
MML lecture extra notes, week Nov 1 - 5, 2021

Bias-variance trade-off in linear/ridge regression

Below we show that, when assuming no model mismatch and in-distribution test settings, there exist choices
of λ > 0 such that ridge regression returns smaller expected test error when compared with linear regression.
For the assumption of no model mismatch, this means the training dataset D = {(xn, yn)}Nn=1 is generated
using a (noisy) underlying function that has the same form as the model:

yn = f(xn;θ0) + ϵn, f(x,θ0) = ϕ(x)⊤θ0, ϵn ∼ N (0, σ2). (1)

In other words, there is a “ground truth” parameter θ0 governing the generation of training data. This θ0
parameter is unknown to us. We also denotes the above process as D ∼ pNdata. The “in-distribution test”
setting means the test data (xtest, ytest) is also generated from the same process, i.e. (xtest, ytest) ∼ pdata.

Now we wish to learn the parameters θ for our model f(x;θ) = ϕ(x)⊤θ using training data D ∼ pNdata.
For both linear regression and ridge regression, the minimiser of the loss function depends on D. Therefore
in the analysis we will write an estimator as θ∗(D) to emphasise the dependency on training data.

We will look into the expected test error to understand how well the model performs; here the expectations
are taken on both the training data D ∼ pNdata and the test data (xtest, ytest) ∼ pdata. Derivations show
that for an estimator θ∗ which might not necessarily equal to the ground truth θ0, the expected test error
is related to the parameter estimation error:

errorpred(θ
∗) = ED∼pN

data
[E(xtest,ytest)∼pdata

[||ytest − f(xtest;θ
∗(D))||22]]

= Extest
[ϕ(xtest)

⊤Error(θ∗)ϕ(xtest)] + σ2,
(2)

Error(θ∗) = ED∼pN
data

[(θ∗(D)− θ0)(θ
∗(D)− θ0)

⊤]

:= b(θ∗)b(θ∗)⊤ +V(θ∗),
(3)

bias: b(θ∗) = ED∼pN
data

[θ∗(D)]− θ0

variance: V(θ∗) = VD∼pN
data

[θ∗(D)].
(4)

We can show that smaller parameter estimation error leads to smaller expected prediction error: for two
estimators θ1 and θ2, using properties of positive semi-definite matrices, we have:

Error(θ1) ⪯ Error(θ2) ⇒ errorpred(θ1) ≤ errorpred(θ2).

So it remains to find settings of λ > 0 for ridge regression such that it achieves a smaller parameter estimation
error when compared with linear regression. Note that when λ = 0 it corresponds to linear regression. The
bias and variance of the ridge regression estimator are:

b(θ∗
R) = ED∼pN

data
[θ∗

R(D)]− θ0 = −σ2λ(σ2λI+Φ⊤Φ)−1θ0 := b(λ), (5)

V(θ∗) = σ2(σ2λI+Φ⊤Φ)−1Φ⊤Φ(σ2λI+Φ⊤Φ)−1 := V(λ).

The expressions indicate that linear regression returns an unbiased estimator of θ0 as b(λ) = 0 when λ = 0.
By contrast, ridge regression (λ > 0) returns a biased estimator. Therefore the search for λ > 0 such that
Error(θ∗

R) ⪯ Error(θ∗
L) is equivalent to searching for λ such that b(λ)b(λ)⊤ +V(λ) ⪯ V(0). After some

linear algebra, we have:

b(λ)b(λ)⊤ +V(λ)−V(0) = −σ2λ(Φ⊤Φ+ σ2λI)−1 (σ2[2I+ σ2λ(Φ⊤Φ)−1]− σ2λθ0θ
⊤
0 )︸ ︷︷ ︸

:=E

(Φ⊤Φ+ σ2λI)−1.

(6)
Furthermore, one can show that

b(λ)b(λ)⊤ +V(λ) ⪯ V(0) ⇔ E is positive semi-definite, (7)
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which can be achieved by e.g. setting 0 ≤ λ ≤ 2
||θ0||22

. To see this, first notice that in eq. (6) E is left-

and right-multiplied by the same matrix, which supports the claim in eq. (7). Then a close inspection of
E shows that if we make 2I − λθ0θ

⊤
0 positive semi-definite then E will also be positive semi-definite. As

θ0θ
⊤
0 is a rank-1 matrix, the only non-zero eigenvalue of θ0θ

⊤
0 is ||θ0||22. Using the discussed indications of

eigen-decomposition, we can show that 2I− λθ0θ
⊤
0 is positive semi-definite when 0 ≤ λ ≤ 2

||θ0||22
.

One can also show that V(λ) ⪯ V(0) for λ > 0:

V(λ)−V(0) = −σ2λ(Φ⊤Φ+ σ2λI)−1 (σ2[2I+ σ2λ(Φ⊤Φ)−1])︸ ︷︷ ︸
:=Ẽ

(Φ⊤Φ+ σ2λI)−1 ⪯ 0,

because Ẽ is positive semi-definite. Combining both results, we see that ridge regression is useful in reducing
the variance of parameter estimation, but this is in the price of increased bias. Therefore λ needs to be
selected carefully (e.g. 0 ≤ λ ≤ 2

||θ0||22
) such that the bias is not too large, and at the same time the variance

of parameter estimation is reduced.

Solving PCA optimisation problems

Minimum reconstruction error perspective We have shown in the lecture that the PCA algorithm
aims to find an orthonormal basis Bfull which minimises the reconstruction error

L =

N∑
n=1

||xn − x̃n||22, x̃n =

M∑
j=1

znjbj , M < D. (8)

A few derivations show that

L =

D∑
j=M+1

b⊤
j

1

N

N∑
n=1

xnx
⊤
n︸ ︷︷ ︸

S

bj , (9)

where by plugging-in the eigen-decomposition of S = QΛQ⊤ we have the optimisation problem as

min
Bfull

L =

D∑
j=M+1

β⊤
j Λβj , βj = Q⊤bj , subject to ||bj ||22 = 1,bi ⊥ bj . (10)

Now notice that ||βj ||22 = b⊤
j QQ⊤bj = b⊤

j bj = 1 since Q = [q1, ..., qD] represents an orthonormal basis.

This means β⊤
j Λβj , βj =

∑D
d=1 β

2
jdλd is a weighted sum of the eigenvalues {λ1 ≥ ... ≥ λD} and the weights

{β2
jd} sum to 1. Therefore, we can conduct the following reasoning to iteratively solve the optimisation

problem, using proof by induction:

1. For j = D, we can show that β⊤
DΛβD is minimised by choosing bD = qD. This is done by choosing

βD = [0, ..., 0, 1]⊤ which minimises the quadratic loss.

2. For each j = D − 1, ...,M + 1:

• Assume we have obtained solutions bi = qi for i > j;

• As we can write bj =
∑D

d=1 βjdqd, to make sure that bj ⊥ bi for i > j, this means b⊤
j bi = βji = 0;

• So we seek for the other βjd values (d ≤ j) such that
∑j

d=1 β
2
jdλd is minimised. Notice that the

weights for {λd} sum to one. This leads to bj = qj , i.e. βjj = 1 and βjd = 0 for d ̸= j.

3. Using proof by induction, we can show that the optimal solution is bj = qj for j = M + 1, ..., D.
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Maximum variance perspective The PCA algorithm can also be viewed as solving a sequence of op-
timisation problems to find the projection directions that maintain maximum variance. In detail, for each
m = 1, ...,M , we have shown in the lecture that the corresponding constrained optimisation problem is

max
bm

V[b⊤
mx̂n], x̂n = xn −

m−1∑
j=1

(b⊤
j xn)bj , subject to ||bm||22 = 1,bm ⊥ bj , j < m. (11)

In other words, PCA iteratively finds the “maximum variance directions” in the remainder information. Note
that we have shown in the lecture that V[b⊤

mx̂n] = V[b⊤
mxn] which is due to the constraint of orthonormal

basis. Also notice that V[b⊤
mxn] = b⊤

mSbm =
∑D

d=1 β
2
mdλd. So we apply the proof by induction technique

again and solve the optimisation tasks as follows:

1. For m = 1, we can show that b⊤
1 Sb1 is minimised by choosing b1 = q1. The argument here is similar

to that of step 1 in solving the reconstruction error minimisation problem.

2. For each m = 2, ...,M :

• Assume we have obtained solutions bi = qi for i < m;

• As we can write bm =
∑D

d=1 βmdqd, to make sure bm ⊥ bi for i < m, this means b⊤
mbi = βmi = 0;

• So we seek for the other βmd values (d ≥ m) such that
∑D

d=m β2
mdλd is maximised. Notice that

the weights for {λd} sum to one. This leads to bm = qm, i.e. βmm = 1 and βmd = 0 for d ̸= m.

3. Using proof by induction, we can show that the optimal solution is bm = qm for m = 1, ...,M .

Remark The above derivations for both perspectives solve a constrained optimisation problem in b space,
by rewriting the problem as (a sequence of) constrained optimisation problem in βjd space. The constrain
in such case is simple (β2

jd sum to one) so solutions can be obtained fairly easily. In future lectures we will
discuss constrained optimisation techniques and revisit the PCA optimisation example; using such techniques
we can solve the PCA optimisation task jointly for all the principle components.

Remark The two perspectives of PCA, although resulting in the same projections, do not necessarily
need the usage of the same Bfull at optimum. From the minimum reconstruction error perspective, one
just need to make sure that xn is projected to the orthogonal complement space span({qj}Dj=M+1)

⊥, and

for such space, {qm}Mm=1 is not the only orthonormal basis. In other words, the minimum reconstruction
error perspective just requires the optimal Bfull = {b1, ...,bM , qM+1, ..., qD} with span({b1, ...,bM}) =
span({qj}Dj=M+1)

⊥. Similarly, one can show that for the maximum variance perspective, the optimal Bfull =

{q1, ..., qM ,bM+1, ...,bD} with span({bM+1, ...,bD}) = span({qm}Mm=1)
⊥. In practice we will useBfull = Q

though as a convention.

An extra exercise

Q1: Convergence analysis of constant step-size gradient descent (GD) for ridge regression:

1. Show that if GD converges, it would converge to θ∗
R.

2. Derive the “safe threshold” for the constant step size γ.

Solution of Q1:
The iterative update of GD for ridge regression is:

θt+1 = ((1− γλ)I− γ

σ2
X⊤X)θt +

γ

σ2
X⊤y. (12)

Solving the corresponding geometric sequence returns

θt = ((1− γλ)I− γ

σ2
X⊤X)t(θ0 − θ∗

R) + θ∗
R, (13)
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where θ∗
R = (σ2λI+X⊤X)−1X⊤y is the minimiser of the loss function. Therefore it means GD, if converges,

converges to the right solution. And GD converges if ((1− γλ)I− γ
σ2X

⊤X)t(θ0 − θ∗
R) → 0.

Applying the analysis techniques of GD for linear regression, we see that it reduces to investigate the
eigenvalues of matrix ((1− γλ)I− γ

σ2X
⊤X)2. Therefore we would like to make sure that

λmax := λmax(((1− γλ)I− γ

σ2
X⊤X)2) = max

λx

(1− γλ− γ

σ2
λx)

2 < 1, (14)

where λx denotes possible eigenvalue of X⊤X. Therefore the “safe threshold” for step size selection is

γ < 2(λ+ λmax(X
⊤X)/σ2)−1. (15)
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