A Hybrid Recommender System of Tencent Microblog

Project Review

Yingzhen Li

Abstract

Precise recommendations in social networks present opportunities for novel machine
learning. Our work described a recommender system of micro blog, which mined topics
from messages of users by applying association rules and by combining collaborative and
content-based filtering to discover their preferences. We selected and rated items according
to the interests of users, as reflected by the topics in the messages. The results indicated
a strong relationship between user interests and their acceptance on a given item. Several
limitations of our system have led to future research. The revision of topic extraction is
related to NLP studies. The analysis of sequential data, data pre-processing, and advanced
item pre-selection are other probable extensions.

1 Introduction

Online social networking services like Tencent Microblog have been tremendously popular
in China, with a considerable speed of user growth. Celebrities and organizations also register
microblog, which leads to diversity of topics and helps attract more potential users. However,
flooded information can puzzle the users and even result in the loss of them. So reducing the risk
of puzzlement and recommending attractive items - celebrities and organizations - are crucial for
user experience improvement and prosperity maintenance, which present opportunities for novel
machine learning and data mining approaches.

Recommender systems can be categorized into content-based algorithm [7], collaborative
filtering [5], and influential ranking algorithm [10]. Unfortunately, all of them consider little
of user profile’s fidelity, preference variance and interactions, causing difficulty of precise and
stable recommendation. To overcome these weaknesses of single method, we construct a hybrid
recommender system specified to Tencent Microblog, which generates ordered item list by mining
the data of the platform [8].

The rest of the paper is organized as follows. Section 2 discusses the background of the
problem, and Section 3 describes the design of the hybrid recommender system. Section 4 presents
the training process. Section 5 shows the experimental results and discuss some improvements,
and the paper is concluded in Section 6.

2 Background

Tencent launched its microblog platform - Tencent Microblog - in 2010, which then became
one of the dominant microblog platforms in China based on the large user group of its instant
messaging service QQ [9]. Celebrities and organizations are invited to register the platform,
leading to a nice growth in the user group. Furthermore, Tencent’s microblog service is embedded

in its other leading platforms, hence user can write or comment a message directly on the website
of Tencent Microblog or via the third-party port and related platforms.

While Tencent Microblog has the largest user group, Sina Microblog takes a commanding lead
with 56.5% of China’s microblog market based on active users and 86.6% based on browsing time
over its competitors [6]. This fake prosperity results from the existence of the fake users, widely
used spammer strategy [3] and the weird definition of active users. Tencent Microblog considers
those who write(including retweet and comment) or read microblog messages - no matter on the
website or other associated platforms - as active users, while Twitter and Sina Microblog define
them as those who login the platform everyday.

User messages generated via from other related platforms confuse the recommender finding
the real interests of users, which leads to the decrease of acceptance. Tencent Microblog users
accept the recommendations in a low percentage(less than 9% according to our survey [8]),
and the recommended item lists isn’t updated in time, which deviate from the users’ present
preferences.

3 Algorithms

This section introduces a hybrid recommender system of Tencent Microblog, including the
preparations - keyword analysis and user taxonomy - and the main part of it. Detailed algorithms
with formulas is explained in our workshop paper.

3.1 Keyword Analysis

Mining synonyms in user’s keywords helps in finding their interests. However, applying
association rule algorithm [2] to find them directly in the huge keyword set is unrealistic since
that involves searching all possible combinations. So we parallel this process by adopting revised
FDM(Fast Distributed Mining of association rules) [4]. Moreover, we insert the ambiguous
keywords into different classes simultaneously.

Let U = {u;} be the set of users where u; has the value of its ID. Each user u; has its
keyword set K; = {kj;} with weights W; = {w;}, and we denote K = |Jj_, K; as the set of all
users’ keywords. The database DB (user-keyword set) is divided into n subsets DB; and these
subsets are sent to the remote sites RM,;. T7 = {T{, Ty, ..., T,{j} is the result generated in the
4 iteration where T/ is the i*" transaction of the j** iteration.

Apriori algorithm is applied to generate the candidate transaction set Cf = Apriori,gen(Tij 71)
at RM; in the beginning of the j** iteration where Cg = {Czjl, Cijg, e Cghj} are candidate trans-
actions in this iteration. Then the remote site RM; computes the local support and confidence
of 7, and eliminates those which fail to satisfy local minimums supp_local or conf_local. Then it
sends the remaining candidate transactions Cgl to the polling site PLy, where K = polling(C’ijl)
is a hash function. _ _

PLk gathers the candidate transactions C7,, computes global support supp_global(C})) and
confidence con f ,global(Cijl) by sending request to remote sites for local values’ return. Then PL g
filters out the candidates which fail to satisfy the constraint of supp_global and conf_global.
Generally the local minimums coincide with the globals. For convenience we still denote the
updated candidate sets as C?.

Then home site gathers cg' from the polling sites to generate the result of transactions(keyword
classes) in the j'" iteration:

7 =Jcl.
1

The process is terminated if no new transaction is generated, else the home site broadcasts the
transactions 77 to the remote site RM i where RM is the original remote site of 7/ = C%., .
and starts the next iteration. The final result of keyword class is

keyword_class = {classy, classa, ...,classy },

where class; = {ki1, kia, ..., kim } is the set of synonyms.

The choice of minimums affects the precision and computational complexity tremendously.
We sampled 1000 users’ keywords and found out that these users have their keyword weights
average in 0.14, so we assign supp_local = supp_global = 0.2, a little higher than the average
weight. conf_local/conf _global is affected by supp_local /supp_global, in this case conf _local =
conf_global = % =0.7.

3.2 User Taxonomy

We classify some users of Tencent Microblog as fake users (see Figure 1), who seldom login
directly but still have records of tweets generated from other related platforms. These users’
messages could hardly reflect their interests, and they rarely interact with other users and have
few favorites for the same reason. In addition, we also consider the spammers as fake since they
seldom use microblog even indirectly.

e ‘fz
o ‘(:R

® o

acitve user inacitve user fake user

@] - -
user linked user follow fake linked

Figure 1: User taxonomy. Active users have more followees than inactive users. Links related to
fake users are eliminated since they’re not real users in the user network.

Due to the absence of login records, the activeness function act(u;) counts the number of
tweets and interactions and computes u;’s activeness by applying the thresholds min_activeness
and min_action:

act(u;) = tweet x is_fake(u;),

where
1+ sgn(at + retweet + comment — min_action)

is_fake(uj;) =

2)
active, act(u;) > min_activeness
user_class(u;) = { inactive, 0 < act(u;) < min_activeness .
fake, act(u;) =0

We assign min_activeness = 100 and min_action = 20 since only 33.2% of the users have written
more than 100 tweets, and apply the algorithm to divide the user group into 3 classes.

An appropriate user taxonomy helps in improving the precision of recommendation. Users
with similar favourites often accept similar items, hence dividing users into smaller groups by
their interests can balance the precision and computational complexity. However, we haven’t
done this due to the sparsity of successful recommendation records, which reflect the user’s
interests directly.

3.3 Generating Recommendations

After keyword analysis and user taxonomy which are preparations of the recommendation, it
comes the main part of our hybrid recommender system, consisting of item popularity ranking,
(potential)interests discovery and the grading function, to generate recommended items and eval-
uate the possibility of acceptance or rejection. The system maps the users’ (potential)interests
to their corresponding item categories and grades selected candidates in these categories with
indicators of similarity and popularity. It also contains special algorithms with respect to fake
users in order to reach a precise recommendation.

3.3.1 Item Popularity Ranking

An item is a specific user, which can be a famous person, an organization, or a group.
Items are organized in different categories of professional domains by Tencent to form a hier-
archy (see Figure 2). For example, an item, Dr. Kaifu LEE, is represented as science-and-
technology.internet.mobile [1].

[category

& item

Figure 2: Ttem categories organized in hierarchy. The pointed item belongs to the category
a.b.d.f.

The number of an item’s followers indicates its popularity directly. Recommending hot items
in a user’s interested field promotes the possibility of acceptance effectively. Let I = {i1, 42, ...,%n}
be the item set and hj be the category (hierarchy) of an item ix(hy may coincide in some
hj, and the set of hj is denoted as H). Then the rank of i, in hy is computed by hot; =
get_hot_rank(ix, hi;) where the function counts and normalizes the number of i;’s followers and
return its ranking in hy.

For users who show little of their preferences(especially the fake users) we recommend the
most popular items in the whole itemset. Similarly the hot rank of i in the whole item set [is
HOT, = GET_HOT_-RANK (iy,).

3.3.2 Mining Interests from Keywords

Users are inclined to accept items of their interests. Active users have more keywords which
reflect their favourites, and we map these interests to the hierarchy H to obtain candidate items.
Consider the keyword classes set keyword_class = {class;} generated by the keyword analy-
sis. A mapping K#H is defined to construct the keyword class of a given category hj (see section
3.3.4 for details). Suppose a given user u;(or a given item i) has keywords K; with weights. A

function key_class(u;j) = {class;;} computes the keyword class of a given user u; (or item i),
and the corresponding weight of class;; is

Wji = Z wi.

kieKjNclassj;

A vector function class_weight() is defined on U U I to compute the weight of keyword classes
in the user or item’s keyword set.

After keyword analysis of individuals the target categories {hy} is generated where hy, satisfies
KH(hi) N key_class(uj) # @, hence the candidate items are the items in each hy(suppose iy
included). The similarity between candidate i and u; is the normalized Euclid distance of these
2 vectors.

3.3.3 Discovering Potential Interests

Few inactive users have enough keywords, hence we design indirect collaborative filter to mine
their potential interests from their followees and even their followees’ followees (see Figure 3).

® © - - -

user linked user follow bi-follow indirect linked

Figure 3: User network with indirect links (depth = 2). Indirectly linked users interact with each
other even without followships. The length of the arrows represents the familiarity between two
users(a user may be more familiar with some indirectly linked users than its followees).

Let depth be the maximal levels amount of the searching process, in fact depth < 3 is enough
for the process to mine a user’s potential interests. The related users of u; is related_users(u;) =
search_followee(u;,depth). Then for every uy in related_users(u;) we compute the keyword
classes as mentioned above and merge them into the set

potential _key(u;) = U key_class(uy)

uy €related_users(uy)

where the i*" keyword class class;; has the weight

Wi = E Wi, fami(ug, ug).
upErelated_users(uj),
classklk =classj;

fami(uj, ui) computes the familiarity of u; and uj by adopting indicators of interactions(at(@),
retweet and comment) which could only happen in linked users.

Finally we merge key_class(u;) and potential_key(u;) into the set interests(u;) = {class;1}
with weight of classj

Wit classj; = classj;, € key_class(u;)
Wi = q W, classj; = classjly € potential_key(u;) .
1 (Wi, + Wi,), classji in both sets
Correspondingly the target category {hx} satisfies KH(hi) N interests(u;) # &, and the can-
didate items are in each hj as mentioned before (suppose iy included). We modify the vector
function class weight(u;) which is defined in section 3.3.2 by using interests(u;) to substitute
key_class(u;), i.e. Wj; instead of W ;;, and compute the similarity of u; and ij as before. In this
way, we get the similarity between items and inactive users. The algorithm can also be applied
to the recommendation for the active users with smaller value of depth.

3.3.4 Grading Function

The grading function grade(u;,) computes the possibility of acceptance (positive grade) or
rejection (negative grade) with indicators of ij’s popularity and sim(u;, i) computed as above
(see Figure 4). Then we pick out the first k candidates and sort them in descending order to
generate final recommendation, where in our case k = 3.

‘ keyword analysis |? KH mapping I:l similarity & ranking é

user interest category item

(keyword class) (hierarchy)

Figure 4: Recommendation process. Keywords analysis extracts user’s interests, H mapping
match these interests to corresponding item categories thus obtains the set of candidates, and
the grading function assign grades of the recommendation by computing the similarity and
popularity.

Let I and H be the item set and the category (hierarchy) set as previously defined and suppose
we have extracted keyword classes of each user and item. KH(hy) computes the keyword classes
of a given category hj with corresponding weight of classy,

Wkp = average(Wi,),ij € hy, key_class(ij)(l;) = classj;, = classgy.

We revise the definition of class_weight() (see Section 3.3.3) by extending its domain to H.
Then the the ratio of u;’s fondness for category hy fond() is defined on U x H by

fond(uj, hi) = g(class weight(u;) - class_weight(hy), 100),

where g(z,y) is a normalization function.
Finally the grading function of active/inactive users is

grade(u;,ix) = 2fond(u;, hi)(a1hoty, + agsim(uj,ix)) — 1,01 + @2 =1, > 0.

Valued in [—1,1], the grading shows the possibility of acceptance (positive grade) or rejection
(negative grade). Considering the variance of user preferences in a certain period, a revised
grading function is defined as

1
revised_grade(u;,ix) = —time(u;, hi)grade(u;, i),

A
where time(uj, h) = 14+ (A — 1)e’,t € (—00,0]. ¢ is the time of u;’s latest acceptance of items
in hy (the current time is ¢ = 0 and the default time is ¢ = —oo if no acceptance). A indicates

the proportion of recent interest (in our experiment A = 2).

Fake users receive different treatment. Observing the difficulty to apply similarity and
familiarity function, potential_key(u;) is not generated, i.e. interests(u;) = key_class(u;),
Wi = le. The grading function of their recommendations only encompasses the hot rank
and the preference:

grade(u;, i) = (1 + fond(uj, hy))HOT) — 1.

This definition emphasizes the popularity of the item in I and increases the grading if 75 and
u;’s interests coincide.

4 Training

We perform the stochastic gradient training to obtain the optimal parameters, which affects
the performance of our system. However, we omit this training of fake users’ grading algorithm
since its parameters are initialized already. To accelerate the training we only search the related
users of u; to compute the gradient of potential interests’ weights, but in fact we should include
all the nodes (users) in u;’s social network for computation.

5 Experiment and Improvement

5.1 Training Result

In our experiment we sampled 5,938 users’ recommendation records from the dataset [§]
stochastically and divided them into 2 subsets for training and testing. We assigned the same
proportion of at(@), retweet and comment when computing fami(u;, ur). Table 1 presents the
results of the training process. The result shows an evident discrepancy of a;y, which reflects the
inclination of accepting popular items. Inactive users prefer items with similar interests while
active users prefer items with high popularity.

user class user followee interaction keyword a3

active 3919 46 87 10 0.33
inactive 1194 27 42 8 0.18
fake 825 18 2 5 /

Table 1: Training Sets and Optimal Parameters. Fake users’ grading function has no parameters
to update so we omit the training process of it.

5.2 Prediction and Precision Evaluation

We computed grade(u;j, i) of all result(u;,ix) in testing subset and generated ordered item
list of w;(see section 3.3.4) to test the trained system. The evaluation metric is the mean average

precision AP@3 [?] which KDD Cup’s organizers adopted. Table 2 presents the M AP@3 (mean
value of AP@3(u;)) results and Table 3 presents the recommended item lists and the average
precision of some users. The precision of fake users’ prediction is much lower than others’ in
our experiment due to the difficulty of their interests’ extractions. Adjusting min_action or
recommending their linkers on other related platforms like QQ might help improve the results.

active inactive fake total
0.41066 0.46879 0.33606 0.41198

Table 2: Prediction Evaluation. Mining potential interests from inactive users’ followees improves
the performance of recommendation. Fake users’ result is not good as the others.

u;j user class item accepted item AP(u;)

2071402 active 1606902 1606902 0.83
1760350 1774452
1774452

942226 inactive 1606902 1606902 1.00
1606609
1774452

193889 fake 1760642 1774862 0.33
1774684
1774862

Table 3: Examples of Prediction. User 2071402 accepts the 15* and 3"? items, then APQ3 =
(1 + 2)/2 = 2; User 942226 only accepts the 1°* item, then AP@3 = 1 = 1; User 193889 only
accepts the 37¢ item, then APQ3 = %

5.3 Improvements of the System

There are approaches to enhance the performance and overcome the limitations of our system.
Recommendation based on demographic methods [?] can help in enhancing the percentage of
acceptance. Refined keyword analysis and user taxonomy can improve the recommendation.
Users who follow items in the same category or interact with users who have explicit preferences
can be grouped in identical user class. They share synonyms in their keywords and accept
similar items in a high possibility based on the similarity of preferences. Adaptation to the
frequently updated microblog platform’s database can get user’s present interests. Fortunately
user’s interests and behaviours are stable in a short period, so the system only needs retrains
stochastically and gradually, which is fast and accurate.

6 Conclusion and Future Work

This review presented a hybrid recommender system for microblog to solve Track 1 task, KDD
Cup 2012. The system analysed the synonyms and behaviours of different users, extracted their
(potential) interests, found the target categories, graded the candidate items in those categories
with indicators of popularity and similarity, and finally generates ordered item lists respect to
each user. Experimental result showed high performance of our algorithm. Future works includes
the initialization of grading function’s parameters needs improvement. Dynamic algorithms

which reduce the risk of inaccuracy by searching the best algorithm through competition also
deserves further study.

References

[1]

2]

[7]

8]

[9]
[10]

K. C. 2012. Predict which users (or information sources) one user might follow in tencent
weibo. http://www.kddcup2012.org/c/kddcup2012-trackl, 2012.

R. Agrawal, T. Imieliriski, and A. Swami. Mining association rules between sets of items
in large databases. In Proceedings of the 1998 ACM SIGMOD international conference on
Management of data, SIGMOD ’93, 1993.

Baidu. Zombie fans on weibo. http://baike.baidu.com/view/4047998.htm, 2010.

D. Cheung, J. Han, V. Ng, A. Fu, and Y. Fu. A fast distributed algorithm for mining asso-
ciation rules. In Parallel and Distributed Information Systems, 1996., Fourth International
Conference on, dec 1996.

J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl. Grouplens:
applying collaborative filtering to usenet news. Commun. ACM, 1997.

Kyle. Sina commands 56% of china’s microblog market.
http://www.resonancechina.com/2011/03/30/sina-commands-56-of-chinas-microblog-
market/, March 2011.

M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social
networks. Annual Review of Sociology, 2001.

Y. Niu, Y. Wang, G. Sun, A. Y. B. Dalessandro, C. Perlich, and B. Hamner. The Tencent
Dataset and KDD-Cup’12. KDD-Cup Workshop, 2012.

Tencent. About tencent. http://www.tencent.com/en-us/at/abouttencent.shtml, 2012.

Z. Wang, Y. Tan, and M. Zhang. Graph-based recommendation on social networks. In Web
Conference (APWEB), 2010 12th International Asia-Pacific, 2010.

