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Reading for this week

Read MML book: Sections 4.1 - 4.4, 7.1, Chapter 9 up to 9.2.3
Do MML book exercises: Exercises 4.1 - 4.7

An extra exercise will be uploaded to course materials.
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Optimisation Problems
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Remember our problem:
§ Find a curve that predicts well even for unseen inputs
§ Start by minimising loss on training points:

Lpθq “
ÿ

n
p f pxn; θq ´ ynq

2 (1)
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Formulating optimisation problems

§ Define objective function L : RD Ñ R

§ Unconstrained minimisation, state which variable you want to
optimise over

θ˚ “ arg min
θ

Lpθq (2)
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Gradient-based optimisation

How do we solve optimisation? We need an algorithm.

Gradient-based optimisation is a class of methods which all

§ Pick some starting point θ0.

§ Iteratively update the parameters, resulting in a sequence of
solutions θ1, . . . , θT.

§ Choose the update of the parameter by computing the gradient
∇θLpθtq.

§ Usually a stopping criterion (e.g. iteration budget, time budget,
gradient size, ...)
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Gradient descent

Algorithm: Gradient Descent
Define starting point θ0, sequence of step sizes γt, set t Ð 0.

1. Set θt`1 “ θt ´ γt∇θLpθtq, t Ð t` 1
2. Repeat 1 until stopping criterion.
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Gradient descent for linear regression

Fitting linear regression models:

§ Dataset: D “ tX, yu,
X “ rx1, ..., xNs

J P RNˆD,
y “ ry1, ..., yNs

J P RNˆ1

§ Goal: find θ P RDˆ1 such that

y « Xθ
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Gradient descent for linear regression

A typical linear regression model:

§ x P RDˆ1: input features; y P R: output value

§ Model and loss:

f px, θq “ xJθ, y “ f px, θq ` ε, ε „ N p0, σ2q

Lpθq “
1

2σ2

ÿ

n
p f pxn, θq ´ ynq

2

§ Rewriting the loss in matrix form:

Lpθq “
1

2σ2 ||y´ Xθ||22
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Gradient descent for linear regression

Optimal solution of θ:

θ˚ “ arg min
θ

Lpθq “
1

2σ2 ||y´ Xθ||22

§ Gradient of the loss ∇θLpθq:

∇θLpθq “
1
σ2 XJpXθ´ yq

§ Setting ∇θLpθq “ 0:

ñ
1
σ2 XJXθ˚ “

1
σ2 XJy

ñ θ˚ “ pXJXq´1XJy
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Gradient descent for linear regression

Gradient descent to find θ˚:
Assume constant step-sizes γt “ γ:

1. Define starting point θ0, set t Ð 0

2. Set θt`1 “ θt ´ γt∇θLpθtq, t Ð t` 1

θt`1 “ θt ´ γt∇θLpθtq

“ θt ´ γ
1
σ2 XJpXθt ´ yq

“ pI´
γ

σ2 XJXqθt `
γ

σ2 XJy

3. Repeat 1 until stopping criterion.
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Gradient descent for linear regression

Gradient descent to find θ˚:
Assume constant step-sizes γt “ γ:

§ GD returns the following iterative updates:

θt`1 “ pI´
γ

σ2 XJXqθt `
γ

σ2 XJy

§ Solving this iterative update returns:

θt “ pI´
γ

σ2 XJXqtpθ0 ´ θ˚q ` θ˚, θ˚ “ pXJXq´1XJy

§ GD converges (θt Ñ θ˚) if pI´ γ
σ2 XJXqtpθ0 ´ θ˚q Ñ 0
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Visualising some matrix multiplications
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Eigen decomposition

Consider x1 “ Ax for A P RDˆD:

§ Can we find A “ QΛQ´1

(and how)?

§ Key idea: find x such that
x1 “ Ax and x align on the
same line.
i.e. x1 “ λx for some λ ‰ 0

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021 13



Eigen decomposition

For i “ 1, ..., D, if x “ qi, then x1 “ Ax “ λiqi.
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Eigen decomposition

Eigenvalue decomposition for a matrix A P RDˆD:
Find scalar λ and vector q such that

Aq “ λq

If solutions exist: A “ QΛQ´1, Λ “ diagpλ1, ..., λDq

If A is symmetric:
§ there are D pairs of solutions pλd, qdq such that

§ Column vectors in Q “ pq1, ..., qDq form an
orthonormal basis (so Q´1 “ QJ)

§ λ1 ě λ2 ě ... ě λD
§ If A is positive semi-definite: λD ě 0
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Eigen decomposition

How to find A “ QΛQ´1:

§ Aq “ λq ñ pA´ λIqq “ 0

§ Assume q ‰ 0: find λ such that

detpA´ λIq “ 0

§ Once λ is solved, plugging it back and solve for q
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Eigen decomposition

Why solving detpA´ λIqw.r.t. λ:

§ |detpAq| tells how volume is scaled by linear transform

§ If detpA´ λIq “ 0: some subspace in RD is squashed to t0u
ñ there exists q ‰ 0 such that pA´ λIqq “ 0
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Eigen decomposition: Indications

Indications of A “ QΛQ´1:
§ If λ is an eigenvalue of A, then λt is an eigenvalue of At:

At “ QΛQ´1QΛQ´1 ¨ ¨ ¨Q´1ΛQ´1 “ QΛtQ´1,

Λt “ diagpλt
1, ..., λt

Dq

§ If λ is an eigenvalue of A, then λ` α is an eigenvalue of A` αI:

A` αI “ QΛQ´1 `QαIQ´1 “ QpΛ` αIqQ´1,

Λ` αI “ diagpλ1 ` α, ..., λD ` αq

§ Combine: If λ is an eigenvalue of A,
then pλ` αqt is an eigenvalue of pA` αIqt
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Eigen decomposition: Indications

Indications of A “ QΛQ´1: Assume A is symmetric

§ Consider the following Rayleigh quotient

RpA, xq “
xJAx
||x||22

, ||x||22 “ xJx

§ We can show that

λminpAq ď RpA, xq ď λmaxpAq

ñ λminpAq||x||22 ď xJAx ď λmaxpAq||x||22

Gradient Descent Yingzhen Li @Imperial College London, October 26, 2021 19



(break)
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Convergence of GD for linear regression

Gradient descent with constant step-size to find θ˚:

θt “ pI´
γ

σ2 XJXqtpθ0 ´ θ˚q ` θ˚, θ˚ “ pXJXq´1XJy

§ The `2 distance between θt and θ˚:

||θt ´ θ˚||22 “ ||pI´
γ

σ2 XJXqtpθ0 ´ θ˚q||22

“ |pθ0 ´ θ˚qJpI´
γ

σ2 XJXq2tpθ0 ´ θ˚q|

§ Bounded distance by setting x “ θ0 ´ θ˚, A “ pI´ γ
σ2 XJXq2t:
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Convergence of GD for linear regression

Gradient descent with constant step-size to find θ˚:

λt
min||θ0 ´ θ˚||22 ď ||θt ´ θ˚||22 ď λt

max||θ0 ´ θ˚||22

λmin :“ λminppI´
γ

σ2 XJXq2q ě 0, λmax :“ λmaxppI´
γ

σ2 XJXq2q

Convergence properties in difference cases:

1. λmax ă 1: always converge

2. λmin ě 1: always diverge

3. λmin ă 1 but λmax ě 1: convergence depending on θ0
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Convergence of GD for linear regression

Gradient descent with constant step-size to find θ˚:

λt
min||θ0 ´ θ˚||22 ď ||θt ´ θ˚||22 ď λt

max||θ0 ´ θ˚||22

λmin :“ λminppI´
γ

σ2 XJXq2q ě 0, λmax :“ λmaxppI´
γ

σ2 XJXq2q

Deriving the eigenvalues λmin, λmax:

§ If λ is an eigenvalue of I´ γ
σ2 XJX,

then λ2 is an eigenvalue of pI´ γ
σ2 XJXq2

§ If λ is an eigenvalue of XJX,
then 1´ γλ

σ2 is an eigenvalue of I´ γ
σ2 XJX:

XJXq “ λq ô pI´
γ

σ2 XJXqq “ p1´
γλ

σ2 qq
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Convergence of GD for linear regression

Gradient descent with constant step-size to find θ˚:

λt
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max||θ0 ´ θ˚||22

λmin :“ λminppI´
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§ If λ is an eigenvalue of XJX,
then p1´ γλ

σ2 q
2 is an eigenvalue of pI´ γ

σ2 XJXq2

§ XJX is positive semi-definiteñ λ ě 0

§ Ensuring convergence: we want λmax “ maxp1´ γλ
σ2 q

2 ă 1

ñ γ ă
2σ2

λmaxpXJXq
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§ Ensuring convergence: we want λmax “ maxp1´ γλ
σ2 q

2 ă 1

ñ γ ă
2σ2

λmaxpXJXq
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Choosing step-size for linear regression

To ensure convergence at any initialisation: γ ă 2σ2{λmaxpXJXq
Q: Can we use larger step-sizes?

A: Yes if you are lucky, and no if you are unlucky.

1. You choose a step-size γ ą 2σ2{λmaxpXJXq
2. You choose an initialisation θ0

§ Consider eigen decomposition of XJX as tpλd, qdquwith
λ1 ě ... ě λD ě 0 (therefore λmaxpXJXq “ λ1)

3. Lucky case:
§ now assume it happens to be that θ0 “ θ˚ ` αqd, d ą 1

||θt ´ θ˚||22 “ α2|qJd pI´
γ

σ2 XJXq2tqd| “ α2p1´
γλd
σ2 q

2t

§ γ ă 2σ2{λd ñ ||θt ´ θ˚||22 Ñ 0

4. Unlucky case: γ ě 2σ2{λd ñ divergence

Constant step-size GD diverges if γ ě 2σ2{λminpXJXq
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Choosing step-size for linear regression

To ensure convergence at any initialisation: γ ă 2σ2{λmaxpXJXq
Q: Can we use larger step-sizes?
A: Yes if you are lucky, and no if you are unlucky.
Caveat: you are unlikely to be that lucky...

1. You choose a step-size γ ą 2σ2{λmaxpXJXq

2. You randomly initialise the parameter θ0

§ write θ0 “ θ˚ `
řD

d“1 αdqd

3. Evolution of the iterative update: θt ´ θ˚ “
řD

d“1 αdp1´
γλd
σ2 q

tqd

§ For direction qd with γ ă 2σ2{λd: p1´ γλd
σ2 q

tqd Ñ 0
§ For other directions γ ě 2σ2{λd: p1´ γλd

σ2 q
tqd diverges

§ GD diverges unless αd “ 0 for those d with γ ě 2σ2{λd.

4. For d ą 1, spantqd, ..., qDu has measure 0 in RD

§ unlikely to make αd “ 0 for some d with random initialisation
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Choosing step-size for linear regression

To ensure convergence at any initialisation: γ ă 2σ2{λmaxpXJXq
If you want to test your luck: choose γ P r 2σ2

λmaxpXJXq ,
2σ2

λminpXJXqq

Is my choice of γ robust to initialisation of θ0?

§ Depending on the condition number:

κpXJXq :“
λmaxpXJXq
λminpXJXq

“

d

maxq RpXJX, qq
minq RpXJX, qq

§ Need careful choice of step-sizes if the loss is “very stretched”
§ Note: κpXJXq “ κpXq2 “ σmaxpXq

σminpXq
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Choosing step-size: general case

In general the loss function is non-quadratic nor convex:

Local quadratic approximation when θt « θ˚:
§ locally approximate Lpθtq « Lpθ˚q ` 1

2pθt ´ θ˚qJ∇2Lpθ˚qpθt ´ θ˚q

(in linear regression ∇2Lpθq 9 XJX)
§ κp∇2Lq can tell whether the loss is “locally stretched”

https://distill.pub/2017/momentum/
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Choosing step-size: general case

Let’s see what happens for different step-sizes.

Image shows:

§ Path of θt from Gradient Descent

§ Constant step size γt “ γ
https://distill.pub/2017/momentum/
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Choosing step-size: summary

Summary on choosing step size:

§ too small: slow convergence

§ too large: divergence

§ just right: depends on problem (often: trial and error)

Rule of thumb:
Start from a relatively large step size,

decrease step size as getting closer to a (local) optimum.
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