < )\max(A)HxH%

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021
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(break)

Gradient Descent
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Eigen decomposition: Indications

Indications of A = QAQ~!: Assume A is symmetric
» Consider the following Rayleigh quotient

_ x"Ax

IETN

» We can show: A, (A) < R(A, x) < Apax(A)
= Awin(A)]|¥][5 < xTAx < Apax (A)|]x] 13

T

R(A,x x||2=x'x
2

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021
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Convergence of GD for linear regression

Gradient descent with constant step-size to find 0*:

0 1 XX 00, 0 (XX

» The ¢, distance between 0; and 6*:
16: 6113 = /(1= 5X7X)"(80 — 6%)|

— |(80— 6%) T (1= LXTX)% (6, — 6%)|

o2

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021

22



Convergence of GD for linear regression
Gradient descent with constant step-size to find 6*:
0, = (I— %xTxy(eo —o) 05, 0= XXXy
» The ¢, distance between 0; and 0*:
16: 6113 = /(1= 5X7X)"(80 — 6%)|
= (80— 6%)T(1— 5XTX) (6 — 6%)|
» Bounded distance by setting x = 8y — 6%, A = (I— LXTX)*":
16— 0°[13 > Ayin (1= 5XTX)%)] 60 — 6%

16: = 0113 < Aaa (1= 5XTX))] 60 — 673

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021 22



Convergence of GD for linear regression

Gradient descent with constant step-size to find 6*:

0= (1— LXTX)' (0, — 0°) + 6%, 0 =X X)Xy

o2
» The ¢, distance between 0; and 0*:

gt
16: — 6%[3 = [|(I~ 22X %) (80 - 0)I12

= 160 — %) (1~ 5XTX) (6 — ")
» Bounded distance by setting x = 8y — 6%, A = (I— LXTX)*":
16 = %113 > A (1= 5XTX)%)| 169 — 6%]13

Het - 9*”% < )\max((l - %XTX)2)ZL||BO - B*H%

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021 22



Convergence of GD for linear regression

Gradient descent with constant step-size to find 6*:
Apinl 180 — 0%[3 < 16 — 0°[3 < Aj |80 — 073

Ain = Apain (I — %XTX)z) >0, Amar = Apar((I— %XTX)Z)

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021
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Convergence of GD for linear regression

Gradient descent with constant step-size to find 6*:
Apinl 180 — 0%[3 < 16 — 0°[3 < Aj |80 — 073

Ain = Apain (I — %XTX)z) >0, Amar = Apar((I— %XTX)Z)

Convergence properties in difference cases:
1. Apax < 1: always converge
2. Apin = 1: always diverge

3. Amin < 1but Ay, = 1: convergence depending on 6y
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Convergence of GD for linear regression

Gradient descent with constant step-size to find 0*:
2 2 2
AL inl|80 — 0%[13 < |16 — 673 < ALl180 — %3

Y XTX)Z)

TXTX)2) 20, Amar i= Amar((I— X

)\min = Amin((l - ?

Deriving the eigenvalues A,i;, Ayax:

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021 24



Convergence of GD for linear regression

Gradient descent with constant step-size to find 0*:
2 2 2
Alyil180 — 6713 < 116 — 613 < Abyorl 180 — 0% 3

Y XTX)Z)

TXTX)2) 20, Amar i= Amar((I— X

)\min = Amin((l - ?

Deriving the eigenvalues A,i;, Ayax:

» If A is an eigenvalue of I — %XTX,
then A? is an eigenvalue of (I — 5X"X)?
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Convergence of GD for linear regression

Gradient descent with constant step-size to find 0*:

Min|80 — 07113 < [16: — 7[5 < Apye| 160 — %[

Ain = Ay (I — %XTX)Z) >0, Apax = Apar((1— %XTX)Z)
Deriving the eigenvalues A,i;, Ayax:

» If A is an eigenvalue of I — %XTX,

then A? is an eigenvalue of (I — 5X"X)?
» If A is an eigenvalue of XTX,

then 1 — 23 is an eigenvalue of I — 5XTX:

Y A
XTXq =\ < (I- EXTX)q =(1- ?)q

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021 24



Convergence of GD for linear regression

Gradient descent with constant step-size to find 6*:

|80 — %[5 < [18: — 7[5 < Apua 160 — 6713

l}’l’

Ain = Ain(L= Z5XTX) 2 0, Aax 1= Anan((T= 5XTXP?)

» If A is an eigenvalue of X'X,
then (1 — —)2 is an eigenvalue of (I — %XTX)?

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021
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Convergence of GD for linear regression

Gradient descent with constant step-size to find 6*:

|80 — %[5 < [18: — 7[5 < Apua 160 — 6713

l}’l’

Ain = Ain(L= Z5XTX) 2 0, Aax 1= Anan((T= 5XTXP?)

» If A is an eigenvalue of X'X,
then (1 — —)2 is an eigenvalue of (I — %XTX)?

» X' X is positive semi-definite = A > 0
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Convergence of GD for linear regression

Gradient descent with constant step-size to find 6*:

|80 — %[5 < [18: — 7[5 < Apua 160 — 6713

l}’l’

Ain = Ain(L= Z5XTX) 2 0, Aax 1= Anan((T= 5XTXP?)

» If A is an eigenvalue of X'X,
then (1 — —)2 is an eigenvalue of (I — %XTX)?
» X' X is positive semi-definite = A > 0

» Ensuring convergence: we want A5, = max(1 — Zﬁ‘)z <1

202

=Y <
TS X (XTX)
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Choosing step-size for linear regression

To ensure convergence at any initialisation: y < 202 /Ax (X7 X)
Q: Can we use larger step-sizes?

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021
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Choosing step-size for linear regression

To ensure convergence at any initialisation: y < 202 /Ax (X7 X)
Q: Can we use larger step-sizes?
A: Yes if you are lucky, and no if you are unlucky.

1. You choose a step-size v > 202 JAmax(XTX)
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Choosing step-size for linear regression

To ensure convergence at any initialisation: y < 202 /Ax (X7 X)
Q: Can we use larger step-sizes?
A: Yes if you are lucky, and no if you are unlucky.

1. You choose a step-size v > 202 /A ax (XTX)
2. You choose an initialisation 0
» Consider eigen decomposition of X" X as {(A4, q,;)} with
A = ... = Ap = 0 (therefore A (XTX) = Aq)
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Choosing step-size for linear regression

To ensure convergence at any initialisation: y < 202 /Ax (X7 X)
Q: Can we use larger step-sizes?
A: Yes if you are lucky, and no if you are unlucky.

1. You choose a step-size v > 202 /A ax (XTX)
2. You choose an initialisation 0
» Consider eigen decomposition of X" X as {(A4, q,;)} with
A = ... = Ap = 0 (therefore A (XTX) = Aq)
3. Lucky case:
» now assume it happens to be that 8 = 0* + agq,;,d > 1

gl A
16 — 0%[15 = a%[q (1= 5XTX)*q,] = a®(1 = )

>y <20%/Ag = 16— 6%[5 0
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Choosing step-size for linear regression

To ensure convergence at any initialisation: y < 202 /Ax (X7 X)
Q: Can we use larger step-sizes?
A: Yes if you are lucky, and no if you are unlucky.

1. You choose a step-size v > 202 /A ax (XTX)
2. You choose an initialisation 0
» Consider eigen decomposition of X" X as {(A4, q,;)} with
A = ... = Ap = 0 (therefore A (XTX) = Aq)
3. Lucky case:
» now assume it happens to be that 8 = 0* + agq,;,d > 1

gl Ad
16 — 0%[15 = a%[q (1= 5XTX)*q,] = a®(1 = )
sy <20%/Ay = ||6;—0%|3 >0
4. Unlucky case: v > 20%/A; = divergence
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Choosing step-size for linear regression

To ensure convergence at any initialisation: y < 202 /Ax (X7 X)
Q: Can we use larger step-sizes?
A: Yes if you are lucky, and no if you are unlucky.

1. You choose a step-size v > 202 /A ax (XTX)
2. You choose an initialisation 0
» Consider eigen decomposition of X" X as {(A4, q,;)} with
A = ... = Ap = 0 (therefore A (XTX) = Aq)
3. Lucky case:
» now assume it happens to be that 8 = 0* + agq,;,d > 1

gl Ad
16 — 0%[15 = a%[q (1= 5XTX)*q,] = a®(1 = )
sy <20%/Ay = ||6;—0%|3 >0
4. Unlucky case: v > 20%/A; = divergence

Constant step-size GD diverges if 7 = 202 /A, (XTX)

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021
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Choosing step-size for linear regression

To ensure convergence at any initialisation: y < 202 /Ax (X7 X)
Q: Can we use larger step-sizes?

A: Yes if you are lucky, and no if you are unlucky.

Caveat: you are unlikely to be that lucky...

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021
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Choosing step-size for linear regression

To ensure convergence at any initialisation: y < 202 /Ax (X7 X)
Q: Can we use larger step-sizes?

A: Yes if you are lucky, and no if you are unlucky.

Caveat: you are unlikely to be that lucky...

1. You choose a step-size v > 202 /A max (XTX)
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Choosing step-size for linear regression

To ensure convergence at any initialisation: y < 202 /Ax (X7 X)
Q: Can we use larger step-sizes?

A: Yes if you are lucky, and no if you are unlucky.

Caveat: you are unlikely to be that lucky...

1. You choose a step-size v > 202 /A max (XTX)
2. You randomly initialise the parameter 6y
» write 8 = 0* + 37| asq,
3. Evolution of the iterative update: 8; — 0* = 25:1 ag(1— %‘i)tqd

1_ Y\

» For direction g, with v < 20%/A;:  ( 2 g, —0
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Choosing step-size for linear regression

To ensure convergence at any initialisation: y < 202 /Ax (X7 X)
Q: Can we use larger step-sizes?

A: Yes if you are lucky, and no if you are unlucky.

Caveat: you are unlikely to be that lucky...

1. You choose a step-size v > 202 /A max (XTX)
2. You randomly initialise the parameter 6y
» write 8 = 0* + 37| asq,
3. Evolution of the iterative update: 8; — 0* = 25 1 eg(l— %‘i)tqd

» For direction g, with v < 20?/A;: (1 — Md)

qq — 0
» For other directions v > 202/A4: (1 — %) q, diverges

» GD diverges unless a; = 0 for those d with v > 20%/A,.
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Choosing step-size for linear regression

To ensure convergence at any initialisation: y < 202 /Ax (X7 X)
Q: Can we use larger step-sizes?

A: Yes if you are lucky, and no if you are unlucky.

Caveat: you are unlikely to be that lucky...

1. You choose a step-size v > 202 /A max (XTX)

2. You randomly initialise the parameter 6y

» write O = 0* + ZdD=1 xqq4
3. Evolution of the iterative update: 8; — 0* = 25 (1 — %d)tqd

“Md )

» For direction g, with v < 20?/A;: (1 — q;—0

» For other directions v > 202/A4: (1 — 7—)"1) q, diverges
» GD diverges unless a; = 0 for those d with v > 20%/A,.

4. Ford > 1, span{qy, ..., q} has measure 0 in RP

» unlikely to make «; = 0 for some d with random initialisation
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Choosing step-size for linear regression

To ensure convergence at any initialisation: y < 202 /Ax (X7 X)
202 252

Amax (XTX) 7 Aomin (XTX) )

Is my choice of y robust to initialisation of 6?

If you want to test your luck: choose y € |
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To ensure convergence at any initialisation: y < 202 /Ax (X7 X)
202 252

Amax (XTX) 7 Aomin (XTX) )

Is my choice of y robust to initialisation of 6?

If you want to test your luck: choose y € |

» Depending on the condition number:

() s AN [maxg RTX, g
T Awin(XTX) ming R(XTX, q)
well conditioned ill conditioned
K(XTX) ~ 1 K(XTX) > 1
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Choosing step-size for linear regression

To ensure convergence at any initialisation: y < 202 /Ax (X7 X)

If you want to test your luck: choose 1y € [ 2((7):TX)’ 5 .2&2TX))

Is my choice of y robust to initialisation of 6?

» Depending on the condition number:

(XTX) _ Amax(XT X) max, R(XTX, g)
Ain(XTX) ming R(XTX, ¢q)
well conditioned ill conditioned
K(XTX) ~ 1 K(XTX) » 1

» Need careful choice of step-sizes if the loss is “very stretched”

» Note: x(XTX) = x(X)? = %
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Choosing step-size: general case

In general the loss function is non-quadratic nor convex:

Optimum

https://distill.pub/2017/momentum/
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Choosing step-size: general case

In general the loss function is non-quadratic nor convex:

Optimur:

Local quadratic approximation when 6; ~ 0*:
» locally approximate L(6;) ~ L(6*) + 1(6; — 6*)T V2L(6*)(6; — 6*)
(in linear regression V2L(8) oc XTX)
» k(V2L) can tell whether the loss is “locally stretched”

https://distill.pub/2017/momentum/
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Choosing step-size: general case

Let’s see what happens for different step-sizes.

Optimum

Solution
[( | Starting Point

Image shows:
» Path of 6; from Gradient Descent

» Constant step size y; = 7y
https://distill.pub/2017/momentum/
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Choosing step-size: summary

Summary on choosing step size:
» too small: slow convergence
» too large: divergence

» just right: depends on problem (often: trial and error)
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Choosing step-size: summary

Summary on choosing step size:
» too small: slow convergence
» too large: divergence
» just right: depends on problem (often: trial and error)

Rule of thumb:
Start from a relatively large step size,

decrease step size as getting closer to a (local) optimum.
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