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Abstract

Nowadays machine learning (especially deep learning) techniques are being incorporated
to many intelligent systems affecting the quality of human life. The ultimate purpose
of these systems is to perform automated decision making, and in order to achieve this,
predictive systems need to return estimates of their confidence. Powered by the rules of
probability, Bayesian inference is the gold standard method to perform coherent reasoning
under uncertainty. It is generally believed that intelligent systems following the Bayesian
approach can better incorporate uncertainty information for reliable decision making, and be
less vulnerable to attacks such as data poisoning.

Critically, the success of Bayesian methods in practice, including the recent resurgence of
Bayesian deep learning, relies on fast and accurate approximate Bayesian inference applied to
probabilistic models. These approximate inference methods perform (approximate) Bayesian
reasoning at a relatively low cost in terms of time and memory, thus allowing the principles
of Bayesian modelling to be applied to many practical settings. However, more work needs
to be done to scale approximate Bayesian inference methods to big systems such as deep
neural networks and large-scale dataset such as ImageNet.

In this thesis we develop new algorithms towards addressing the open challenges in
approximate inference. In the first part of the thesis we develop two new approximate infer-
ence algorithms, by drawing inspiration from the well known expectation propagation and
message passing algorithms. Both approaches provide a unifying view of existing variational
methods from different algorithmic perspectives. We also demonstrate that they lead to
better calibrated inference results for complex models such as neural network classifiers and
deep generative models, and scale to large datasets containing hundreds of thousands of
data-points. In the second theme of the thesis we propose a new research direction for ap-
proximate inference: developing algorithms for fitting posterior approximations of arbitrary
form, by rethinking the fundamental principles of Bayesian computation and the necessity of
algorithmic constraints in traditional inference schemes. We specify four algorithmic options
for the development of such new generation approximate inference methods, with one of
them further investigated and applied to Bayesian deep learning tasks.
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Chapter 1

Introduction

Can you tell whether a coin is fair or bent, given the following independent coin toss results:

head, tail, tail, head.

Maybe you would say “the coin is fair”. But why, and how confident you are in your
answer? Furthermore, if I offered you a bet on the next outcome of a coin flip, at what odds
would you take that bet?

A Bayesian statistician can easily answer all of the above questions by following Bayesian
decision theory [Berger, 2013; Bishop, 2006]. Before observing the coin flip results, he/she
will first determine a prior belief on whether the coin is bent or not. Usually this belief
is represented by two probability values P(fair) and P(bent) that sum to one. Then he/she
builds a conditional probability – for example P(head|fair) is the probability of the coin flip
“head” given that the coin is fair – to describe the likelihood of a fair/bent coin given an
observation. After observing some simulation outcomes, he/she will adjust his/her posterior
belief on the unknown properties of the coin using Bayes’ rule [Bayes and Price, 1763;
Laplace, 1820]:

P(fair|coin flip results) =
P(coin flip results|fair)P(fair)

P(coin flip results)
(1.1)

where in our example, the conditional and marginal probabilities are calculated by simply
following the sum rule and product rule of probability:

P(coin flip results|A) = P(head|A)P(tail|A)P(tail|A)P(head|A), A ∈ {fair,bent},



2 Introduction

P(coin flip results) = P(coin flip results|fair)P(fair)+P(coin flip results|bent)P(bent).

The Bayesian statistician can finally answer the question, by picking the one with the
largest posterior probability, i.e. the coin is fair if

P(fair|coin flip results)> P(bent|coin flip results),

or the coin is bent otherwise. Furthermore, he/she can tell us how confident he/she is, for
example “the posterior probability of the coin being fair is 60%, so I am not very confident
when saying the coin is fair”. In general, by gathering more coin flip results (more than
four simulation outcomes in this case), he/she continues adjusting the posterior belief for
a fair/bent coin using Bayes’ rule, and becomes more confident about the inferred answer.
Having the inference result at hand, he/she can even predict the outcome of a future coin flip
experiment, again with an uncertainty estimate, then decide whether he/she should accept the
bet as well as the correct odds yielding a positive expected return.

The coin flip problem is just an elementary example of Bayesian inference, and in general
these principles of inference and decision making apply to many real-world tasks as well.
Powered by the rules of probability, Bayesian methods allow us to infer the unknown factors
given the observed data, quantify the confidence of the inferred results, and make predictions
with calibrated uncertainty estimates that support decision making. Critically, Cox [1946]
argued that, reasoning under probability rules is the only way to perform coherent inference
under uncertainty.1 So ideally, Bayesian methods should be applied to any situation where
well-calibrated inferences need to be made from data. These include prediction tasks such as
classifying cat and dog images, and decision making tasks like determining the next action
for a robot.

Despite having many desirable theoretical properties, Bayesian methods are less widely
used in many exciting applications of artificial intelligence, especially those powered by
deep learning [Goodfellow et al., 2016; LeCun et al., 2015; Schmidhuber, 2015] such as the
AlphaGo system [Silver et al., 2016, 2017] that defeated human Go champion Ke Jie 3-0.2

Although the Bayesian approach maintains a posterior distribution of all possible settings of
the unknown factors which is desirable, it also requires computing the marginal probability
of the observations (in our example P(coin flip results)) that involves evaluating all possible
settings of the neural network weights. Observing this, a deep learning practitioner might
respond that “it takes forever to compute Bayes’ rule for my task, so I’d better stick to a point
estimate that minimises the training error.” Two recent trends of deep learning applications

1Also see chapters 1 and 2 in Jaynes [2003].
2https://en.wikipedia.org/wiki/AlphaGo_versus_Ke_Jie

https://en.wikipedia.org/wiki/AlphaGo_versus_Ke_Jie
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make the situation even worse for Bayesian inference: 1) the neural networks employed are
getting deeper and wider [He et al., 2016; Huang et al., 2017, 2016], and 2) a typical dataset
for deep learning tasks contains millions (if not billions) of instances [Abu-El-Haija et al.,
2016; Deng et al., 2009].

But still, uncertainty quantification is crucial to achieving better deep learning. First,
deep learning models are often over-parameterised, and using a point estimate can easily
lead to over-fitting and poor predictive performance. Second, as nowadays deep learning
techniques are being incorporated into many systems affecting the quality of human life
(e.g. intelligent personal assistants, machine translation, even intelligence systems supporting
autonomous driving and health care), it is crucial to make sure these systems know how
confident the model is when performing decision making. Also, uncertainty information is
essential to solving the exploration-exploitation trade-off, which helps learn a better agent
faster in reinforcement learning and robotics applications [Deisenroth and Rasmussen, 2011;
McAllister and Rasmussen, 2016]. Furthermore, Bayesian methods are the gold standard
approaches for data efficiency, which is crucial to build a better prediction system for tasks
that usually don’t have enough labelled cases, and potentially present lots of missing values,
e.g. medical applications.

Fortunately, if fast and accurate approximation schemes could be applied to the quantities
that a Bayesian statistician would like to compute, then he/she can still perform (approximate)
Bayesian inference and quantify the model uncertainty accordingly. Hence the primal
challenge for Bayesian inference today is to design fast and accurate approximate inference
algorithms for complex systems like neural networks and scale them to large datasets,
which will be the main subject of the thesis. But before we delve into the development of
such algorithms, in the rest of this introductory chapter I shall introduce the mathematical
background for approximate inference, and identify fundamental research questions about
this subject.

1.1 Inference, integration and optimisation

Probabilistic modelling starts by defining a distribution of data. For instance, in discriminative
supervised learning, one would define a conditional distribution p(y|xxx,θθθ), which is also
called the likelihood function of θθθ . A concrete example for this would interpret p(y|xxx,θθθ) as
outputting the probability of a configuration of y (e.g. a label or a real value) by transforming
the input xxx (an image, a sentence, etc.) through a neural network parameterised by θθθ . Before
observing any real-world data, the parameters θθθ are unknown, but we have a prior belief
p0(θθθ) about what value they might take, e.g. they should have small ℓ2 norm if using a
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Gaussian prior centred at zero. Then we receive the observations D = {(xxxn,yn)}N
n=1, and

based on data we want to answer questions on the unknown parameters θθθ , for example:
given D, what is the most probable value of θθθ , and how likely is θθθ to be set to a given value?
Answering these questions is precisely the procedure of inference: a procedure of deducing
unknown properties (in our example the neural network weights) given the observed, or
known information.

1.1.1 Exact Bayesian inference as integration

Bayesian statisticians are particularly interested in answering the second question, by com-
puting the posterior distribution, or the posterior belief of θθθ given D, using Bayes’ rule:

p(θθθ |D) =
p(D|θθθ)p0(θθθ)

p(D)
, (1.2)

with p(D|θθθ) = ∏n p(yn|xxxn,θθθ) following the i.i.d. assumption. The elegance of Bayes’ rule
is that it separates inference from modelling. The model – the prior distribution and the
likelihood – completely determines the posterior distribution, and the only thing left is to
compute the inference.

A closer look at Bayes’ rule reveals that the core computation of Bayesian inference is
integration. Using the sum rule and product rule of probability distributions we have the
marginal distribution computed as3

p(D) =
∫

p(D|θθθ)p0(θθθ)dθθθ ,

and if this integral is tractable, then the posterior distribution can be easily computed by (1.2).
Moreover, to predict the label y∗ on unseen datum xxx∗ a Bayesian statistician would compute
the predictive distribution

p(yyy∗|xxx∗,D) =
∫

p(yyy∗|xxx∗,θθθ)p(θθθ |D)dθθθ , (1.3)

which again requires solving an integration problem. Even more, since it is hard to visualise
the posterior distribution in high dimensions, one would instead look at statistics of the
posterior, for example

posterior mean µ =
∫

θθθ p(θθθ |D)dθθθ ,

3In discrete variable case the integral is calculated w.r.t. discrete measure, i.e. summation, which will also
be referred as integration in the rest of the thesis.
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posterior covariance matrix Σ =
∫
(θθθ −µ)(θθθ −µ)T p(θθθ |D)dθθθ ,

both are integration tasks as well. In summary, many tasks in Bayesian computation can be
framed as computing an integral of some function F(θθθ) against the posterior distribution:∫

F(θθθ)p(θθθ |D)dθθθ , (1.4)

and the goal of this thesis is to study how to perform this integration pragmatically and
efficiently.

1.1.2 Approximate Bayesian inference as optimisation

Having an integration task at hand, the first action I would take is to check my college
calculus book with the hope of finding an analytical solution. Unfortunately, for a vast
number of integrands and distributions, the integral (1.4) does not exhibit an analytical form
(or at least people have yet to discover it). This is particularly the case for neural networks:
except for some limited special cases,4 in general the marginal probability is intractable, let
alone the posterior and the predictive distribution.

Instead of finding tractable forms of the integral, many mathematicians have their research
careers dedicated to an alternative method: numerical integration. Because in a continuous
space one could never compute F(θθθ)p(θθθ |D) at all locations then sum them up, instead
methods such as discretisation and Monte Carlo are employed. The Monte Carlo idea is
particularly interesting in our context: since the integral is computed against a probability
distribution, a naive approach would first sample from the posterior θθθ k ∼ p(θθθ k|D) then
approximate the integral as

∫
F(θθθ)p(θθθ |D)≈ 1

K

K

∑
k=1

F(θθθ k). (1.5)

However this simple Monte Carlo approach assumes that the posterior distribution is easy
to draw samples from, which is again intractable in most scenarios. Statisticians have
applied advanced sampling schemes to (approximately) draw samples from the posterior,
including importance sampling, rejection sampling and Markov chain Monte Carlo (MCMC)
[Gelman et al., 2014]. Unfortunately, in high dimensions these methods are likely to require
a considerable number of samples (if the random variables are highly correlated), and the
simulation time for MCMC can be prohibitively long (e.g. due to slow mixing).

4e.g. the prior is Gaussian and the neural network only has one hidden layer with ReLU activation. See
Hernández-Lobato and Adams [2015] for details.
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Now comes the brilliant idea of approximate inference: can we find another distribution
q(θθθ) that makes the computation of the integral

∫
F(θθθ)q(θθθ)dθθθ comparably easier, and at

the same time has minimal approximation error to the exact integral we want? Concretely,
using the knowledge of the functional form F one can come up with a class of candidate
distributions Q, in which integrating F w.r.t. any q∈Q has analytical form or can be evaluated
quickly with numerical methods. Then the only task here is to obtain the optimal q distribution
in Q such that the q integral is the most accurate approximation to the exact one. So in
short, approximate inference converts the integration problem of (Bayesian) inference into
an optimisation task. For example, an indirect5 approach for fitting the q distribution would
minimise a distance/divergence/discrepancy measure from the approximation to the exact
posterior

q∗(θθθ) = argmin
q∈Q

D[q(θθθ)||p(θθθ |D)]. (1.6)

Note here the measure D[·||·] might not be symmetric. A popular choice for the divergence
measure is the Kullback-Leibler divergence [Kullback, 1959; Kullback and Leibler, 1951]
which leads to the widely used variational inference algorithm [Beal, 2003; Ghahramani and
Beal, 2000; Jordan et al., 1999]. In general an optimisation objective function F is designed
to allow an accurate approximation to be obtained:

q∗(θθθ) = argmin
q∈Q

F(q(θθθ); p(θθθ |D)), (1.7)

which might not reflect a specific choice of divergence/discrepancy. Often this objective
function F is crafted such that at the optimum, F∗ can serve as an accurate approximation to
the (log) marginal distribution, or model evidence log p(D) as well. A prevalent approach
in this category considers constrained optimisation of the Bethe free energy [Bethe, 1935]
that was first studied in statistical physics, which has also been shown as the underlying
objective of another popular approach called belief propagation [Pearl, 1982]. All these
methods are thoroughly discussed in Chapter 2. Once q is obtained, at prediction time the
Bayesian predictive distribution (1.3) is approximated by

p(yyy∗|xxx∗,D)≈
∫

p(yyy∗|xxx∗,θθθ)q(θθθ)dθθθ . (1.8)

Other interesting quantities to be computed include the (approximated) Bayesian averaged
prediction y∗avg =Eq[NNθθθ (xxx∗)] if p(yyy∗|xxx∗,θθθ) is defined by a neural network y∗pred =NNθθθ (xxx∗)
that is parametrised by θθθ .

5a direct method would consider minimising error(Eq[F ],Ep[F ]), however that involves the exact integral
and is mostly intractable.
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Remark (other inference methods). Not all statisticians and engineers agree with the
Bayesian modelling paradigm. For example, in deep learning a dominating method
for training neural networks is loss function minimisation, which first defines a loss
function ℓ(y, ŷ) between the true label y and the prediction ŷ = NNθθθ (xxx), then minimises
the averaged loss computed on the dataset D. Under fairly mild conditions we show in
Section 2.5.2 that this corresponds to a maximum likelihood estimation (MLE) [Fisher,
1922] of the unknown parameters θθθ , which puts a uniform prior (which can be improper)
on the weights θθθ . Also in many cases, adding regularisations such as the ℓ2 or ℓ1

regularisers corresponds to defining a prior distribution on θθθ , which turns the optimisation
into a maximum a posteriori (MAP) problem. Both cases can be framed in the variational
inference framework with the q distribution as a Dirac delta function.

Remark (direct approximations to the predictive distribution). For Bayesian neural net-
works (introduced later) people are often more interested in the predictive distribution
p(y∗|xxx∗,D). Indeed, Snelson and Ghahramani [2005] and Korattikara et al. [2015] consid-
ered training a parametric model p̂(y|xxx,φφφ) to form a direct approximation to p(y∗|xxx∗,D),
where p(y∗|xxx∗,D) is (approximately) computed with a carefully tuned MCMC sampler.
The approximation is done by distillation [Hinton et al., 2015], which means the training
data for the “student model” p̂(y|xxx,φφφ) is generated from the “teacher model” p(y∗|xxx∗,D).
Although this approximation is arguably more direct, with an explicit approximation
q(θθθ) ≈ p(θθθ |D) one can perform many (approximate) integration tasks with different
F(θθθ) functions at the same time.

Remark (a comparison to Bayesian quadrature). Another important technique for approx-
imating integrals is Bayesian quadrature [Ghahramani and Rasmussen, 2003; Kennedy
and O’Hagan, 1996; O’Hagan, 1991], which has attracted a lot of attention as well and has
been expanded to form part of an emerging research field called probabilistic numerics.a

Here we note that, Bayesian quadrature and the approximate inference methods discussed
above, address different intractability issues in integration tasks. Typically, Bayesian
quadrature assumes the analytical form of the function F is unknown or very expensive to
evaluate, and builds a probabilistic model (e.g. Gaussian process) for F given samples
from the target distribution p. Approximate inference, on the other hand, constructs ap-
proximate distributions to the intractable distribution p, and considers tractable functions
F instead. In short, both approaches can be categorised as model-based approximate
integration, with the only difference that they fit approximations to different components
of the integrand. Readers are also referred to e.g. approximate Bayesian computation
[Beaumont et al., 2002] for those integrands without tractable F and p, and in this thesis
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we only study approximate inference methods and assume F is analytic and cheap to
compute for a given configuration.

ahttp://www.probabilistic-numerics.org/

1.2 Questions to be answered for algorithmic design

We have just introduced the concept of approximate inference, but in a very vague way.
Precisely what does an “accurate approximation” look like? In which sense can we claim the
designed method is “computationally easier” than the exact integration problem? In general
we need to answer the following questions when developing new variants of approximate
inference algorithms:

Q1 What is the measure of “accuracy”?
It is crucial to define the accuracy measure for the specific tasks that approximate
inference is applied to. For example Alice might care about the accuracy in terms
of the (approximated) predictive likelihood (1.8), but instead Bob might want an
accurate approximation to the model evidence log p(D) for model selection and/or
hyper-parameter optimisation. Unfortunately, no approximate inference algorithm can
provide satisfactory answers for any possible accuracy measure, hence users are en-
couraged to think about what they really want from an approximation procedure. In the
rest of the thesis we answer this question by considering the (approximate) predictive
likelihood, predictive error and the log marginal likelihood log p(D) (log p(xxx) in latent
variable model settings) computed using the obtained approximate posterior.

Q2 Which optimisation procedure/objective function should be used?
Ideally we should directly minimise the error of approximation according to the choice
of accuracy measure. For example, if the answer to Q1 is to obtain an approximate
posterior with minimal error measure by a selected divergence, then minimising that
divergence is arguably “the correct thing to do”, and it would return the exact answer
if the exact posterior is contained in the candidate distribution set Q. However such a
desired measure might be intractable to minimise, and most of the time we are forced to
select an alternative, or a surrogate energy function due to tractability concerns. Hence
Q2 can be rephrased as, given a set of “tractable” optimisation methods, how do we
choose the best one of them such that an “accurate” (as defined in Q1) approximation
could be obtained?

http://www.probabilistic-numerics.org/
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Q3 What does “computational efficiency” mean here? What constraints are present?
As discussed in Section 1.1.2, we resort to approximation because 1) analytical solu-
tions are unavailable and 2) the computational resource is limited to perform numerical
integration directly. The latter computational constraints include:

– low time complexity required by large-scale inference tasks or online algorithms
that needs real-time inference;

– low space complexity that is crucial for the “big data, big model” settings (typi-
cally the case for deep learning);

– and algorithmic tractability that simply requires the objective function/gradients/-
fixed point equations to be computable in a fast way, as these are sub-routines in
the optimisation procedure.

Another practical concern might be, to what extent the designed algorithm could be
incorporated into existing infrastructure, with minimal adjustment. For example, deep
learning systems prefer gradient-based methods over fixed-point iterative updates,
so that we should arguably prioritise gradient descent when designing approximate
inference algorithms for them. These constraints are incorporated to the selection of
both the inference algorithm and the approximate distribution family Q.

In principle, Q2 and Q3 should be addressed together. For example, new variational
objectives are required when the approximate distribution contains mixture components
[Jaakkola and Jordan, 1998; Maaløe et al., 2016; Ranganath et al., 2016b; Salimans et al.,
2015; Tran et al., 2016]. In other words, the “tractability” in Q2 is mainly defined by the
answers to Q3. But in many cases people simply select a widely used approximate inference
method (e.g. variational inference) which eventually adds the algorithmic tractability con-
straints, and focus more on the design of approximate distributions. One of the main topics
studied in this thesis is to remove as many as possible of these algorithmic restrictions, with
the hope of enabling very flexible q distributions to be used for better inference results.

1.3 Thesis outline

The rest of the thesis is organised in two themes (or two parts):

I Understanding existing research: unifying variational methods.
This part of the thesis focuses on the optimisation procedures of existing approximate
inference methods, and proposes generalised algorithms that provide unifying views.
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Chapter 2 summarises existing literature on popular approximate inference algorithms
and applications. Then in Chapters 3 and 4, two unifying views of variational methods
will be presented from different perspectives, in order to both provide a comprehensive
understanding and enable wider applications to Bayesian deep learning.

II Proposing a new research direction: wild approximate inference.
In this theme the focus turns to the discussion of approximate inference algorithms that
suit complex approximations. In Chapter 5 I will revisit the principles of approximate
inference again, and discuss the importance of developing new approximate inference
methods that allow the use of implicit approximations or implicit sampling procedures.
In Chapter 6 I will demonstrate with a concrete example how we can train this type
of approximation, and demonstrate how this technique enables new applications of
approximate inference such as to meta-learning.

Finally Chapter 7 concludes the thesis and discusses future directions of research.
To make the presentation concise I will move all derivation and proof details into Ap-

pendix A (except those are crucial to the presentation). Optional materials for further reading
are also included in Appendix B. Additional comments and discussions are also presented as
“remark” paragraphs just as readers might have seen in previous pages. All these materials
can be safely skipped for first reading.



Part I

Unifying Variational Methods





Chapter 2

Divergences, Algorithms and
Applications

To kickstart the discussion of variational methods unification, I provide a condensed intro-
duction to two classes of well-known approximate inference techniques. I will first start by
discussing statistical divergence measures since both of them are closely related to divergence
minimisation. Then I will review the two methods in detail. Finally, I will touch on two
main learning tasks in Bayesian deep learning as the primary applications of the approaches
developed in this thesis.

2.1 Statistical divergences for probability distributions

Many approximate inference algorithms measure the approximation quality by considering
the “closeness” between the target and the approximation. In this thesis, we will mainly
focus on the case where both the target and the approximation are expressed by probability
distributions. Then the concept of “closeness” is established as divergence. Before introduc-
ing the formal definition, we briefly discuss the definition of the probability density function
(PDF)1 as preparation.

Denote the measurable space as (Θ,Σ), where Θ is the sample space of the random
variable θθθ of interest, and Σ is a pre-defined σ -algebra on Θ. A probability distribution P is a
measure defined on Σ such that P(Θ) = 1. Also we assume there exists a dominating measure
(also called reference measure) µ on Σ such that, for a probability distribution P in interest
which is defined on Σ, we can define its probability density function p by dP = pdµ .2 For

1For discrete case we refer PDF as probability mass functions (PMF).
2We can also define divergences without assuming a common reference measure, which is out of the scope

of this thesis. In this case one should work with equalities up to zero measure.
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simplicity in the rest of the thesis we will work with the sample space Θ =RD, the σ -algebra
Σ = {S : S ⊂ RD}, and the dominating measure dµ = dθθθ . Finally we write P the space of
PDFs such that any probability distribution P defined on Σ has its PDF p ∈ P.

With all the preparation above we now provide a formal definition of divergence.

Definition 2.1. (Divergence) Given a set of probability density functions P for a random
variable θθθ , a divergence on P is defined as a function D[·||·] : P×P→R such that D[p||q]≥
0 for all p,q ∈ P, and D[p||q] = 0 iff. p = q.

This definition is much weaker than that for a distance such as the l2-norm, since it does
not need to satisfy either symmetry in arguments or the triangle inequality. Hence there exist
many available divergences to use, and in this section we review some of the popular choices.
We start from the well-known Kullback-Leibler (KL) divergence and discuss its properties
and applications. Then we move to a more general case and review α-divergences which
will be the main divergence tools for the algorithms developed in the first part of the thesis.
In Appendix B.1 we also briefly touch on two very general cases, f -divergence and Bregman
divergence, and discuss their connections to α-divergences.

2.1.1 Kullback-Leibler (KL) divergence

Kullback-Leibler divergence [Kullback, 1959; Kullback and Leibler, 1951], or KL divergence,
is arguably one of the most widely used divergence measures, not only in approximate
inference but also in machine learning, statistics, and information theory.

Definition 2.2. (Kullback-Leibler Divergence) The Kullback-Leibler (KL) divergence on P

is defined as a function KL[·||·] : P×P→ R with the following form

KL[p||q] =
∫

p(θθθ) log
p(θθθ)
q(θθθ)

dθθθ , p,q ∈ P, (2.1)

where log is the natural logarithm (to base e).

One can easily check that indeed the above definition is a valid divergence. By Jensen’s
inequality (see Appendix B.5) we have (2.1) always non-negative, and it reaches zero
iff. p = q. Also it is clear that the KL divergence is asymmetric, i.e. KL[p||q] ̸= KL[q||p].
Historically, especially when used in approximate inference context, these two cases have
been referred as the inclusive KL divergence for KL[p||q], and the exclusive KL divergence
for KL[q||p]. These names originate from the observation that fitting q to p by minimising
these two KL divergences returns results of different behaviour, detailed as follows:
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• Fitting q to p by minimising KL[q||p]:
This KL divergence would emphasise assignment of low probability mass of q to the
location where p is very small, thus the name “exclusive” KL. Consider a region S ∈Θ

that has q(θθθ)> 0 but p(θθθ) = 0 for θθθ ∈ S, then this would make the integrand in (2.1)
infinity, thus the KL divergence assigns an extremely high cost to q here. On the other
hand, if p(θθθ) > 0 but q(θθθ) = 0, then the integrand restricted to the subset S is zero,
meaning that the cost for missing a region with positive p mass is much lower. We
also refer this property as “zero-forcing”, or “mode-seeking” when q is restricted to be
uni-modal.

• Fitting q to p by minimising KL[p||q]:
Conversely, this KL divergence would emphasise assignment of high probability mass
of q to the location where p has positive mass, thus the name “inclusive” KL. Consider
the case that q(θθθ)> 0 but p(θθθ) = 0, then this would make the integrand in (2.1) zero.
In contrast, if p(θθθ)> 0 but q(θθθ) = 0, then the integrand is infinity, meaning that the
cost for missing a region with positive p mass is extremely high. We also refer this
property as “mass-covering”.

Later we will see how these two KL divergences have been applied to approximate
inference algorithms such as the widely used variational inference [Beal, 2003; Jordan et al.,
1999] and expectation propagation [Minka, 2001b]. But here we switch the topic to maximum
likelihood estimation (MLE) [Fisher, 1922] for a moment, in which we will show that MLE is
also equivalent to minimising a KL divergence. For a given dataset D= {xxx1, ...,xxxN}, define
the empirical distribution as p̂D(xxx) = 1

N ∑
N
n=1 δ (xxx− xxxn) where δ (·) denotes the Dirac delta

function. Then we want to fit the data with a parametric probabilistic model p(xxx|θθθ) using
MLE:

θ̂θθ
ML

= argmax
θθθ∈Θ

1
N

N

∑
n=1

log p(xxxn|θθθ). (2.2)

Simple calculation reveals that maximising the log-likelihood of θθθ is equivalent to minimising
the KL divergence

θ̂θθ
ML

= argmin
θθθ∈Θ

KL[p̂D(xxx)||p(xxx|θθθ)] = argmin
θθθ∈Θ

− 1
N

N

∑
n=1

log p(xxxn|θθθ)+ const.

MLE is widely used in all types of machine learning tasks, e.g. learning generative models
(Section 2.5.1).
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2.1.2 Amari’s α-divergences

Besides the KL divergence, do we have other choices of divergences for approximate
inference? Certainly there are, and here we review a rich class of them called α-divergences.
Interestingly there exist multiple (slightly) different definitions of α-divergences, and in the
sequel we will formally introduce the version that will be the focus of this chapter. Before
that I provide a short (and possibly incomplete) history for these developments in below.

Just after a year of the proposal of the KL-divergence, statistician Herman Chernoff
introduced a test statistic for the likelihood-ratio test [Chernoff, 1952], and at the end of the
paper, he linked the proposed technique to a divergence measure that is computed by the
infimum of an integral. That integral has later been referred as the Chernoff α-coefficient∫

p(θθθ)αq(θθθ)1−αdθθθ , α ∈ (0,1),

which is used in all later variants of α-divergences.
In 1961, mathematician Alfréd Rényi argued that, by removing the additivity require-

ment, Shannon entropy can be further generalised to many interesting cases [Rényi, 1961].
He proposed one of such entropy definitions, and then characterised the induced mutual
information and relative entropy measures using his version of α-divergence.3 These two
quantities are now referred to Rényi entropy and Rényi divergence, respectively, and the latter
will be employed as the divergence tool in Chapter 4. Perhaps surprisingly, Rényi’s definition
of α-divergence also contains the Chernoff α-coefficient, although these two developments
are rather independent.

In the 70s-80s of the 20th century, differential geometry was introduced to statistics,
e.g. see Amari [1985]; Efron [1975, 1978], which studies the geometric properties of the
manifold obtained by mapping P to the parameter space Θ. In particular, researchers were
interested in the geometrical properties of exponential family distributions (introduced later)
and the corresponding divergences that reflect these features. In this context, mathematician
Shun-ichi Amari introduced his version of α-divergence [Amari, 1982, 1985], by generalising
the application of Chernoff α-coefficient to α ∈ R.

3The KL divergence characterises the corresponding mutual information and relative entropy measures for
Shannon entropy.
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Definition 2.3. (Amari’s α-divergence) Amari’s α-divergence DA
α [·||·] : P×P→ R, param-

eterised by α ∈ {α : DA
α [p||q]<+∞}, is defined as

DA
α [p||q] =

4
1−α2

(
1−

∫
p(θθθ)

1+α

2 q(θθθ)
1−α

2 dθθθ

)
, α ̸=±1, (2.3)

DA
1 [p||q] := lim

α→1
DA

α [p||q] = KL[p||q], α = 1, (2.4)

DA
−1[p||q] := lim

α→−1
DA

α [p||q] = KL[q||p], α =−1. (2.5)

In Amari’s career he used α-divergence as a tool to study the geometry of distribution
manifolds, and in particular, he claimed in Amari [2009] that his definition is the only
divergence that belongs to both the f -divergences [Csiszár, 1963] (related to information
theory) and Bregman divergences [Bregman, 1967] (related to geometry). These properties
are not directly related to approximate inference, and we only discuss them in Appendix B.1.

Remark (Other α-divergence definitions). There exist other definitions of α-divergence,
and some of them are detailed here.

• Rényi’s α-divergence [Rényi, 1961] (defined on α ̸= 1,α > 0):

DR
α [p||q] =

1
α−1

log
∫

p(θθθ)αq(θθθ)1−αdθθθ .

By continuity in α we can show that limα→1 DR
α [p||q] = KL[p||q]. We defer the

detailed introduction of Rényi’s definition to Section 4.1.

• Tsallis’s α-divergence [Tsallis, 1988] (defined on α ̸= 1):

DT
α [p||q] =

1
α−1

(∫
p(θθθ)αq(θθθ)1−αdθθθ −1

)
.

Again by continuity in α we can show that limα→1 DT
α [p||q] = KL[p||q].

2.2 Variational inference with KL-divergence

It seems from the introduction of the divergences above that divergence minimisation is
an excellent idea to obtain an accurate approximation to the target distribution, where the
measure of “accuracy” is also represented by the choice of divergence. However direct diver-
gence minimisation is still intractable, since that involves evaluating the target distribution
itself. For example, consider minimising the exclusive KL divergence KL[q(θθθ)||p(θθθ |D)] to
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obtain the approximate posterior. But we still need to compute p(θθθ |D), and in particular the
marginal likelihood p(D) which is intractable. In this section we discuss variational infer-
ence (VI) – a widely used approximate inference algorithm – which incorporates divergence
minimisation in a smart way. To emphasise that the algorithm is applicable to more general
cases beyond posterior approximation, we now write the target distribution as

p(θθθ) =
1
Z

p∗(θθθ),

where p∗(θ) is the unnormalised target distribution and Z =
∫

p∗(θθθ)dθθθ is the normalising
constant or partition function. In the posterior approximation context p∗(θθθ) = p(θθθ ,D) and
Z = p(D).

2.2.1 Kullback-Leibler divergence and variational free-energy

As already discussed, the exclusive KL divergence minimisation problem is intractable. Fortu-
nately the minimiser of the exclusive KL can also be obtained by an equivalent minimisation
problem of the so called variational free-energy (VFE):

argmin
q

KL[q(θθθ)||p(θθθ)] = argmin
q

FVFE(q; p),

FVFE(q; p) := KL[q(θθθ)||p(θθθ)]− logZ =
∫

q(θθθ) log
q(θθθ)
p∗(θθθ)

dθθθ . (2.6)

This is because the normalising constant Z is independent with the approximation q, thus can
be dropped in the exclusive KL. Historically the negative of the variational free-energy is
also frequently discussed, which is named variational lower-bound or evidence lower-bound
(ELBO) in the context of posterior approximation

LVI(q; p) :=−FVFE(q; p) =
∫

q(θθθ) log
p∗(θθθ)
q(θθθ)

dθθθ . (2.7)

In posterior inference context (i.e. p∗(θθθ) = p(D,θθθ) = p(D|θθθ)p0(θθθ)) the following two
formulations of the variational lower-bound have also been considered:

LVI(q; p) = Eq[log p(D|θθθ)]−KL[q(θθθ)||p0(θθθ)], (2.8)

LVI(q; p) = Eq[log p(D,θθθ)]+H[q(θθθ)]. (2.9)

where H[q(θθθ)] is the Shannon entropy of the q distribution.
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The lower-bound property comes from the fact that logZ ≥ LVI(q; p), because of the
non-negativity of KL divergence. Equivalently, this property can also be derived as follows:

logZ = log
∫

p∗(θθθ)dθθθ

= log
∫

q(θθθ)
p∗(θθθ)
q(θθθ)

dθθθ

≥
∫

q(θθθ) log
p∗(θθθ)
q(θθθ)

dθθθ . (Jensen’s inequality)

Here Jensen’s inequality (see appendix B.5) is applied to the logarithm which is concave.
When posterior approximation is considered we also denote the two quantities as FVFE(q;D)

and LVI(q;D), respectively. In summary, variational inference finds an approximation to
the posterior through an optimisation process, which is drastically different from sampling
approaches that construct empirical point mass distributions to describe the posterior.

A brief history of variational inference

Variational inference can be viewed as an application of variational methods that mathemati-
cians and physicists have studied for centuries. Historically, physicists mainly focused on
mean-field theories for complex systems [Parisi, 1988], whereas Dempster et al. [1977] as
statisticians proposed the famous expectation maximisation (EM) algorithm that also has a
VI interpretation [Neal and Hinton, 1998]. Interestingly the pioneers of deep learning had
also applied variational inference (though under other names) to Bayesian neural networks
[Hinton and Van Camp, 1993; Peterson and Anderson, 1987] that will be surveyed in the
application section. Especially since the development of Peterson and Anderson [1987],
mean-field approximation started to be an attractive alternative to sampling methods for
probabilistic inference in graphical models [Ghahramani, 1995; MacKay, 1997].

However it was until Saul et al. [1996] which introduced the generic form of the varia-
tional lower-bound to explain the mean-field approximation. The first papers that I can find
which coined the term “variational inference” are Lawrence et al. [1998] and Jordan et al.
[1999], where Jordan et al. [1999] provided a detailed summary of the previous work coming
from the same group. Later on, researchers started to extend the variational principle to cases
beyond graphical models, e.g. the variational Bayes (VB) algorithm [Attias, 1999, 2000;
Beal, 2003; Ghahramani and Beal, 2000, 2001; Sato, 2001] that is used to perform posterior
approximations of the model parameters and even model selection.
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2.2.2 A mean-field approximation example

As an example for the variational inference algorithm, here we present the variational mean-
field approximation [Parisi, 1988] for Bayesian linear regression. Readers are also referred
to Bishop [2006] for more details and here we would briefly cover the derivations presented
there. Mean-field approximation, also known as the factorised approximation, assumes the
approximate posterior to be the form of

q(θθθ) :=
D

∏
i=1

qi(θi). (2.10)

In general one can partition the elements of θθθ = (θ1,θ2, ...,θD) into disjoint groups and
apply factorisations over groups. This general case is usually called structured mean-field
approximation [Saul and Jordan, 1996], and for simplicity in the following example we
only consider the fully factorised case (2.10). Also we emphasise that there’s no further
assumption/restriction that is made on the functional form of qi(θi). As we shall see, the
variational free-energy is still convex in qi(θi) and thus the solution provided by the following
is the global optimum.

To derive the best approximation in the mean-field distribution family, we first substitute
(2.10) into (2.6) (and use θθθ ̸= j to denote all the θi variables except θ j):

FVFE(q; p) =
∫

∏
i

qi(θi)

(
∑

i
logqi(θi)− log p∗(θθθ)

)
dθθθ

=
∫

q j(θ j) logq j(θ j)dθ j−
∫

q j(θ j)

(∫
∏
i ̸= j

qi(θi) log p∗(θθθ)dθθθ ̸= j

)
dθ j + const

:=
∫

q j(θ j) logq j(θ j)dθ j−
∫

q j(θ j) log p̃(θ j)dθ j + const,

where p̃(θ j) denote the “marginal” distribution satisfying

log p̃(θ j) =
∫

∏
i ̸= j

qi(θi) log p∗(θθθ)dθθθ ̸= j + const.

This means, by fixing the functional form of qi for all i ̸= j, VFE is reduced to the KL-
divergence KL[q j(θ j)||p̃(θ j)] plus a constant that is independent to q j(θ j). Thus the free-
energy is still convex in q j(θ j), in which the unique global optimum is obtained by setting
q j(θ j)= p̃(θ j). To be precise, we explicitly write down the optimal mean-field approximation
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as

q j(θ j) =
exp
[∫

∏i ̸= j qi(θi) log p∗(θθθ)dθθθ ̸= j
]∫

exp
[∫

∏i ̸= j qi(θi) log p∗(θθθ)dθθθ ̸= j
]

dθ j
. (2.11)

Now as an example consider Bayesian linear regression with 2-D inputs xxx and 1-D output y:

θθθ ∼N(θθθ ; µµµ0,ΛΛΛ
−1
0 ), y|xxx∼N(y;θθθ

T xxx,σ2).

Given the observations D = {(xxxn,yn)}N
n=1, the posterior distribution of θθθ can be com-

puted analytically as p(θθθ |D) =N(θθθ ; µµµ,ΛΛΛ−1) with ΛΛΛ = ΛΛΛ0 +
1

σ2 ∑n xxxnxxxT
n and ΛΛΛµµµ = ΛΛΛ0µµµ0 +

1
σ2 ∑n ynxxxn. To see how the mean-field approach works, we explicitly write down the elements
of the posterior parameters

µµµ =

(
µ1

µ2

)
, ΛΛΛ =

(
Λ11 Λ12

Λ21 Λ22

)
, Λ12 = Λ21,

Then by explicitly expanding the mean-field solution (2.11):

logq1(θ1) =
∫

q2 log p(θθθ ,D)dθ2 + const

= Eq2

[
−1

2
(θ1−µ1)

2
Λ11− (θ1−µ1)Λ12(θ2−µ2)

]
+ const

=−1
2

θ
2
1 Λ11 +θ1µ1Λ11−θ1Λ12(Eq2[θ2]−µ2)+ const

:= logN(θ1;m1,λ
−1)+ const

(2.12)

where the new mean m1 and the precision λ1 satisfies

m1 = µ1−Λ
−1
11 Λ12(Eq2[θ2]−µ2), λ1 = Λ11.

It is important to note again that we do not assume the approximation to be a Gaussian
distribution in order to obtain the last equation in (2.12). Rather the Gaussian distribution
solution came out from the derivation of the global optimum (2.11) and the completion of
the square form. One can derive the terms m2 = µ2−Λ

−1
22 Λ21(Eq1[θ1]−µ1) and λ2 = Λ22

for q2 in the same way, and show that mmm = µµµ is the only stable fixed point of this iterative
update. So we have q1(θ1) =N(θ1; µ1,Λ

−1
11 ), and similarly q2(θ2) =N(θ1; µ2,Λ

−1
22 ) as the

unique global optimum of variational mean-field approximation. A visualisation of the
mean-field approximation is provided in Figure 2.1. Note here the variance parameter of
q(θ1) also correspond to the variance of the conditional distribution p(θ1|θ2,D), which is
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Fig. 2.1 Mean-field approximation to the exact posterior distribution in the Bayesian linear
regression example (with one-sigma contours). The exact posterior contour is shown in black
and the variational approximation is in purple.

smaller than the variance of the marginal distribution p(θ1|D), and therefore mean-field VI
under-estimates the posterior uncertainty in this case.

2.2.3 Monte Carlo variational inference

So far we have discussed variational inference algorithms for linear regression. But real world
problems are much more complicated. Often, the term Eq[log p∗(θθθ)] in the variational free
energy lacks an analytical form. A prevalent example of such cases is variational inference
for large-scale data: here the unnormalised distribution p∗(θθθ) := p(θθθ ,D) is proportional
to the product of many likelihood functions, and evaluating Eq[log p(D|θθθ)] requires a pass
of the whole dataset, which can be very expensive. On the other hand, insisting on having
an analytical form of the entropy term H[q] (or KL[q||p0]) would restrict the selection of
q distributions to simple distributions like Gaussians. Usually the exact posterior is very
complicated, and these simple distributions are expected to be poor approximations to the
target distribution. Hence a key challenge here is, can we design a variational algorithm that
applies to complex models, and scales to big data?

One solution to the above request is to develop further approximation techniques specific
to the chosen variational approximation. Indeed in the early days researchers have attempted
to do so, e.g. see Gershman et al. [2012]; Jaakkola and Jordan [1998]. However these
solutions are applicable only to a handful of special cases, making them impractical in many
other interesting scenarios. Instead in this section we will review another approach which can
be quickly applied to many cases with little effort. It has also been referred as a “black-box”
approach [Ranganath et al., 2014] due to this feature, but in the rest of the thesis we will refer
it as Monte Carlo VI (MC-VI).

To see how the algorithm works, consider approximating the exact posterior distribution
p(θθθ |D) ∝ ∏n p(xxxn|θθθ)p0(θθθ) by some simpler distribution q(θθθ). Rewriting the variational
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lower-bound:

LVI(q; p) =
N

∑
n=1

Eq[log p(xxxn|θθθ)]+Eq[log p0(θθθ)− logq(θθθ)], (2.13)

we see that it is the analytical tractability requirement of computing the expectations that
restrict the q (and possibly the model p) distribution to be of simple form. This constraint
can be removed by considering Monte Carlo (MC) approximation to the expectation, which
estimates the expectation by, for example

Eq[log p(xxxn|θθθ)]≈
1
K

K

∑
k=1

log p(xxxn|θθθ k), θθθ
k ∼ q(θθθ). (2.14)

This forms an unbiased estimation, and under mild assumptions (detailed in Chapter 4), the
RHS term in (2.14) converges to the exact expectation value as K→+∞. The KL-divergence
term in the variational lower-bound can also be estimated with Monte Carlo in a similar
manner. Also stochastic optimisation techniques can be extended here for scalability. In
summary, with this “black-box” approach, one can approximate the variational lower-bound
as

LMC
VI (q; p) =

N
|S| ∑n∈S

1
K ∑

k
log p(xxxn|θθθ k)+

1
K ∑

k
[log p0(θθθ

k)− logq(θθθ k)], θθθ
k ∼ q(θθθ),

(2.15)
and compute stochastic gradient descent on the MC approximation (2.15) with mini-batch
S∼D|S|.

Remark (MC samples for different observations). In the MC approximation (2.15) we
assumed using the same set of samples {θθθ k} to estimate all the expectation terms. In
general we can use different sets of samples to do so, for example, for every datapoint
xxxn ∈ S, we can sample different sets of θθθ

k to estimate the associated reconstruction term
Eq[log p(xxxn|θθθ)]. Prevalent examples of this approach include stochastic regularisation
techniques (SRTs) such as dropout [Gal, 2016; Srivastava et al., 2014].

Remark (variance reduction for MC-VI). MC-VI relies on stochastic gradient descen-
t/ascent for optimisation, and the gradient of (2.15) wrt. the variational parameters φφφ

could have very high variance, especially when the latent variable is discrete. Thus recent
work has been focused on variance reduction, often employing a pre-computed quantity
correlated with the stochastic gradient as a control variate [Ross, 2002]. Discussions of
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these methods are out of the scope of the thesis. Interested readers are pointed to e.g. Gu
et al. [2016]; Mnih and Gregor [2014]; Paisley et al. [2012] for more details.

2.2.4 Amortised inference

So far we have demonstrated how to apply VI to approximate the posterior distribution.
However it can still be very slow for running VI on a probabilistic model with lots of
unobserved variables, which is typically the case for latent variable models – probabilistic
models that have unobserved variables attached to each data instance. For example, a well-
known probabilistic model for text data – latent Dirichlet allocation (LDA) [Blei et al., 2003],
could involve millions of latent variables when applied to a large corpus. Thus it brings
in prohibitive computational burden since each latent variable must have its approximate
posterior iteratively refined. Furthermore, for models whose hyper-parameters are updated
constantly, the inference procedure is also repeatedly required as a sub-routine. These
issues had restricted the extensions of VI to many interesting cases, until the introduction of
amortised inference that is detailed in below.

Let us start from the mean-field approximation example we had in Section 2.2.2 but with
a slightly different set-up. In this case we are interested in learning a latent variable model

zzzn ∼N(zzz; µµµ,ΛΛΛ−1), yn|xxxn ∼N(y;zzzT
n xxxn,σ

2).

which is closely related to factor analysis [Harman, 1976; Roweis and Ghahramani, 1999].
In this case the model parameters θθθ = {µµµ,ΛΛΛ,σ} are to be learned by approximate maxi-
mum likelihood or variational EM, where the variational lower-bound is used as the sur-
rogate loss. In this case we assume for each latent variable zzzn ∈ RD we compute a mean-
field approximate posterior qn(zzzn) = ∏

D
i=1 qn(zni), in which we define each factorisation as

qn(zni) =N(zni;mni,λ
−1
ni ).

One strategy to learn these q distributions is to do gradient descent w.r.t. all the variational
parameters {mni,λni} until reaching a local optimum. However this approach is inefficient
for large-scale data. First, variational parameters must then be maintained for every observed
input-output pairs (xxxn,yn), meaning a space complexity of O(ND) if N is the total number of
observations. Furthermore, when the model parameters are updated, the previously optimal
variational parameters are no longer optimal thus requiring loops of gradient descent again.
Depending on the changes of the model parameters, the previous optimal solution for the
variational parameters might not always be a good initialisation for the current round’s
optimisation.
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Fortunately, observe that in Section 2.2.2 we have the optimal solutions satisfying

λni = ΛΛΛii +
1

σ2 x2
ni, mmmn = (ΛΛΛ+

1
σ2 xxxnxxxT

n )
−1(ΛΛΛµµµ +

1
σ2 ynxxxn),

meaning that these optimal variational parameters are functions of the observations xxxn and
yn. Hence if we explicitly define the variational parameters as a function of the observations,
e.g. by parameterising λni = aix2

ni +bi, and optimise the parameters of these mappings (in
our example ai and bi), then we can drastically reduce the memory cost to O(D) which is
scalable to big data. Furthermore the previous round’s solution of ai,bi is more likely to
be a good initialiser for the current round’s optimisation, as the “local structure” of q (in
our example the quadratic term x2

ni) is already encoded in the mapping. In general we will
explicitly define the approximate posterior as q(zzzn|xxxn,yn) to emphasise the dependency on
the observations, and only parameterise the “global structure” that is shared across all q
distributions.

The above method is termed as amortised inference for VI [Kingma and Welling, 2014;
Rezende et al., 2014; Salimans and Knowles, 2013], which is:

• memory efficient, as we only learn the shared information across the approximate
posterior distributions for different (xxxn,yn,zzzn) tuples;

• faster for training, as the previous round’s solution is more likely to initialise the
current step well;

• generalisable to unseen observations, as the learned variational parameters only capture
the global structure of the variational approximation;

• a good initialisation of q for unseen data, which will then be refined4 by e.g. VI [Kim
et al., 2018; Marino et al., 2018] or MCMC [Hoffman, 2017; Stuhlmüller et al., 2013].

Obviously it also has disadvantages: as the “global structure” is typically unknown to
the user, a careless design of such amortisation would return distributions with restrictive
representation power. One might suggest using neural networks in a way that leads to very
flexible q distributions, however the computation of the (MC approximation of the) variational
lower-bound requires logq(θθθ) to be tractable, which is again a very restrictive constraint.
Indeed currently neural networks are mostly used to parameterise simple distributions (for
example the mean and variance of a Gaussian q distribution), or distributions that are carefully

4Usually amortised inference returns suboptimal approximation to each individual p(zzzn|xxxn,yn), – see Cremer
et al. [2018] for a quantitative analysis – so refinements upon the amortised distribution are often useful.
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designed using invertible transform [Kingma et al., 2016; Rezende and Mohamed, 2015].
Solutions for these problems are further discussed in the second part of the thesis.

Remark (a misconception of amortised inference). Amortised inference is sometimes
misunderstood as being equivalent to the variational auto-encoder [Kingma and Welling,
2014; Rezende et al., 2014] approach (discussed later) due to the huge popularity of
the latter. In fact the general idea goes far beyond: amortisation can be applied to any
inference technique as long as the optimal solution for it can be described by a mapping
from the observed data. Historically, amortised inference was first developed for non-
Bayesian inference schemes. Hinton et al. [1995] developed the wake-sleep algorithm to
train the Helmholtz machine [Dayan et al., 1995], where the sleep step trains the q(zzz|xxx)
distribution using samples from the model, i.e. zzz,xxx ∼ p(zzz,xxx). They also refer q(zzz|xxx) as
the “recognition model”. Morris [2001] further applied the sleep step update to learn an
approximation to the conditional distributions of a directed graphical model. We note that
in both cases, there is no guarantee that q approximate the exact posterior well as it never
observes real-world data in the sleep step. In Gaussian process (GP) literature, amortised
inference has been applied to GP latent variable models (GPLVMs) to infer the latent
variables, under the name “back constraints” [Lawrence and Quiñonero-Candela, 2006].
Recent progress on amortising (approximate) Bayesian inference includes applications
to MAP inference [Sonderby et al., 2017], importance sampling [Burda et al., 2016],
sequential Monte Carlo [Le et al., 2017; Maddison et al., 2017a; Naesseth et al., 2017;
Paige and Wood, 2016] and MCMC [Li et al., 2017].

2.3 Expectation propagation with α-divergences

This section reviews another important class of approximate inference algorithms: expec-
tation propagation (EP)[Minka, 2001b; Opper and Winther, 2005]. EP can be viewed as a
generalisation of the well-known sum-product algorithm and belief propagation [Pearl, 1982,
1988] for computing marginal distributions of a probabilistic (graphical) model. Also by
generalising EP to minimising alpha-divergences, a broad class of approximate inference
algorithms – including variational inference – is recovered. Many topics detailed below can
also be founded in Koller and Friedman [2009]; Wainwright and Jordan [2008].

2.3.1 Factor graphs and exponential families

One way to represent a distribution is to draw a factor graph [Kschischang and Frey, 1998;
Kschischang et al., 2001]. A simple example would be a joint distribution P(xxx1,xxx2,xxx3)
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xxx1 xxx2 xxx3

f1 f2 f3

(a) P(xxx1,xxx2,xxx3) ∝

f1(xxx1) f2(xxx2) f3(xxx3)

xxx1 xxx2 xxx3

f ′2f ′1

(b) P(xxx1,xxx2,xxx3) ∝

f ′1(xxx1) f ′2(xxx2,xxx3)

Fig. 2.2 Two different factor graph representations for the same probability distribution, if
defining f ′1 = f1, f ′2 = f2 f3.

which can be factorised into P(xxx1,xxx2,xxx3) = f1(xxx1) f2(xxx2) f3(xxx3), illustrated in Figure 2.2. To
give a formal definition, a factor graph is a bipartite graph between variable nodes (circles)
and factor nodes (squares), where a factor node f is connected to a variable node xxxi iff. xxxi

belongs to the function f ’s domain. A distribution may be represented by different factor
graphs, since we can merge factors to a single one. In particular to our example, we may also
write P(xxx1,xxx2,xxx3) = f ′1(xxx1) f ′2(xxx2,xxx3), where f ′1(xxx1) = f1(xxx1) and f ′2(xxx2,xxx3) = f2(xxx2) f3(xxx3).
Factor graphs enable fast marginal computations using the sum-product algorithm, and in later
sections we will see that the EP update procedure also depends on the factor graph structure
directly. Therefore, factor graphs can also be viewed as “hyper-parameters” specified by the
user, and selecting the appropriate factorisation is key to both the approximation accuracy
and the computational efficiency. For simplicity in the rest of this chapter we assume the
selected factorisation suits well for the learning method. To reduce notation clutter we use xxxa

to denote a subset of random variables {xxxi} connected to a factor node fa.

Exponential family distributions

Another important concept we introduce here is the exponential family distribution [Koopman,
1936]. As a motivating example, consider fitting a probabilistic model p to some empirical
distribution p̂D by matching some statistical quantity ΦΦΦ(θθθ). There exists infinitely many
solutions for this problem, and here we would prefer the solution which has the maximum
entropy H[p] =−

∫
p(θθθ) log p(θθθ)dθθθ . This means the solution produces samples that have

the same statistics as the data distribution, but also retains maximal uncertainty (in terms of
the entropy). Solving this constrained optimisation algorithm reveals that the optimal fit has
an exponential family form as follows.

Definition 2.4. (Exponential family) An exponential family distribution is defined as

p(θθθ) =
1
Z

h(θθθ)exp
[
λλλ

T
ΦΦΦ(θθθ)

]
, (2.16)
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where h(θθθ) is the base measure, λλλ is the natural parameter or canonical parameter, and
ΦΦΦ(θθθ) is the sufficient statistic.

The natural parameter λλλ of the maximum entropy solution is selected to satisfy the
constraint Ep[ΦΦΦ(θ)] = Ep̂D[ΦΦΦ(θ)]. If the exponential family is regular, i.e. the components
of ΦΦΦ are linearly independent, then there exists a one-to-one mapping between the natural
parameter and the expectation of the sufficient statistics µµµ := Ep[ΦΦΦ(θθθ)]. Thus µµµ is also
named moment parameter or mean parameter of an exponential family distribution. For
notational simplicity we also assume the base measure h(θθθ) = 1 and the above exponential
family is regular. Hence the partition function Z is a function of the natural parameter λλλ

(and equivalently a function of the moment parameter µµµ as well) and we will also write
Z = Z(λλλ ) = Z(µµµ) when necessary.

Here we include some important properties of exponential family distributions [Wain-
wright and Jordan, 2008], which can be proved by simple calculations.

Proposition 2.1. A regular exponential family distribution (2.16) satisfies the following:
(1) logZ(λλλ ) is convex in λλλ ;
(2) µµµ = ∇λλλ logZ(λλλ ), and Covp[ΦΦΦ] = ∇∇λλλ logZ(λλλ );
(3) The Fenchel dual (logZ)∗(µµµ) =−H[µµµ], where H[µµµ] denotes the entropy of the exponen-
tial family distribution (2.16) with moment parameter µµµ .

The last property is particularly interesting in variational inference context. Recall the
Fenchel duality equation logZ(λλλ ) = maxννν λλλ

T
ννν +H[ννν ], where the maximum is obtained

at ννν∗ = µµµ . This means if the target distribution belongs to some complicated exponential
family5 and the q distribution has moments ννν , then the Fenchel duality equation is exactly
the optimisation problem of VI (2.6). In particular, if q also belongs to the same exponential
family, then the optimal approximation can be obtained by matching the moments ννν ← µµµ ,
thus q = p.

2.3.2 Expectation propagation

Now we consider a distribution p(θθθ) ∝ ∏a f̃a(θθθ a), where f̃a are the factors in the correspond-
ing factor graph with associated variables θθθ a. A prevalent example for such a distribution is
the exact posterior, where now f̃a represents either the prior distribution or the likelihood
function associated with a datum. The marginal probability of a subset of θθθ can be com-
plicated. The highly successful Expectation Propagation (EP) [Minka, 2001b] algorithm
approximates these exact marginals by another factor graph with a collection of simpler

5Notice that we can also write the target distribution as p(θθθ) = 1
Z exp [1 · log p∗(θθθ)].
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functions q(θθθ) ∝ ∏a fa(θθθ a). It iteratively updates the approximating factors f̃a through the
“exclusion-moment matching-inclusion” procedure, detailed in Algorithm 1.

To summarise the algorithm, we first define the “leave-one-out”, or cavity distribution6

q−a ∝ ∏
b̸=a

fb(θθθ b) ∝ q(θθθ)/ fa(θθθ a), (2.17)

which is computed by multiplying all the other factors except the selected one. Also an
ordering of this factor selection is called a schedule of the EP algorithm, and in the following
we assume it is random. The second step is to compute the tilted distribution by inserting
back the true factor f̃a that fa approximates:

p̃a(θθθ) ∝ q−a(θθθ) f̃a(θθθ a), (2.18)

and update the selected factor fa by minimising the KL divergence from p̃a to the approxi-
mation q (with fa included), with the restriction that the new q belongs to the same family
of previous approximation. For exponential family approximations, we solve this optimisa-
tion problem by zeroing the gradients of the KL w.r.t. the natural parameters of q. This is
equivalent to matching the moments of the arguments between the two distributions. More
precisely, assume the factors fa belong to the same exponential family with feature function
ΦΦΦ(θθθ) = (Φ1(θθθ), ...,Φd(θθθ)), then we write the q distribution as

q(θθθ) ∝ exp(λλλ T
ΦΦΦ(θθθ)), (2.19)

where λλλ denote the natural parameters. Zeroing the gradient of KL[p̃a||q] wrt. λλλ (and
viewing p̃a as constant) returns

Eq [ΦΦΦ(θθθ)] = Ep̃a [ΦΦΦ(θθθ)] , (2.20)

which gives the name of moment matching [Seeger, 2005]. We denote this optimisation
computation with proj operator

proj[p] = argmin
q

KL[p||q], (2.21)

which returns the minimiser of the KL-divergence KL[p̃a||q] by passing the moments of p̃a.
This operator is also called M-projection [Cover and Thomas, 1991]. After the computation

6The name “cavity” comes from the cavity method that is used to study Ising models [Mézard et al., 1987],
again showing the deep connections between EP and belief propagation.
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Algorithm 1 Expectation Propagation (without damping)
1: while not converged do
2: choose a factor fa(θθθ a) to refine (according to a schedule):
3: exclusion: q−a(θθθ) ∝ q(θθθ)/ fa(θθθ a)
4: moment matching: fa(θθθ a)← proj[q−a(θθθ) f̃a(θθθ a)]/q−a(θθθ)
5: inclusion: q(θθθ)← q−a(θθθ) fa(θθθ a)
6: end while

of q∗ = proj[p̃a] we recover the update of fa by

fa(θθθ a)← q∗(θθθ)/q−a(θθθ). (2.22)

To improve convergence damping updates can be applied to step 4 in Algorithm 1 as

fa(θθθ a)← fa(θθθ a)
1−ε (proj[p̃a]/q−a(θθθ))

ε , (2.23)

where ε denotes the step-size. The last step, corresponded to the inclusion step in Algorithm
1, is to incorporate the updated factor back to the approximation:

q(θθθ)← q−a(θθθ) fa(θθθ a). (2.24)

The reader may find that in Algorithm 1 the updated distribution q equals to q∗ in the moment
matching step, while this yields EP without damping only.

Remark (misconceptions about EP). A misleading interpretation states that EP is the
counterpart algorithm of VI which minimises the inclusive KL. The correct answer is
more than “yes or no” and it strongly depends on the factor graph structure. If the factor
graph only contains a single factor node, then EP is minimising the inclusive KL globally.
However, computing moments on this factor graph often requires further approximations,
thus it is rarely considered in EP literature until the development of Chapter 4. Otherwise,
EP does not minimise the inclusive KL divergence to the target distribution. Thus we
refer EP as a local approximation algorithm since it works with the components of the
target distribution directly. Conversely, VI does minimise the exclusive KL divergence
globally, regardless of the factor graph structure.

Why EP works

In general, to obtain an accurate approximation for some complicated distribution is a
difficult task, as estimating the approximate functions jointly is often intractable. Factor
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graphs provide not only a factorised representation of the true distribution but also a guide
for choosing the function families for approximation. Consider the minimisation task
q∗ = argminq D[p||q].7 Below we discuss 3 difference methods for the optimisation problem,
where we understand them as different schedules.8

The simplest way is independent factorised approximation, i.e. to approximate each factor
independently. This returns a fast and parallelisable algorithm that a simple map-reduce
scheme can be applied to. However, is it common that factors share random variables,
in which the marginals of the selected factor’s random variables can deviate from that
factor’s function value. From the nature of product we know that small errors of each factor
approximation can easily accumulate to large errors of the final result q.

The statistics and control communities have noted the importance of including the de-
pendence in approximation, resulting in the well-known assumed density filtering (ADF)
algorithm [Maybeck, 1982]. It can be viewed as a restricted version of factorised ap-
proximation by greedily adding in more factors to the q distribution such that q(θθθ) fa(θθθ)

matches q(θθθ) f̃a(θθθ) as close as possible. One simple example would be approximating
p(θθθ) = f̃1(θθθ) f̃2(θθθ) f̃3(θθθ) with q(θθθ) = f1(θθθ) f2(θθθ) f3(θθθ). Assume we start from an accurate
estimation of f1(θθθ)≈ f̃1(θθθ) (where now q(θθθ) = f1(θθθ)), ADF in current iteration incorpo-
rates f2(θθθ) (or f3(θθθ) depending on the schedule) to the q distribution, updates f2(θθθ) such
that it minimises D[q(θθθ) f̃2(θθθ)||q(θθθ) f2(θθθ)], and includes the new approximation f2(θθθ) to
the new q(θθθ)← f1(θθθ) f2(θθθ). The disadvantage of this approach is its sensitivity to the choice
of the schedule, especially when a subset of variables is shared by most of the factors.

EP tries to address the problem of sensitivity to scheduling by looping through the factors
repeatedly, giving a chance for inaccurate factors to “correct themselves”. This puts further
restrictions to the mean-field update by including all the factors in moment matching. The
precision may oscillate as the approximation in the first few loops can be very poor, especially
considering EP is reduced to ADF in the first iteration if initialising all the approximating
factors as 1 (which is often the case). Also there is no guarantee for EP to converge. But EP
(and in general message passing) is still an efficient algorithm, especially when applying to
only a subset of factors (see the application to error-correcting codes [Peterson and Weldon,
1972] and TrueSkill algorithm [Herbrich et al., 2006]).

7Here the measurement can be any distance or divergence, each returns different benefits. In EP the
divergence measure is the KL divergence.

8This is an explanatory discussion rewritten from my first year report.
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Algorithm 2 Power EP with fraction α

1: while not converged do
2: choose a factor fa(θθθ a) to refine:
3: exclusion: q−a(θθθ) = q(θθθ)/ fa(θθθ a)

α

4: moment matching: fa(θθθ a)
α ← proj[q−a(θθθ) f̃a(θθθ a)

α ]/q−a(θθθ)
5: inclusion: q(θθθ)← q(θθθ) fa(θθθ a)/ fa(θθθ a)

old

6: end while

Linking power EP and α-divergence

An extension of EP is power EP [Minka, 2004], which excludes a fraction of the approxima-
tion (i.e. fa(θθθ)

α ) and includes the same fraction of the true factor for updates (see Algorithm
2). Since we exclude/include only a fraction of the factors, damping should be applied to the
natural parameters of fa(θθθ)

α directly before recovering the update for fa(θθθ).
Power EP with fraction α corresponds to minimising the α-divergence from p̃a(θθθ) ∝

q(θθθ) f̃a(θθθ)/ fa(θθθ) to q(θθθ). To see this, we first adapt Amari’s definition [Amari, 1985] of
α-divergence DA

α to the following form [Minka, 2005; Zhu and Rohwer, 1995], which we
refer to as Minka’s α-divergence:

DM
α [p||q] = 1

α(1−α)

(
1−

∫
p(θθθ)αq(θθθ)1−αdθθθ

)
(2.25)

which is equivalent to the original definition by setting α ′ = 2α − 1 in Amari’s notation
DA

α ′ = DM
α . So similarly the exclusive KL divergence KL[q||p] = limα→0 DM

α [p||q] and
the inclusive one KL[p||q] = limα→1 DM

α [p||q] can be recovered. Now we investigate the
case which replaces the moment matching step in the EP algorithm (Algorithm 1) by q∗ =
argminDM

α [p̃a||q], which is also called α-projection [Amari and Nagaoka, 2000]. Similarly
we assume q has an exponential family form (2.19), and we fix p̃a(θθθ) as the target. Then
when α ̸= 0,1,

∇λλλ DM
α [p̃a||q] =

1
α

(
Eq[ΦΦΦ(θθθ)]−E

p̃(α)
a
[ΦΦΦ(θθθ)]

)
,

p̃(α)
a ∝ p̃α

a q1−α .

In this case the solution of ∇λλλ DM
α [p̃a||q] is non-trivial since now p̃(α)

a contains contributions
from q. Instead power EP proposes a fixed point iterative update procedure, by initialising q
with last iteration’s solution (which makes p̃(α)

a ∝ q f̃ α
a / f α

a , see the moment matching step
in Algorithm 2), fixing p̃(α)

a as the target, and computing the next update for the natural
parameter λλλ such that the moments of q and p̃(α)

a are matched. Again there is no guarantee
for convergence here, but if power EP does converge, this means the fixed point iterative



2.3 Expectation propagation with α-divergences 33

VB
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Fig. 2.3 An illustration of approximating distributions by α-divergence minimization. Here
p and q shown in the graphs are unnormalized probability densities. Reproduced from Minka
[2005]. Best viewed in color.

updates are also converged, thus the final solution q does minimises Minka’s α-divergence
(or Amari’s α-divergence but with a different α value) locally. Minka [2004] also sketched
an algorithm called α-EP which assumes the α-projection is tractable.

Different α-divergences show different characteristics, and the family includes the two
KL-divergences. Variational methods minimise the exclusive KL-divergence and provides a
lower bound on model evidence. Furthermore, the exclusive KL-divergence has an unique
advantage in that local optimisation can return optima of global approximation. However,
Bayesian predictions often require just the marginals, and the inclusive KL-divergence is the
only α-divergence which preserves them. Hence standard EP is preferred, which searches
the optimisers with invariant sufficient statistics locally at θθθ a.

To understand how the choice of other α values might affect the result of approximate in-
ference, consider the problem of approximating a complicated distribution p with a tractable
Gaussian distribution q by minimizing DM

α [p||q]. The resulting (unnormalized) approxima-
tions obtained for different values of α are visualized in Figure 2.3. This shows that when
α is a large positive number the approximation q tends to cover all the modes of p, while
for α →−∞ (assuming the divergence is finite) q is attracted to the mode with the largest
probability mass. The optimal setting of α might reasonably be expected to depend on the
learning task that is being considered.

Setting aside the analytic tractability of the computations, we note that the minimisation
of a global α-divergence might not always be desirable. If the true posterior has many modes,
then when a Gaussian approximation is deployed, a global approximation of this flavour that
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is refined using α ≥ 1 will cover the modes, and can place substantial probability in the area
where the true posterior has low probability (see the last plot in Figure 2.3).

2.3.3 EP energy: a primal-dual story

EP has been criticised for not having convergence guarantees and instead being a heuristic for
posterior approximation. On the other hand, it has been shown to have superior performance
compared to VI on a variety of tasks, e.g. Gaussian Process classification [Kuss and Ras-
mussen, 2005]. To understand these seemingly contradicting observations, here we provide
an energy minimisation view of EP,9 and discuss why EP could potentially lead to better
approximations, and why it is difficult to prove the convergence of EP. Similar derivations
are also available in Heskes and Zoeter [2002]; Minka [2005]; Opper and Winther [2005];
Wainwright and Jordan [2008]; Yedidia et al. [2001], and some extensions to handling latent
variable models are provided in appendix B.2.

To streamline the notation, we consider approximating the intractable posterior p(θθθ |D) =
1
Z p0(θθθ)∏

N
n=1 p(xxxn|θθθ) as a running example. In this case we denote f̃n(θθθ) = p(xxxn|θθθ) and

leave the prior p0(θθθ) as it is. Using this notation we again write down the objective function
of Variational inference (VI) called the variational free energy (VFE) [Beal, 2003; Jordan
et al., 1999]:

min
q∈Q

KL[q||p]⇔min
q∈Q

FVFE(q) = Eq

[
logq(θθθ)− log p0(θθθ)−

N

∑
n=1

log f̃n(θθθ)

]
. (2.26)

From VFE to Bethe Free Energy

First we make use of the additivity of logarithm to rewrite an equivalent optimisation problem
(recall that P is the space of all probability distributions):

min
q∈Q

FVFE(q) = min
q∈Q

KL[q||p0]−∑
n
Eq

[
log

p0(θθθ) f̃n(θθθ)

q(θθθ)

]
−NKL[q||p0]

= min
q∈Q,{ p̃n∈P}

(1−N)KL[q||p0]−∑
n
Ep̃n

[
log

p0(θθθ) f̃n(θθθ)

p̃n(θθθ)

]
subject to p̃n = q,∀n.

(2.27)

Here in the first line we added N copies of KL[q||p0] to the VFE and subtracted the same,
and in the second line we decoupled the tilted distribution p̃n from q by introducing equality
constraints. This means the above optimisation has the same fixed points as minimising VFE.

9material based on my NIPS 2016 approximate inference workshop abstract, see publication page.
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The constraints can be relaxed to matching all the moments Ep̃n[θθθ
k] = Eq[θθθ

k] for k ∈ N,10

and a further crude relaxation suggests moment matching just for the first K moments11

Ep̃n[θθθ
k] = Eq[θθθ

k],k = 1,2, ...,K. In the following we use a vectorial function ΦΦΦ(θθθ) to
summarise these constraints as Ep̃n[ΦΦΦ] = Eq[ΦΦΦ], where as an example for Gaussian EP:
ΦΦΦ(θθθ) = [θθθ ,θθθθθθ

T ]. In general ΦΦΦ can contain any polynomial terms or other basis functions.
This relaxation returns the following constrained optimisation problem:

min
q∈Q,{ p̃n∈P}

FBethe({ p̃n},q) subject to Ep̃n[ΦΦΦ] = Eq[ΦΦΦ],∀n,

FBethe({p̃n},q) = (1−N)KL[q||p0]−∑
n
Ep̃n

[
log

p0(θθθ) f̃n(θθθ)

p̃n(θθθ)

]
.

(2.28)

FBethe({p̃n},q) is the Bethe free energy [Bethe, 1935; Yedidia et al., 2001] that is usually
presented in the context of probabilistic graphical models and belief propagation. Below we
show how to derive its dual form that is usually discussed in EP literature [Minka, 2001a;
Opper and Winther, 2005; Seeger, 2005].

Remark (Tom Minka’s original note). Minka [2001a] formulated (2.28) as a minimax
problem (min{ p̃n}maxq) instead which seems questionable to me. First (2.28) relaxes the
constraints in (2.27), meaning both should have the same optimisation direction. Then
since (2.27) just decouples VFE (2.26) with equality constraints, it should be a pure
minimisation and has the same stationary points. For graphical models the Bethe free
energy optimisation problem is formulated as a pure minimisation problem like above
(2.28), e.g. in Heskes [2002]; Wainwright and Jordan [2008] but also interestingly in
pages 3-4 of Minka [2001a]. On the other hand, Minka’s derivation of the dual energy
differs from solving the Lagrangian and does not require the minimax assumption of the
primal problem.

From Bethe to EP: a dual form representation

We provide a derivation in a similar way as Heskes [2002], starting from a note on the KL
duality12

−KL[q||p0] = min
λλλ q(θθθ)

−Eq[λq(θθθ)]+ logEp0

[
exp[λq(θθθ)]

]
, (2.29)

with λq(θθθ) a function to be specified later on. This duality is in the same spirit as deriving
convex conjugate function for the log partition function of an exponential family distribution

10Having the same moments for p and q does not imply having the same moment generating function.
11The zeroth moment matching constraint is replaced by the constraint that p̃n integrates to 1.
12We include this step in order to connect to the EP energy with optimisation arguments all in the dual space.
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(see Proposition 2.1), if viewing p0(θθθ) as the base measure. The equality is achieved by
q(θθθ) ∝ p0(θθθ)exp[λq(θθθ)]. Substitution into (2.28) then yields a transformed energy that we
denoted as FBethe({p̃n},q,λq(θθθ)).

FBethe({p̃n},q,λq(θθθ)) = (1−N)Eq[λq(θθθ)]+(N−1) logEp0

[
exp[λq(θθθ)]

]
−∑

n
Ep̃n

[
log

p0(θθθ) f̃n(θθθ)

p̃n(θθθ)

]
.

(2.30)

Denote λλλ−n as the Lagrange multiplier for moment matching and ν ,νn for the normalisa-
tion constraints of q and p̃n, respectively. This returns the following Lagrangian

min
q,{p̃n},λq(θθθ)

max
{λλλ−n,νn,ν}

FBethe({p̃n},q,λq(θθθ))+∑
n

λλλ
T
−n(Eq[φφφ ]−Ep̃n[φφφ ])

+∑
n

νn

(∫
p̃n(θθθ)dθθθ −1

)
+ν

(∫
q(θθθ)dθθθ −1

)
.

(2.31)

Solving the fixed points for p̃n and νn returns

p̃n(θθθ) =
1
Zn

p0(θθθ) f̃n(θθθ)exp
[
λλλ

T
−nΦΦΦ(θθθ)

]
,

where the normalising constant is

Zn =
∫

p0(θθθ) f̃n(θθθ)exp
[
λλλ

T
−nΦΦΦ(θθθ)

]
dθθθ .

Also it is straight-forward to evaluate the fixed point condition for q:

(N−1)λq(θθθ) = ∑
n

λλλ
T
−nΦΦΦ(θθθ)+ν .

We explicitly specify λq(θθθ) = λλλ
T
q ΦΦΦ(θθθ)+ ν w.l.o.g., also the constant ν can be dropped

since exponential family distributions are translation invariant to constants. Importantly,
substituting p̃n back to (2.31) and enforcing the fixed point condition for q yields the EP
energy [Minka, 2001a]:

min
λλλ q

max
{λλλ−n}

FEP(λλλ q,{λλλ−n}) = (N−1) logEp0

[
exp[λλλ T

q ΦΦΦ(θθθ)]
]
−∑

n
logZn,

subject to (N−1)λλλ q = ∑
n

λλλ−n.
(2.32)

Notice now the optimisation problem over q is dropped since (2.32) does not depend on it.
To obtain the approximate posterior back, we make use of the tightness of the KL duality,
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and define

q(θθθ) =
1
Zq

p0(θθθ)exp
[
λλλ

T
q ΦΦΦ(θθθ)

]
, logZq = logEp0

[
exp[λλλ T

q ΦΦΦ(θθθ)]
]
.

The expectation consistent approximate inference (EC) algorithm [Opper and Winther, 2005]
is a special case with p0(θθθ) ∝ 1 and N = 2.

EP as a fix point iteration method for solving the dual problem

EP [Minka, 2001b] proposes parametrising the (natural parameters of) local approximating
factors fn ≈ f̃n instead of the approximate posterior q, with the goal of fn capturing the
effect of f̃n(θθθ) on the exact posterior, by defining fn(θθθ) = exp[λλλ T

n ΦΦΦ(θθθ)], λλλ n = λλλ q−λλλ−n.
Thus by construction the constraint in (2.32) is automatically satisfied: λλλ q = ∑n λλλ n and
λλλ−n = ∑m̸=n λλλ m. Then EP runs a fixed point iteration algorithm to find a stationary point for
{λλλ n}N

n=1. More specifically the gradient of (2.32) w.r.t. the local parameter λλλ n is

∇λλλ n
FEP = (N−1)Eq[ΦΦΦ(θθθ)]− ∑

m̸=n
Ep̃m [ΦΦΦ(θθθ)]. (2.33)

Zeroing the above gradient for all λλλ n results in the fixed point condition

Eq[ΦΦΦ(θθθ)] = Ep̃n[ΦΦΦ(θθθ)], ∀n,

which motivates the moment matching update (2.20) in EP.

A pictorial view on why EP can be better than VI

Folk wisdom suggests that EP, if it convergences, often provide more accurate approximations
to the target distribution when compared with VI. This observation is explained pictorially
in Figure 2.4. Recall that both algorithms can be viewed as minimising the Bethe free
energy under constraints: for VI the constraints are equality constraints q = p̃n, whereas
EP instead uses moment matching constraints Eq[ΦΦΦ] = Ep̃n[ΦΦΦ]. In an augmented space
PN+1, the search space of VI {(q, p̃n) : q = p̃n,q ∈ Q} is contained in the search space
of EP {(q, p̃1, ..., p̃N) : q ∈ Q,Ep̃n[ΦΦΦ] = Eq[ΦΦΦ]}, and can be of much smaller dimensions
(e.g. the green line segment versus the blue region as shown in the Figure 2.4). Therefore
if EP converges, then it is more likely to find a better minimum compared to VI. Empirical
evidence also suggests that constrained Bethe free-energy evaluated at a fixed point is often a
better approximation to the (negative log) marginal likelihood.
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Fig. 2.4 EP versus VI as constrained energy optimisation problems, visualised by projecting
the energy surface from the augmented space PN+1 to P2. Here the slash line across the space
represents the subspace {(q, p̃n) : q = p̃n}, and the search space for VI (the green segment) is
contained in the EP candidate set (the blue region). The stars indicate the optimal solutions
returned by the exact (in yellow) and the approximate inference algorithms (green/blue). See
main text for details.

Criticisms for EP’s iterative update

The above fixed point iteration update has no convergence guarantee, which is one of the
drawbacks of EP. The reason is that EP solves the dual problem of constrained Bethe free
energy minimisation, and that dual problem turns out to be a minimax optimisation problem
with constraints. Indeed, a double-loop algorithm [Heskes and Zoeter, 2002] should be
applied to (2.32) if convergence is required. However in practice such a double-loop method
has been shown to be much slower than EP. Also disappointedly, even when the exact
posterior is contained in Q, EP is not guaranteed to return it. Similar problems exist for belief
propagation when the graph contains many loops, or when the relaxed polytope is not tight
[Wainwright and Jordan, 2008].

From VFE to power EP

We now extend the above approach to power EP [Minka, 2004] which is a new contribution,
although fairly straightforward. This procedure includes one modification to the Bethe free
energy. Assume for each factor f̃n a power value αn ̸= 0 is associated, with ααα = (α1, ...,αN)

and ∑n
1

αn
̸= 1. Then the Bethe free energy with moment matching constraints is modified to:

Fααα(q,{p̃n}) =
(

1−∑
n

1
αn

)
KL[q||p0]−

N

∑
n=1

1
αn

Ep̃n

[
log

p0(θθθ) f̃n(θθθ)
αn

p̃n(θθθ)

]
. (2.34)
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Similar to the derivation of (2.27), here we first added and subtracted (∑n
1

αn
) copies of

KL[q||p0], then decoupled p̃n from q, and relaxed the equality constraints to moment match-
ing. Calculations following Section 2.3.3 also reveal the change of the fixed point condition
for q to (∑n

1
αn
− 1)λλλ q = ∑n

1
αn

λλλ−n. Define q as an exponential family distribution with
natural parameter λλλ q as before, and λλλ n = (λλλ q− λλλ−n)/αn. We arrive at the power EP
objective:(

∑
n

1
αn
−1
)

logZq−∑
n

1
αn

log
∫

p0(θθθ) f̃n(θθθ)
αn exp

[
(λλλ q−αnλλλ n)

T
ΦΦΦ(θθθ)

]
dθθθ . (2.35)

The iterative process also enforces λλλ q = ∑n λλλ n. Minka [2005] showed that (2.35) becomes
an upper-bound of logZ when αn > 0 and ∑n

1
αn

< 1. On the other hand, taking αn→ 0,∀n
recovers FVFE but now the q distribution is restricted to have an exponential family form.

2.4 A battle between VI and EP: which I should prefer?

We have presented VI and EP as two main classes of approximate inference methods.
Newcomers to this subject might be unsure about which algorithm they should use for their
task. Inspired by the comparison table on the Infer.NET [Minka et al., 2014] user guide
webpage,13 here I put in Table 2.1 a comparison between VI and EP, with discussions in
the following. We note here again that VI is a special case of power EP by setting the
power α = 0 (which is also referred to the variational message passing (VMP) algorithm
[Minka, 2005; Winn and Bishop, 2005] that uses fixed-point iterative updates to optimise the
variational lower-bound), and all the comparisons below are on VI versus power-EP with
other α values.

• Global versus local approximations.
As explained, VI constructs a global approximation q(θθθ)≈ p(θθθ |D) while EP exploits
the structure of the posterior distribution and proposes approximations to each of the
factors instead (thus we call it local). Interesting observations apply for VMP: like
local approximation methods, it also propagates messages between factors and store
approximations locally; like global approximation methods, however, any stationary
point of the VMP algorithm is also a stationary point of the variational lower-bound,
no matter which factor graph structure is in use. Conversely, EP returns different
approximation results when executed on different factor graph representations of the

13http://infernet.azurewebsites.net/docs/working%20with%20different%20inference%
20algorithms.aspx

http://infernet.azurewebsites.net/docs/working%20with%20different%20inference%20algorithms.aspx
http://infernet.azurewebsites.net/docs/working%20with%20different%20inference%20algorithms.aspx
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target distribution. Due to this reason we still call VMP a global approximation method,
even when it also performs local computations.

• Zero-forcing versus mass-covering behaviour.
VI exhibits zero-forcing behaviour exactly because it minimises the exclusive KL-
divergence (see discussions in Section 2.1.1). For power EP the story is complicated:
it can prefer mass-covering when having large α > 0 values, but it can also be zero-
forcing if, though not very often, negative α values are in use.

• Convergence guarantee.
VI and VMP are guaranteed to converge, mainly because the variational lower-bound is
upper-bounded. EP, like belief propagation on graphs, has no convergence guarantees
in general, although practices suggest that it often converges to a local optimum.

• Running time/speed.
VI with gradient descent often takes many iterations to converge, though each gradient
step can be very cheap. EP, on the other hand, takes less iterations to run, but typically
requires more time to compute the moment matching step. This is especially the
case when there is no closed form solution for the moments, where an additional
approximate inference procedure (e.g. MCMC) will be called as a sub-routine, which
can be very expensive. VMP combines the advantages from both sides, often being the
fastest method to find a local optimum.

• Accuracy.
Assume both EP and VI use the same family of approximate distributions Q. It is well
known that variational free-energy approaches are biased and often severely so [Turner
and Sahani, 2011]. Because of the zero-forcing behaviour, VI can be over-confident
and miss important modes/correlation structure in the exact posterior. This often
results in worse performance when calibrated uncertainty is required. EP is often
more accurate when compared to VI, in some cases it can even be exact (e.g. with a
tree-structure graph containing simple factors like Gaussians). However EP can diverge
on certain cases and in this case one might prefer VI to at least obtain a reasonable
approximation.

• Approximate posterior design.
VI with Monte Carlo methods allows the deployment of more complex approximate
posterior distributions (e.g. those parameterised by a neural network which will be
introduced later). On the other hand, many applications of EP still use exponential
family distributions (mainly Gaussians) until the development of Chapter 4.



2.4 A battle between VI and EP: which I should prefer? 41

Table 2.1 Comparing VI/VMP and power EP.

VI/VMP power EP (α ̸= 0)

global or local?
global

(same for VMP)
local

(depends on the factor graph)

behaviour zero-forcing
zero-forcing/mass-covering

(depends on α)
optimisation

procedure
gradient descent (generic VI)

fixed-point iterative updates (VMP)
fixed-point iterative updates

convergence
yes

(theoretical guarantee)
yes (empirically)

(with log-concave potentials)

accuracy
often less accurate

(under-estimates uncertainty)
often more accurate

(depends on the factor graph)

• Hyper-parameter optimisation and model selection.
One might want to optimise the hyper-parameters of the model, or perform model
selection to choose the best model. Both cases require a reliable approximation to
log p(D). In this regard, VI provides a conservative (although possibly strongly biased)
estimate of the marginal likelihood, which provides a safe option for approximate MLE.
But EP’s energy function can be hard to optimise: unless a fixed point is obtained,
in theory the EP energy can be arbitrarily far from the exact marginal likelihood
[Cunningham et al., 2011].14 Even if EP converges, the corresponding energy function
is not protected: it is neither an upper- nor a lower-bound to the model evidence.

Unfortunately I cannot provide a general case verdict for the two classes of algorithms,
just like the folklore no-free lunch theorem [Wolpert and Macready, 1997] states “there
exists no machine learning algorithm that dominates the others in all cases”. To conclude
the discussion, here comes two suggestions that have been validated by many results in the
literature. Care should be taken for EP when the factor graph is densely connected and
contains many loops. Also one should avoid using VI to approximate a non-smooth target
density with a smooth q distribution, because the zero-forcing behaviour of VI may push the
approximate posterior towards undesirable solutions like delta mass. This happens, in binary
classification for example, when the likelihood function is a Heaviside function or a very
sharp sigmoid function.

14Although some empirical results suggest that it is possible to perform hyper-parameter optimisation at the
same time as EP runs [Hernández-Lobato and Hernández-Lobato, 2016].
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2.5 Applications: Bayesian deep learning

Having discussed plenty of background material on divergences and approximate inference
algorithms, in this section we turn to specify the probabilistic models that will be studied
in the rest of the thesis. Historically, the Bayesian modelling community studied well-
understood probabilistic models (conjugate models, generalised linear models, etc). Very
recently the research theme of Bayesian deep learning has received much increasing interest,
where deep generative models and Bayesian neural networks are mainly studied. Advances
in approximate inference sit at the core of Bayesian deep learning research: we will briefly
sketch how VI can be used to perform inference and learning in both models. In later chapters
we will also develop advanced approximate inference methods, and demonstrate improved
performances on Bayesian deep learning tasks.

2.5.1 Deep generative models

Generating realistic images, sound and text has always been one of the main themes in
AI research. One approach towards this goal that is very popular now is building a deep
generative model to transform some random noise to desired outputs. Similar to the latent
variable model we discussed in Section 2.2.4, the model starts from a latent variable zzz sampled
from a prior distribution p0(zzz), and then samples the observations xxx from a conditional
distribution pθθθ (xxx|zzz) parameterised by θθθ .15 Unlike the linear case discussed before, here deep
neural networks are applied to form the the likelihood pθθθ (xxx|zzz), usually by determining the
parameters of the distribution by neural networks taking zzz as their input.16 As a concrete
example, let us consider the following model:

zzzn ∼N(zzz;000, III), xxxn ∼N(xxx; µµµθθθ (zzzn),diag(σσσ2
θθθ
(zzzn))),

where µµµθθθ and σσσθθθ are defined by deep neural network transforms of zzz. With the observed
dataset D= {xxxn}N

n=1 in hand, we are interested in finding the most likely configuration of
the neural network parameters θθθ by maximum likelihood:

max
θθθ

N

∑
n=1

log pθθθ (xxxn), (2.36)

15It is possible to have a hierarchy of latent variable models, but here we will stick to the simplest case.
16Another case where p(xxx|zzz) is implicitly defined by neural network transforms will be discussed in the

second part of the thesis.
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which involves integrating out all the latent variables zzzn out and which is thus analytically
intractable. Traditionally, the expectation maximisation (EM) algorithm [Dempster et al.,
1977] is used here to train the parameters θθθ . But here we deploy another approach which
uses the variational lower-bound as a surrogate loss:

max
θθθ ,φφφ

N

∑
n=1

LVI(φφφ ,θθθ ;xxxn), LVI(φφφ ,θθθ ;xxx) = Eqφφφ (zzz|xxx)

[
log

pθθθ (xxx,zzz)
qφφφ (zzz|xxx)

]
. (2.37)

The amortised variational inference algorithm is deployed (see Section 2.2.4).
Here we introduce a neat trick called reparameterisation [Kingma and Welling, 2014;

Rezende et al., 2014],17 which, along with MC approximation, makes the variational lower-
bound easy to handle. This trick comes from a very simple observation: given a distribution
p(zzz), if sampling zzz ∼ p(zzz) is equivalent to first sampling a “noise” variable εεε ∼ p(εεε) and
then computing a mapping zzz = fff (εεε), then the expectation of some function F(zzz) under
distribution p(zzz) can be rewritten as

Ep(zzz)[F(zzz)] = Ep(εεε)[F( fff (εεε))].

This convenient computation is also called the law of the unconscious statistician (LOTUS).
To see how this trick works in the context of deep generative models, we consider a simple
approximate posterior distribution, namely the factorised Gaussian:

qφφφ (zzz|xxx) =N(zzz; µµµφφφ (xxx),diag(σσσ2
φφφ (xxx))).

Again µµµφφφ and σσσφφφ are mappings parameterised by deep neural networks with parameter φφφ .
One can easily notice that drawing samples from this Gaussian is done by the following
procedure

zzz∼ qφφφ (zzz|xxx)⇔ εεε ∼ q(εεε) =N(εεε;000, III),zzz = µµµφφφ (xxx)+σσσφφφ (xxx)⊙ εεε, (2.38)

where ⊙ denotes element-wise product, and essentially (2.38) performs a change-of-variable
operation. Usually the two mappings µµµφφφ (·) and σσσφφφ (·) are represented by (deep) neural
networks (with φφφ the network weight matrices), and in this context the q distribution is
also called the recognition model or the inference network. Following the LOTUS rule, the

17As we shall see this is not a new trick, although Kingma and Welling [2014] and Rezende et al. [2014]
were the first to apply it in deep generative modelling context.
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xxx

zzzφφφ θθθ

N

Fig. 2.5 The graphical model of VAE, showing the generative model and the inference
network. Dash arrows imply dependencies in the q distribution. Reproduced from Kingma
and Welling [2014].

variational lower-bound can be rewritten as

LVI(φφφ ,θθθ ;xxx) = Eq(εεε)

[
log

pθθθ (xxx,µµµφφφ (xxx)+σσσφφφ (xxx)⊙ εεε)

qφφφ (µµµφφφ (xxx)+σσσφφφ (xxx)⊙ εεε|xxx)

]
, (2.39)

and it can be further approximated using simple Monte Carlo (MC):

LMC
VI (φφφ ,θθθ ;xxx) =

1
K

K

∑
k=1

log
pθθθ (xxx,µµµφφφ (xxx)+σσσφφφ (xxx)⊙ εεεk)

qφφφ (µµµφφφ (xxx)+σσσφφφ (xxx)⊙ εεεk|xxx)
, εεεk ∼ q(εεε). (2.40)

In practice the MC estimate is computed with very few samples, and in the case of drawing
only one sample (K = 1), the resulting algorithm is very similar to training a standard auto-
encoder with a noise-injected encoding operation, thus the name variational auto-encoder
[Kingma and Welling, 2014; Rezende et al., 2014]. Its graphical model is also visualised in
Figure 2.5.

2.5.2 Bayesian neural networks

Another exciting application of Bayesian inference is a class of methods called Bayesian
neural networks (Bayesian NNs, BNNs), which maintains the uncertainty of the weight
matrix assignments. Originated in the late 80s and early 90s in the last century [Hinton and
Van Camp, 1993; MacKay, 1992; Neal, 1992, 1995; Peterson and Anderson, 1987],18 it has
recently attracted a lot of attention again, mainly due to the advance of modern approximate
inference techniques. In this thesis we will also study BNNs as a test case for the developed
approximate algorithms, and here we provide a concise review of the related key concepts.

We start by describing a normal deep neural network mapping y = fθθθ (xxx) parameterised
by a set of weights (and bias vectors which we omit here for simplicity) θθθ = {Wl}L

l=1. Then

18For a detailed history see [Gal, 2016, Section 2.2.1].
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given a training dataset D= {(xxxn,yn)}N
n=1, one would first define a loss function l(y, fθθθ (xxx))

to measure the error between the supervision signal and the prediction, then train the neural
network by minimising the empirical loss on the dataset

min
θθθ

F(θθθ) =
N

∑
n=1

l(yn, fθθθ (xxxn)).

Examples for such loss function include the mean squared error (or ℓ2 error) l(y, fθθθ (xxx)) =
||y−fθθθ (xxx)||22 for regression and cross entropy loss l(y, fθθθ (xxx))=−y log fθθθ (xxx)−(1−y) log(1−
fθθθ (xxx)) for (binary) classification. To avoid overfitting, regularisers are often included in the
optimisation objective, for example, adding an ℓ2 regulariser would return the following
optimisation problem

min
θθθ

FMAP(θθθ) =
N

∑
n=1

l(yn, fθθθ (xxxn)+
λ

2
||θθθ ||22. (2.41)

Let us consider the above training objective again but from a probabilistic modelling
perspective. In this case the network weight matrices θθθ are treated as random variables, and
a Gaussian prior p0(θθθ) =N(θθθ ;000,λ−1I) is attached.19 For many loss functions (e.g. ℓ2 loss),
the likelihood function of θθθ is then defined as20

p(y|xxx,θθθ) = 1
Z

exp(−l(y, fθθθ (xxx)).

See LeCun et al. [2006] for an example justification. For most loss functions (e.g. mean
square error and cross entropy) the normalising constant Z does not depend on the weights θθθ .
Given the training dataset D the joint distribution is

p(D,θθθ) = p0(θθθ)
N

∏
n=1

p(yn|xxxn,θθθ),

thus one can easily show that the maximum a posteriori (MAP) training maxθθθ log p(D,θθθ) is
exactly equivalent to the problem of (2.41).

After framing the deep neural network as a probabilistic model, a Bayesian approach
would find the posterior of the network weights p(θθθ |D) and use the uncertainty information
encoded in it for future predictions. Again the exact posterior is intractable, and approxi-

19Sometimes other prior distributions might be preferred, e.g. spike-and-slab prior [Louizos et al., 2017;
Neal, 1995].

20This definition requires
∫

exp(−l(y, fθθθ (xxx))dy to be finite, which is true for many loss functions but not
always the case.
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mate inference would fit an approximate posterior distribution qφφφ (θθθ) parameterised by the
variational parameters φφφ to the exact posterior, and then use it to compute the (approximate)
predictive distribution. As an example, here we consider a variational inference approach
and write down the variational lower-bound accordingly [Barber and Bishop, 1998; Hinton
and Van Camp, 1993]

LVI(φφφ) =
N

∑
n=1

Eqφφφ
[log p(yn|xxxn,θθθ)]−KL[qφφφ ||p0]. (2.42)

Solving problem (2.42) with a degenerate variational approximation qφφφ (θθθ) = δθθθ=φφφ would
result in a MAP solution (2.41), which is less desirable in terms of capturing uncertainty.
However qφφφ should also not be too complicated in terms of the entailed computational
complexity, as now θθθ is typically a very long vector of thousands, or even millions of
dimensions. Popular choices of such “efficient” variational approximations include the
mean-field Gaussian approximation

qφφφ (θθθ) =
L

∏
l=1

∏
i, j

N(W l
i j; µ

l
i j,(σ

l
i j)

2), φφφ = {µ l
i j,σ

l
i j}i, j,l,

which doubles the number of parameters to be optimised, and which is thus less memory
demanding than a correlated Gaussian approximation for example. Also now the KL term in
(2.42) has an analytical solution

KL[qφφφ ||p0] = ∑
i, j,l

1
2

(
λ (µ l

i j)
2−1+λ (σ l

i j)
2− logλ −2logσ

l
i j

)
.

But even so the error term Eq[log p(y|xxx,θθθ)] is intractable due to the highly non-linear
NN mapping fθθθ . Fortunately this issue is mitigated by employing the Monte Carlo (MC)
approximation again:

LMC
VI (φφφ) =

N

∑
n=1

1
K

K

∑
k=1

[log p(yn|xxxn,θθθ
k)]−KL[qφφφ ||p0], θθθ

k ∼ qφφφ (θθθ). (2.43)

Usually to reduce the number of forward passes (i.e. computing log p(y|xxx,θθθ)) K is of-
ten a small number, even as little as K = 1. Also for large datasets stochastic optimi-
sation techniques are also applied, meaning that for mini-batch training with a subset



2.6 Summary and outlook 47

{(xxxm,ym)}M
m=1 ∼DM, the objective is (e.g. for K = 1)

LMC
VI (φφφ) =

N
M

M

∑
m=1

log p(ym|xxxm,θθθ)−KL[qφφφ ||p0], θθθ ∼ qφφφ (θθθ). (2.44)

If the KL divergence is intractable it can also be approximated by Monte Carlo, i.e.

KL[qφφφ ||p0]≈ logqφφφ (θθθ)− log p0(θθθ), θθθ ∼ qφφφ .

The reparameterisation trick discussed earlier is often applied to allow gradient back-
propagation, and in the case of mean-field Gaussian approximations the weight matrices are
sampled as W l

i j = µ l
i j +σ l

i jε, ε ∼N(ε;0,1), and the log-likelihood terms in (2.44) is then
computed by log p(ym|xxxm,µµµ +σσσ ⊙ εεε).

Remark (Other approximate inference methods for BNNs). Although we presented
BNNs using VI, I shall point out that other approximate inference methods do apply. Mile-
stone papers of approximate inference techniques developed for BNNs include: Laplace
approximation [MacKay, 1992], minimum description length [Hinton and Van Camp,
1993] (which is equivalent to VI), hybrid/Hamiltonian Monte Carlo [Neal, 1995], and
variational inference [Barber and Bishop, 1998; Blundell et al., 2015; Gal and Ghahra-
mani, 2016; Graves, 2011]. Recent applications of BNNs using non-VI Bayesian methods
include stochastic gradient MCMC [Korattikara et al., 2015; Li et al., 2016a, for example],
assumed density filtering/EP [Hernández-Lobato and Adams, 2015] and those that will be
presented in the later Chapters.

2.6 Summary and outlook

In this chapter we have established the idea of divergence minimisation, and reviewed two
classes of commonly used approximate inference techniques: variational inference (VI) and
expectation propagation (EP). These two methods are closely related to each other but also
have notable differences, both algorithmically and in terms of the solutions they return. In
the rest of the first part (chapters 3 and 4), we will study in depth these similarities and
differences, and as a motivation for the detailed analysis we provide a brief discussion as
follows.

First, compared to VI, EP brings more serious computational burden, in that its memory
cost scales linearly with the number of factors in the graph representing the target density.
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Scalable approximations to EP are then discussed in Chapter 3, in which we demonstrate the
scalability of our proposals to machine learning tasks in which EP is too expensive to handle.

Second, both methods can be motivated by divergence minimisation, in which VI min-
imises the exclusive KL divergence and EP minimises an inclusive KL divergence. The
generalisation, i.e. power EP, minimises alpha-divergences which have the two KL diver-
gences as special cases. However, VI performs global divergence minimisation, while EP
minimises the selected divergence locally. The resulting differences in local optima and
optimisation behaviour are further investigated in Chapter 4.



Chapter 3

Stochastic Expectation Propagation

Scalable approximate inference is key to the recent success of Bayesian deep learning
[Blundell et al., 2015; Gal and Ghahramani, 2016; Hernández-Lobato and Adams, 2015].
Here scalability entails that the algorithm has low enough time and space complexity figures
to be deployed on real-world datasets. By leveraging stochastic optimisation techniques,
variational inference [Beal, 2003; Hoffman et al., 2013; Jordan et al., 1999] has been shown to
be highly scalable even for modelling datasets comprising millions of documents [Broderick
et al., 2013]. On the other hand, we have discussed at length in the last chapter why EP-
like algorithms can be superior, which is indeed confirmed by a large set of small scale
experiments [Barthelmé and Chopin, 2014; Cunningham et al., 2011; Kuss and Rasmussen,
2005]. As a reminder: EP constructs a posterior approximation by iterating simple local
computations that refine factors which approximate the posterior contribution from each
datapoint.

At first sight, EP might therefore appear well suited to large-data problems: the locality of
computation makes the algorithm simple to be extended to stochastic optimisation scenarios.
Indeed EP is certainly suited for fast approximate inference, and folklore suggests that it
usually converges even faster than VI in practice, due to the exploitation of fixed-point
iterative search. Despite the huge gain in time complexities, EP has garnered much less
attention in the regard of large-scale learning tasks. This is because, the elegance of local
computation has been bought at the price of a prohibitive memory overhead that grows with
the number of data-points N, since each local approximating factor typically has the same
complexity as the global approximation. In contrast, VI utilises global approximations that
are refined directly, which prevents memory overheads from scaling with N. Thus VI is
arguably better-suited for approximate Bayesian inference at large-scale, precisely because it
is much more memory efficient (albeit if not utilising parallel computing).
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Can we have the best of both worlds? That is, accurate global approximations that are
derived from truly local computation. In this chapter we propose stochastic expectation
propagation (SEP) to address this question, which are developed based upon the standard EP
algorithm. Importantly, SEP only maintains a global approximation (like VI), thus reducing
the memory footprint by a factor of N when compared to EP. However SEP updates the
global approximation in a local way (like EP), with (damped) stochastic estimates on data
sub-samples in an analogous fashion to stochastic variational inference (SVI) [Hoffman
et al., 2013]. Indeed, the generalisation of the algorithm to the power-EP setting directly
recovers SVI as a special case. We further extend the method to control the granularity
of the approximation, and to treat models with latent variables without compromising on
accuracy or entailing unnecessary memory demands. Finally, we demonstrate the scalability
and accuracy of the method on a number of real world and synthetic datasets, also spanning
a number of canonical machine learning tasks.

To the best of my knowledge, the development of SEP back in 2015 was the first success-
ful attempt1 to scale-up EP-like algorithms to large-scale data and stochastic optimisation
settings, which also inspired many innovations in Chapter 4, the black-box alpha algorithm
[Hernández-Lobato et al., 2016], and other applications.

Remark (Previous attempts to scale-up EP) . As EP appears to be the method of choice
for some applications, researchers have attempted to push it to scale. A first approach is to
swallow the large computational burden and simply use large data-structures to store the
approximating factors (e.g. TrueSkill [Herbrich et al., 2006]). This approach can only be
pushed so far. A second approach is to use the assumed density filtering (ADF) algorithm
as a simple variant, which only requires a global approximation to be stored [Maybeck,
1982]. ADF, however, provides poorly calibrated uncertainty estimates [Minka, 2001b]
which was one of the main motivating reasons for developing EP in the first place. A third
idea, complementary to the one described here, is to use approximating factors that have
simpler structure (e.g. low rank, [Qi et al., 2010]). This reduces memory consumption
(e.g. for Gaussian factors from O(ND2) to O(ND)), but does not stop the scaling with N.
A fourth idea uses EP to carve up the dataset [Gelman et al., 2014; Xu et al., 2014] using
approximating factors for collections of data-points. This results in coarse-grained, rather
than local, updates and other methods must be used to compute them. (Indeed, the spirit
of Gelman et al. [2014]; Xu et al. [2014] is to extend sampling methods to large-datasets
by exploiting EP’s ability to split up inference problems into smaller parts, not EP itself.)

1except for those using parallel computing where the memory constraint is not in consideration.
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3.1 Memory efficient factor tying

3.1.1 A quick comparison between EP and ADF

We begin by briefly setting-up the EP and assumed density filtering (ADF) algorithms for
posterior approximation, and the readers are referred to Section 2.3.2 for a more detailed
review. Recall that EP constructs the approximation q(θθθ) to the exact posterior as the
following:2

p(θθθ |D)≈ q(θθθ), p(θθθ |D) ∝ p0(θθθ)
N

∏
n=1

p(xxxn|θθθ), q(θθθ) ∝ p0(θθθ)
N

∏
n=1

fn(θθθ). (3.1)

The goal of EP is to refine the approximate factors so that they capture the contribution of
each of the likelihood terms to the posterior i.e. fn(θθθ)≈ p(xxxn|θθθ). In this spirit, one approach
would be to find each approximating factor fn(θθθ) by minimising the Kullback Leibler
(KL) divergence between the posterior and the distribution formed by replacing one of the
likelihoods by its corresponding approximating factor, KL[p(θθθ |D)||p(θθθ |D) fn(θθθ)/p(xxxn|θθθ)].
Unfortunately, such an update is still intractable as it involves computing the full posterior.
Instead, EP approximates this procedure by replacing the exact leave-one-out posterior
p−n(θθθ) ∝ p(θθθ |D)/p(xxxn|θθθ) on both sides of the KL by the approximate leave-one-out
posterior (also called the cavity distribution) q−n(θθθ) ∝ q(θθθ)/ fn(θθθ). Since this couples the
updates for the approximating factors, the updates must now be iterated.

We summarise the update procedure for a single factor in Algorithm 3. Critically, the
approximation step of EP involves local computations since one likelihood term is treated
at a time. The assumption is that these local computations, although possibly requiring
further approximation, are far simpler to handle compared to the full posterior p(θθθ |D). In
practice, EP often performs well when the updates are parallelised [Minka et al., 2014].
Moreover, by using approximating factors for groups of data-points, and then running
additional approximate inference algorithms to perform the EP updates (which could include
nested EP), EP carves up the data making it suitable for distributed approximate inference.

There is, however, one wrinkle that complicates deployment of EP at scale. Computation
of the cavity distribution requires removal of the current approximating factor, which means
any implementation of EP must store them explicitly necessitating an O(N) memory footprint.
One option is to simply ignore the removal step and replace the cavity distribution with the
full approximation, resulting in the assumed density filtering (ADF) algorithm (Algorithm 4)
[Maybeck, 1982] that only maintains global approximation in memory. But as the moment

2Here we consider tractable prior distributions, e.g. Gaussians, otherwise further approximation can be
applied and the presented results carry in that case.
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Algorithm 3 EP
1: choose a factor fn to refine:
2: compute cavity distribution

q−n(θθθ) ∝ q(θθθ)/ fn(θθθ)
3: compute tilted distribution

p̃n(θθθ) ∝ p(xxxn|θθθ)q−n(θθθ)
4: moment matching:
fn(θθθ)← proj[p̃n(θθθ)]/q−n(θθθ)
5: inclusion:

q(θθθ)← q−n(θθθ) fn(θθθ)

Algorithm 4 ADF
1: choose a datapoint xxxn ∼D:
2: compute cavity distribution

q−n(θθθ) = q(θθθ)
3: compute tilted distribution

p̃n(θθθ) ∝ p(xxxn|θθθ)q−n(θθθ)
4: moment matching:
fn(θθθ)← proj[p̃n(θθθ)]/q−n(θθθ)
5: inclusion:

q(θθθ)← q−n(θθθ) fn(θθθ)

Algorithm 5 SEP
1: choose a datapoint xxxn ∼D:
2: compute cavity distribution

q−1(θθθ) ∝ q(θθθ)/ f (θθθ)
3: compute tilted distribution

p̃n(θθθ) ∝ p(xxxn|θθθ)q−1(θθθ)
4: moment matching:
fn(θθθ)← proj[p̃n(θθθ)]/q−1(θθθ)
5: inclusion:

q(θθθ)← q−1(θθθ) fn(θθθ)
6: implicit update:

f (θθθ)← f (θθθ)1− 1
N fn(θθθ)

1
N

matching step now over-counts the underlying approximating factor (consider the new form
of the objective KL[q(θθθ)p(xxxn|θθθ)||q(θθθ)]) the variance of the approximation shrinks to zero as
multiple passes are made through the dataset. Early stopping, e.g. after a single pass through
the data, is therefore required to prevent overfitting, and generally speaking ADF does not
return uncertainties that are well-calibrated to the posterior. In the next section we introduce
a new algorithm that sidesteps EP’s large memory demands whilst avoiding the pathological
behaviour of ADF.

3.1.2 Stochastic expectation propagation

In this section we introduce a new algorithm, inspired by EP, called stochastic expectation
propagation (SEP) that combines the benefits of local approximation (tractability of updates,
distributability, and parallelisability) with global approximation (reduced memory demands).
The algorithm can be interpreted as a version of EP in which the approximating factors
are tied, or alternatively as a corrected version of ADF that prevents overfitting. The
key idea is that, at convergence, the approximating factors in EP can be interpreted as
parameterising a global factor, f (θθθ), that captures the average effect of a likelihood on the
posterior f (θθθ)N = ∏

N
n=1 fn(θθθ) ≈∏

N
n=1 p(xxxn|θθθ). In this spirit, the new algorithm employs

direct iterative refinement of a global approximation comprising the prior and N copies of a
single approximating factor, f (θθθ), that is q(θθθ) ∝ f (θθθ)N p0(θθθ).

SEP uses updates that are analogous to EP’s in order to refine f (θθθ) in such a way that
it captures the average effect a likelihood function has on the posterior. First the cavity
distribution is formed by removing one of the copies of the factor, q−1(θθθ) ∝ q(θθθ)/ f (θθθ).
Second, the corresponding likelihood is included to produce the tilted distribution p̃n(θθθ) ∝

q−1(θθθ)p(xxxn|θθθ) and, third, SEP finds an intermediate factor approximation by moment
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matching, fn(θθθ)← proj[p̃n(θθθ)]/q−1(θθθ). Finally, having updated the factor, it is included
into the approximating distribution. It is important here not to make a full update since fn(θθθ)

captures the effect of just a single likelihood function p(xxxn|θθθ). Instead, damping should
be employed to make a partial update f (θθθ)← f (θθθ)1−ε fn(θθθ)

ε , and a natural choice uses
ε = 1/N which can be interpreted as minimising KL[p̃n(θθθ)||p0(θθθ) f (θθθ)N ] in the moment
update.

SEP is summarised in Algorithm 5. Unlike ADF, the cavity is formed by dividing out
f (θθθ) which captures the average effect of the likelihood and prevents the posterior from
collapsing. Like ADF, however, SEP only maintains the global approximation q(θθθ) since
f (θθθ) ∝ (q(θθθ)/p0(θθθ))

1
N and q−1(θθθ) ∝ q(θθθ)1− 1

N p0(θθθ)
1
N . When Gaussian approximating

factors are used, for example, SEP reduces the storage requirement of EP from O(ND2) to
O(D2) which is a substantial saving that enables models with many parameters to be applied
to large datasets. We also provide a cartoon visualisation for motivating SEP in Figure 3.1.

3.2 Algorithmic extensions to SEP

SEP has been motivated from a practical perspective by the limitations inherent in EP and
ADF. In this section we extend SEP in four orthogonal directions and through these extensions
relate SEP to SVI. Many of the algorithms described in this section are summarised in Figure
3.2 and they are detailed in the following discussions.

3.2.1 Parallel SEP: relating the EP fixed points to SEP

The SEP algorithm outlined above approximates one likelihood at a time which can be
computationally slow. However, it is simple to parallelise the SEP updates by follow-
ing the same recipe by which EP is parallelised. Consider a minibatch comprising M
datapoints (for a full parallel (batch) update use M = N). First we form the cavity dis-
tribution for each likelihood. Unlike EP these are all identical. Next, in parallel, com-
pute M intermediate factors fm(θθθ) ← proj[p̃m(θθθ)]/q−1(θθθ). In EP these intermediate
factors become the new likelihood approximations and the approximation is updated to
q(θθθ) = p0(θθθ)∏n̸=m fn(θθθ)∏m fm(θθθ). In SEP, the same update is used for the approximating
distribution, which becomes q(θθθ)← p0(θθθ) fold(θθθ)

N−M
∏m fm(θθθ) and, by implication, the

approximating factor is fnew(θθθ) = fold(θθθ)
1−M/N

∏
M
m=1 fm(θθθ)

1/N . One way of understanding
parallel SEP is as a double loop algorithm. The inner loop produces intermediate approx-
imations qm(θθθ)← argminq KL[p̃m(θθθ)||q(θθθ)]; these are then combined in the outer loop:
q(θθθ)← argminq ∑

M
m=1 KL[q(θθθ)||qm(θθθ)]+(N−M)KL[q(θθθ)||qold(θθθ)].
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Goal: approximate the true posterior

EP

idealised

approximate

capture the average effect 
of likelihood terms

memory

intractable

SEP

memory

tie local factors

Fig. 3.1 A cartoon visualisation for the comparison of three algorithms. Here the boxes
represent the prior and the approximating factors, and both of them are assumed to be
tractable. The wiggled objects are the complicated likelihood terms to be approximated. An
idealised algorithm would approximate each of the likelihood terms given the others fixed as
contextual information, which is intractable. EP replaces the “contextual” likelihood terms
with the approximating factors to form a cavity distribution, making the moment matching
step tractable. Finally, SEP ties all the approximating factors, and updates the tied factor by
including one randomly sampled likelihood term at each iteration. The space complexity
figures are calculated with the assumption of Gaussian approximation.
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updates
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minibatch
updates

multiple
approximating

factors

K=N

K=1

M=1

M=N

a=1

a=0

SEP

AEP

EP

PEP

VMP
AVMP

SVMP

par-EP

par-VMP

par-SEP

DSEP

AEP: Averaged EP
AVMP: Averaged VMP
EP: Expectation Propagation

SEP

EP

VMP

VI

AEP

AVMP
SVMP

PEP: Power EP
SEP: Stochastic EP
SVMP: Stochastic VMP

same (stochastic methods)

same

same in large data limit
(conditions apply)

par-EP: EP with parallel updates
par-SEP: SEP with parallel updates
par-VMP: VMP with parallel updates

VI:  Variational Inference
VMP: Variational Message Passing

A) Relationships between algorithms B) Relationships between fixed points

Fig. 3.2 Relationships between algorithms. Note that care needs to be taken when interpreting
Minka’s alpha-divergence as a→ 0. See the main text for further discussions.

For M = 1 parallel SEP reduces to the original SEP algorithm. For M = N parallel
SEP is equivalent to the so-called Averaged EP (AEP) algorithm proposed in a concurrent
work [Dehaene and Barthelmé, 2015; Dehaene and Barthelmé, 2018] as a theoretical tool to
study the convergence properties of normal EP. This work showed that when using Gaussian
approximations, under fairly restrictive conditions,3 AEP converges to the same fixed points
as EP in the large data limit (N→ ∞).

There is another illuminating and arguably more direct connection between SEP and
AEP. Since SEP’s approximating factor f (θθθ) converges to the geometric average of the
intermediate factors f̄ (θθθ) ∝ [∏N

n=1 fn(θθθ)]
1
N , SEP converges to the same fixed points as

AEP, and therefore under certain conditions [Dehaene and Barthelmé, 2015; Dehaene and
Barthelmé, 2018], to the same fixed points as EP. In practice decreasing learning rates, e.g.
{εt} satisfying the Robbins and Monro criterion [Robbins and Monro, 1951] ∑t εt = ∞,

∑t ε2
t < ∞, may be used to achieve convergence. It is possible that there are more direct

relationships between EP and SEP’s dynamics, but that is still an open question.

3.2.2 Stochastic power EP: relationships to variational methods

The SEP algorithm generalises to the power-EP case in a straight-forward manner. Instead of
removing one copy of the tied factors in Algorithm 5, when power α is in use we remove α

fraction of the tied factors:
q−α ∝ q(θθθ)/ f (θθθ)α .

3e.g. log likelihood functions that are smooth with bounding conditions up to the 4th-order derivative,
although this is not a necessary condition.
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The moment matching step proceeds as in the power EP algorithm, precisely,

fn(θθθ)
α ← proj[q−α(θθθ)p(xxxn|θθθ)α ]/q−α(θθθ).

Similar to the power-EP case, the projection operator becomes I-projection when setting
α → 0.

The relationship between variational inference and stochastic variational inference [Hoff-
man et al., 2013] mirrors the relationship between EP and SEP. Can these relationships be
made more formal? In the following we show that, if the moment projection step in EP is
replaced by a natural parameter matching step (i.e. I-projection) then the resulting algorithm
is equivalent to the Variational Message Passing (VMP) algorithm [Minka, 2005; Winn and
Bishop, 2005].

We first briefly sketch the VMP algorithm using the EP framework but replacing the
moment matching step with natural parameter matching. We assume the approximate
posterior q(θθθ) is in some exponential family:

q(θθθ) ∝ exp
[
⟨λλλ q,ΦΦΦ(θθθ)⟩

]
. (3.2)

At time t we have the current estimate of the natural parameter λλλ
t
q, which is defined as the

sum of local variational parameters: λλλ
t
q
△
= λλλ 0 +∑

N
n=1 λλλ

t
n.4 Here λλλ 0 represents the natural

parameter of the prior distribution p0(θθθ). VMP iteratively computes the update of each
local estimate λλλ

t+1
n in the following procedure. First VMP computes the expected sufficient

statistics ŝssn about datapoint xxxn using λλλ
t
q, e.g. ŝssn = Eq[t(zn,xn)] in the original SVI paper

[Hoffman et al., 2013]. Then VMP forms the gradient by differentiating the variational
lower-bound but with q−1(θθθ) as the prior:

∇
λλλ

t
q
LVI ∝ λλλ

t
−1 + ŝssn−λλλ

t
q, λλλ

t
−1 := λλλ

t
q−λλλ

t
n. (3.3)

Next VMP zeros the gradient and recovers the current update λλλ
t+1
n = ŝssn. The stochastic

version of VMP, if extended in a way as SEP is developed from EP, defines the global

variational parameters as λλλ
t
q
△
= λλλ 0 +Nλλλ

t . It computes the expected sufficient statistics ŝssn in
the same way as VMP but changes the cavity to λλλ

t
−1 = λλλ

t
q−λλλ

t in the variational lower-bound
maximisation steps. Readers can verify that this returns the current update λλλ

t+1 = ŝssn using
the important fact that the local update (for example ŝssn = Eq[t(zn,xn)]) only depends on the
global parameter λλλ

t
q. Now since we tie all the local updates, the global parameter update

4This notation implicitly assumes that the prior also belongs to the approximate distribution family Q. In
general we can propose another factor to approximate p0(θθθ), and our result still applies.
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λλλ
t+1
q = λλλ 0 +Nλλλ

t+1 = λλλ 0 +Nŝssn. In practice we perform a damped update, where a typical
choice of step size is ε = 1/N like in SEP:

λλλ
t+1
q ← (1− 1

N
)λλλ t

q +
1
N
(λλλ 0 +Nλλλ

t+1) = λλλ 0 +(N−1)λλλ t + ŝssn. (3.4)

On the other hand, Mandt and Blei [2014] summarises SVI as to compute the current
update by zeroing the gradient

∇λλλ q
LVI ∝ λλλ 0 +Nŝssn−λλλ q, (3.5)

which returns λλλ
t+1
q = λλλ 0 +Nŝssn as well. This implies that SVI, when using learning rate

ε = 1/N, is equivalent to SVMP. More generally, the procedure can be applied any member
of the PEP family of algorithms, but care has to be taken when taking the limiting cases
α → 0. These results lend weight to the view that SEP is a natural stochastic generalisation
of EP.

3.2.3 Distributed SEP: controlling granularity of the approximation

EP uses a fine-grained approximation comprising a single factor for each likelihood. SEP,
on the other hand, uses a coarse-grained approximation comprising a signal global factor
to approximate the average effect of all likelihood terms. One might worry that SEP’s
approximation is too severe if the dataset contains sets of data-points that have very different
likelihood contributions (consider classifying handwritten digits into odd and even classes,
for example). It might be more sensible in such cases to partition the dataset into J disjoint
pieces {D j = {xxxn}

N j
n=N j−1

}J
j=1 with N = ∑

J
j=1 N j and use an approximating factor for each

partition. If normal EP updates are performed on the subsets, i.e. treating p(D j|θθθ) as a single
true factor to be approximated, we arrive at the distributed EP (DEP) algorithm [Gelman
et al., 2014; Xu et al., 2014], summarised in Algorithm 6 and detailed as the following.

After data partitioning, the posterior distribution and likelihood functions are denoted as

p(θθθ |D) ∝ p0(θθθ)
J

∏
j=1

p(D j|θθθ), (3.6)

p(D j|θθθ) = ∏
xxxn∈D j

p(xxxn|θθθ). (3.7)

Next DEP assigns factors to each sub-dataset likelihood, i.e. q(θθθ) ∝ p0(θθθ)∏
J
j=1 Fj(θθθ) with

each Fj(θθθ) approximating p(D j|θθθ). The projection step is no longer analytically tractable
in general since the tilted distribution with multiple data-points often lacks a simple form.
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Instead DEP handles moment matching by nesting additional approximations, e.g. MCMC,
which might be undesirable in terms of time complexity figures.

How does the factor tying idea apply in this case? A naive implementation would
simply tie the sub-dataset level factors, but one should notice that N j might not be equal
for different subsets. Instead we still construct datapoint level approximate factors similar
to SEP, i.e. q(θθθ) ∝ p(θθθ) f (θθθ)N , but construct the update in DEP fashion. In other words,
N j factors are replaced by the likelihood terms in the jth subset in order to form the tilted
distribution. Later these N j copies are updated by exactly the same moment matching step
as in DEP. We name this algorithm stochastic EP on data partitions and to distinguish from
another algorithm presented later we abbreviate it as stochastic distributed EP (SDEP) (see
Algorithm 7). It is trivial to parallelise this method just as one would do for DEP, and we
abbreviate the corresponding version as ADEP.

To have a deterministic5 counterpart of DEP, we consider SEP/AEP inside each partition.
This strategy might be preferred when one wish to carve up the data and carry out determin-
istic inference routines distributed across machines. We name this approach as Distributed
SEP/AEP (DSEP/DAEP). Different to both DEP and SDEP, the approximate posterior for
DSEP is defined as q(θθθ) ∝ p0(θθθ)∏ j f j(θθθ)

N j , with f j(θθθ)
N j approximating p(D j|θθθ). The

computations are almost the same as SEP/AEP except that the updates only modifies the
copies of the corresponded subset. This method is also detailed in Algorithm 8, and the
differences between the two factor tying proposals are also visualised in Figure 3.3.

In summary, a flexible class of EP-like approximate inference algorithms can be derived,
by carving up the dataset and designing the approximating factor structures and update
procedures. Computational complexity figures are further presented in Section 3.3 to allow
selections of algorithms confronting computation constraints.

3.2.4 SEP for latent variable models

Many applications of EP involve latent variable models. Although this is not the main focus
of the development, we show that SEP is applicable in this case and again it prevents the
memory footprint from scaling with N. Critically as we shall see, the local factors gn(zzzn) do
not need to be maintained in memory, although retaining them in memory might provide
better initialisations that speeds up convergence potentially. This means that all of the
advantages of SEP carry over to more complex models involving latent variables.

We consider a model containing latent variables zzzn associated with each observation
xxxn, which are drawn i.i.d. from a prior p0(zzzn). SEP proposes approximations to the exact

5in the sense that the moment matching step does not employ Monte Carlo.
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Algorithm 6 DEP
1: compute cavity distribution

q− j(θθθ) ∝ q(θθθ)/Fj(θθθ)
2: compute tilted distribution

p̃ j(θθθ) ∝ p(D j|θθθ)q− j(θθθ)
3: moment matching:
Fj(θθθ)← proj[p̃ j(θθθ)]/q− j(θθθ)

Algorithm 7 SDEP
1: compute cavity distribution

q− j(θθθ) ∝ q(θθθ)/ f (θθθ)N j

2: compute tilted distribution
p̃ j(θθθ) ∝ p(D j|θθθ)q− j(θθθ)

3: moment matching:
Fj(θθθ)← proj[p̃ j(θθθ)]/q− j(θθθ)
4: inclusion:
f (θθθ)← f (θθθ)1−N j/NFj(θθθ)

1/N

Algorithm 8 DSEP
1: compute cavity distribution

q−1(θθθ) = q(θθθ)/ f j(θθθ)
2: choose a datapoint

xxxn ∼D j

3: compute tilted distribution
p̃(n)j (θθθ) ∝ p(xxxn|θθθ)q−1(θθθ)

4: moment matching:
f (n)j (θθθ)← proj[p̃(n)j (θθθ)]/q−1(θθθ)

5: inclusion:
f j(θθθ)← f j(θθθ)

1−1/N j f (n)j (θθθ)1/N j

posterior over parameters and hidden variables

p(θθθ ,{zzzn}|D) ∝ p0(θθθ)∏
n

p0(zzzn)p(xxxn|zzzn,θθθ) (3.8)

by tying the factors for the global parameter θθθ but retaining the local factors for the hidden
variables:

q(θθθ ,{zzzn}) ∝ p0(θθθ) f (θθθ)N
N

∏
n=1

gn(zzzn). (3.9)

In other words, SEP uses f (θθθ)gn(zzzn) to approximate p(xxxn|zzzn,θθθ)p0(zzzn).
Next we show a critical advantage of SEP for approximating latent variable posterior:

the local factors gn(zzzn) do not need to be maintained in memory (again it might help to
do so for better initialisation). More formally, the cavity distribution is q−n(θθθ ,{zzzn}) ∝

q(θθθ ,{zzzn})/( f (θθθ)gn(zzzn)) and the tilted distribution is

p̃n(θθθ ,{zzzn}) ∝ q−n(θθθ ,{zzzn})p(xxxn|zzzn,θθθ)p0(zzzn).

This leads to a moment-update that minimises

KL[p0(θθθ) f (θθθ)N−1 p(xxxn|zzzn,θθθ)p0(zzzn) ∏
m ̸=n

gm(zzzm)||p0(θθθ) f (θθθ)N−1 f ′(θθθ)gn(zzzn) ∏
m ̸=n

gm(zzzm)].

with respect to f ′(θθθ)gn(zzzn). Importantly, the terms involving ∏m ̸=n gm(zzzm) are cancelled,
meaning that these factors do not contribute to the local approximation step. For simple
models the moments of zzzn can be computed analytically given q−1(θθθ), thus gn(zzzn) is never
stored in memory, resulting in a reduced memory footprint by a factor of N again. It is
also possible to have latent variables globally shared or shared in a data piece D j. But we
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Goal: approximate the true posterior

DEP

SDEP

Fig. 3.3 A cartoon visualisation on comparing DEP, SDEP and DSEP. One should notice
that the definitions of Fj(θθθ) in DEP is different from f j(θθθ) in DSEP. Here SDEP’s moment
matching step would typically require another approximate inference procedure, e.g. simu-
lating MCMC dynamics for a long time. On the other hand DSEP still use cheap updates
computed on a single datum, which can be faster.

can also extend SEP to these latent variables accordingly, which still provides computation
gains in space complexity. In mathematical form, assume zzz j a latent variable shared in
D j. A prevalent example for this is the latent Dirichlet allocation (LDA) model [Blei et al.,
2003], where D j represents the jth document in the corpus and zzz j represents the topic of
the document. Then we construct q(zzz j) ∝ p0(zzz j)gk(zzz j)

N j to approximate its posterior. This
procedure still reduces memory by roughly a factor of N/J.

Remark (amortised inference nested in SEP) . In practice people may prefer maintaining
the g factors in memory, if the moment computation requires another optimisation inner-
loop (which might be more expensive than the moment matching step itself). Examples
of methods where this may be the case include latent Dirichlet allocation [Blei et al.,
2003] that has a hierarchy of latent variables, where VI methods also store variational q
distributions for some of the hidden variables. One potential recipe in this scenario is to
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apply amortised inference techniques, where in this case we can optimise the variational
parameter gφφφ (zzzn|xxxn) for the factors attached to the latent variables. Another very closed
related idea is to learn a model for the moments/messages passed in each SEP step with
confidence estimates. A particular compelling feature of this approach is that one can
control the use of the proposed message update by the model, and if rejected the algorithm
can resort to the more expensive exact message computation using e.g. MCMC. Interested
readers are directed to [Heess et al., 2013; Jitkrittum et al., 2015] for more details.

3.3 Computational complexity

Besides the approximation accuracy, time and space complexities are also crucial for an
efficient approximate inference algorithm to be widely-applicable, especially in systems
that handle very large-scale datasets and also require fast computations. To provide a direct
comparison between the methods discussed so far, we present the space and time complexity
factors by considering Gaussian approximations with full covariance matrices.

We assume an MCMC method is used for the DEP moment matching step, and assume it
has time complexity O(H(n,D)) if n likelihood terms are involved and the random variable
θθθ is of dimension D, since it handles multiple likelihood functions at the same time for a
single factor update. We also denote the time complexity factor of a normal EP moment
matching step as O(h(D)). Also since EP-like methods handle the natural parameters,
for Gaussian approximations it requires O(D3) time for matrix inversion and O(D2) for
matrix-vector multiplication in the inclusion step. By assumption EP’s update step for a
single factor can be done in a fast way, which means for a full pass through of the dataset
H(N,D)+D3+D2 ≥N(h(D)+D3+D2). Furthermore in practice low-rank approximations
can be applied to remove the O(D3) factor if the random variable is very high dimensional,
e.g. see Qi et al. [2010] in EP literature. For the concern of memory usage, every factor in
use occupies O(D2) storage, although sparse approximations can significantly improve space
complexity figures as well.

With all the above set-ups, we present the complexity figures in Table 3.1, which apply
to fully observed models, e.g. Bayesian neural networks for classification tasks. Like the
comparison between batch and stochastic learning methods, AEP-type methods produce
more robust updates, and can be significantly faster than SEP-type methods if executed in
parallel. However DEP/AEP algorithms require storing the factors in local worker machines,
so in this regard SEP provides significant advantage in memory consumption in the price of
slower convergence.
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Table 3.1 Complexity figures for the EP algorithms discussed (with Gaussian approximations,
full covariance matrices). The time complexity numbers are counted on a full pass of dataset,
and the global approximations are updated after each moment computation. We assume the
dataset is evenly split into J disjoint subsets when applicable.

Algorithm Time complexity Space complexity
DEP (parallel) O(D3 +H(N/J,D)+D2) O(JD2)
SDEP (sequel) O(J(D3 +H(N/J,D)+D2)) O(D2)
ADEP (parallel) O(D3 +H(N/J,D)+D2) O(JD2)
DSEP (sequel) O(N(D3 +h(D)+D2)) O(D2)
DAEP (parallel) O(J(D3 +h(D)+D2)) O(JD2)
SEP O(N(D3 +h(D)+D2)) O(D2)
AEP (parallel) O(D3 +h(D)+D2) O(ND2)
ADF (multi. pass) O(N(h(D))) O(D2)
Normal EP O(N(D3 +h(D)+D2)) O(ND2)
Sampling O(H(N,D)) O(D2)
SVI O(N(D3 + h̃(D)+D2)) O(D2)

To conclude the discussion of computational efficiency we compare the complexity
figures of SEP against those of SVI. Here we refer SVI to the general version which uses
gradient descent, since the likelihood terms are very unlikely to be conjugate to the Gaussian
approximation (thus the natural gradient descent algorithm [Hoffman et al., 2013] does not
apply). It is straightforward to see that both algorithms require the same amount of storage,
which is O(D2) in the Gaussian case. For the gradient descent update, as the gradient of
the entropy term H[q] in the variational lower-bound requires computing the covariance
matrix, this means the precision matrix as one of the natural parameters needs to be inverted.
Therefore the cost for each gradient descent step in SVI is O(h̃(D)+D3 +D2), with O(D3)

the matrix inversion time, O(D2) the update time for the precision matrix, and O(h̃(D))

the computation time for the gradients of other terms in the variational lower-bound. SVI
might be more efficient in time complexity per iteration (i.e. the runtime for processing one
incoming observation, therefore h̃(D)≤ h(D)). However, as SEP uses fixed-point iterative
updates, in practice SEP often converges in less passes of data than SVI thus is faster in total
runtime, which is something that the above complexity analysis cannot take into account. For
example Hernández-Lobato and Hernández-Lobato [2016] showed that SEP, when applied
to sparse GP classification, is significantly faster than SVI. SEP can be further accelerated
using low-rank approximations when D is large, which typically reduces the matrix inversion
time to O(Dd2) if we use rank-d approximations.
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3.4 Experiments

The purpose of the experiments was to evaluate SEP on a number of datasets (synthetic
and real-world, small and large) and on a number of models (probit regression, mixture of
Gaussians for clustering, and Bayesian neural networks).

3.4.1 Bayesian probit regression

The first experiments considered a simple Bayesian classification problem and investigated
the stability and quality of SEP in relation to EP and ADF as well as the effect of using
mini-batches and varying the granularity of the approximation. The model comprised a probit
likelihood function P(yyyn = 1|θ) = Φ(θθθ T xxxn) and a Gaussian prior over the hyper-plane pa-
rameter p(θθθ) =N(θθθ ;000,γI). The synthetic data comprised N = 5,000 datapoints {(xxxn,yyyn)},
where xxxn were D = 4 dimensional and were either sampled from a single Gaussian distribu-
tion (Fig. 3.4(a)) or from a mixture of Gaussians (MoGs) with 5 components (Fig. 3.4(b)) to
investigate the sensitivity of the methods to the homogeneity of the dataset. The labels were
produced by sampling from the generative model. We followed Xu et al. [2014] to measure
the performance by computing an approximation of KL[p(θθθ |D)||q(θθθ)], where p(θθθ |D) was
replaced by a Gaussian that had the same mean and covariance as samples drawn from
the posterior using the No-U-Turn sampler (NUTS) [Hoffman and Gelman, 2014]. This
evaluation metric measures how close the approximated first and second moments are to
those of the exact posterior, and emphasises well calibrated uncertainty estimations.

Results in Fig. 3.4(a) indicate that EP is the best performing method and that ADF
collapses towards a delta function. SEP converges to a solution which appears to be of similar
quality to that obtained by EP for the dataset containing Gaussian inputs, but slightly worse
when the MoGs was used. Variants of SEP that used larger mini-batches fluctuated less,
but typically took longer times to converge (although for the small mini-batches shown this
effect is not clear). The utility of finer grained approximations depended on the homogeneity
of the data. For the second dataset containing MoGs inputs (shown in Fig. 3.4(b)), finer
grained approximations were found to be advantageous if the datapoints from each mixture
component are assigned to the same approximating factor. Generally it was found that there is
no advantage to retaining more approximating factors than there were clusters in the dataset.

Although not a main purpose, we further test the performance of SEP with sampling
methods to compute moments (i.e. SDEP).6 We re-use the settings of probit regression
but change the probit unit to sigmoid function, making the moment projection analytically
intractable. We randomly partition the dataset into J = 20 subsets {D j}, construct the

6code adjusted from ep-stan: https://github.com/gelman/ep-stan

https://github.com/gelman/ep-stan
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(a)

J
J

(b) (c)

Fig. 3.4 Bayesian logistic regression experiments. Panels (a) and (b) show synthetic data
experiments. Panel (c) shows the performance of EP-like methods on Bayesian logistic
regression with the moment matching step computed by NUTS. M denotes the mini-batch
size for data sub-sampling (may be within a data piece for panel (c)). EP (in red curves) is the
best performing method in terms of the approximate KL metric. SEP works slightly worse
but with its performance approaching to EP as the running time grows. ADF over-counts the
number of observations and thus returns worst results as expected.

approximate posterior with local factors over the subsets, and tie them in SEP/AEP as
before. Note that we perform sequential computations for DEP and AEP although they are
ideally suited for parallel computing. Again as presented in Figure 3.4(c), SEP performs
almost as well as EP, which further justifies SEP even with sampling methods. Also AEP is
indistinguishable from DEP, but it reduces memory by a factor of N/J.

To see if the trends carry to real-world datasets, we tested SEP’s performance on six
small binary classification datasets from the UCI machine learning repository.7 We did not
consider the effect of mini-batches or the granularity of the approximation, using J = M = 1.
We ran the tests with damping and stopped learning after convergence (by monitoring the
updates of approximating factors). The classification results are summarised in Table 3.2.
ADF performs reasonably well on the mean classification error metric, presumably because it
tends to learn a good approximation to the posterior mode. However, the posterior variance is
poorly approximated and therefore ADF returns poor test log-likelihood scores. EP achieves
significantly higher test log-likelihood than ADF indicating that a superior approximation to
the posterior variance is attained. Crucially, SEP performs very similarly to EP, implying
that SEP is an accurate alternative to EP even though it is refining a cheaper global posterior
approximation.

7https://archive.ics.uci.edu/ml/index.html

https://archive.ics.uci.edu/ml/index.html
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Table 3.2 Average test results all methods on probit regression (mean and standard error
reported). All methods capture a good posterior mode, however EP outperforms ADF in
terms of test log-likelihood on almost all the datasets, with SEP performing similarly to EP.

mean error test log-likelihood
Dataset ADF SEP EP ADF SEP EP
Australian 0.328±0.0127 0.325±0.0135 0.330±0.0133 -0.634±0.010 -0.631±0.009 -0.631±0.009
Breast 0.037±0.0045 0.034±0.0034 0.034±0.0039 -0.100±0.015 -0.094±0.011 -0.093±0.011
Crabs 0.056±0.0133 0.033±0.0099 0.036±0.0113 -0.242±0.012 -0.125±0.013 -0.110±0.013
Ionos 0.126±0.0166 0.130±0.0147 0.131±0.0149 -0.373±0.047 -0.336±0.029 -0.324±0.028
Pima 0.242±0.0093 0.244±0.0098 0.241±0.0093 -0.516±0.013 -0.514±0.012 -0.513±0.012
Sonar 0.198±0.0208 0.198±0.0217 0.198±0.0243 -0.461±0.053 -0.418±0.021 -0.415±0.021

3.4.2 DSEP experiments and grouping tests

The assumption we made in the main text to achieve SEP ≈ full EP is that the contributions
of each likelihood term to the posterior are very similar. We show further results here on the
approximation produced by different EP methods when we believe there exists heterogeneity
in data. We generated synthetic XOR classification data by sampling from 4 unit Gaussians
with means (3,3), (−3,−3), (3,−3) and (−3,3), and labelling the clusters centred at the
former two as negative examples (and positive for the others). The model p(yn|xxxn,θθθ) is
kernel probit regression using RBF kernel with width l = 1.0, which is the same as the model
presented in Section 3.4.1 except that the features are changed to kernel representations.
This makes the feature vectors high dimensional, and the local nature of kernels also makes
them very different if the datapoints belong to different clusters. We generated 50×4 test
data and {10×4,20×4,50×4} training data and ran SEP/DSEP/full EP to approximate the
posterior distribution of θθθ . For DSEP we partitioned the dataset into 4 subsets according to
the associated centroid. Each experiment was repeated 10 times to collect average test data
log-likelihood and classification error.

Table 3.3 shows the quantitative numbers of performances and Figure 3.5 visualises the
contours of probability p(y = 1|xxx,D) with true posterior approximated by q(θθθ). Interestingly
SEP is slightly better then the others on the classification error metric. But importantly EP
achieves the best test log-likelihood numbers and in general DSEP produces very similar
results (shown by both the table and the figure), meaning that even for small datasets running
full EP might be unnecessary. Also the three methods become indistinguishable when the
size of the dataset N increases. We argue the main reason is that the posterior contributions
are getting similar since more datapoints are observed in the circle of kernel width.

We further tested the robustness of all three methods to outliers. We reused the settings
above and randomly flipped 10% labels of training data. Qualitative results in Figure 3.6
show that SEP is almost as robust as DSEP/EP in this example. We had tried different types
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Table 3.3 Average test results of all methods on kernel probit regression.

mean error test log-likelihood
N SEP DSEP EP SEP DSEP EP
10×4 0.032±0.0058 0.055±0.0127 0.032±0.0097 -0.405±0.011 -0.380±0.010 -0.378±0.009
20×4 0.007±0.0014 0.008±0.0024 0.012±0.0031 -0.326±0.007 -0.320±0.006 -0.317±0.003
50×4 0.003±0.0010 0.003±0.0014 0.006±0.0009 -0.243±0.004 -0.233±0.007 -0.238±0.003

of outliers and failed to find the cases where EP/DSEP significantly outperforms SEP. Future
work should answer the questions that when SEP gives bad approximations and whether it
fails in the same way as EP fails.

To verify whether these conclusions about the granularity of the approximation hold in real
datasets, we sampled N = 1,000 datapoints for each of the digits in MNIST and performed
odd-vs-even classification. Each digit class was assigned its own global approximating factor,
J = 10. We compare the log-likelihood of a test set using ADF, SEP (J = 1), full EP and
DSEP (J = 10) in Figure 3.7. EP and DSEP significantly outperform ADF. DSEP is slightly
worse than full EP initially, however it reduces the memory to 0.001% of full EP without
losing substantial accuracy. SEP’s accuracy was still increasing at the end of learning and
was slightly better than ADF.

Mixture of Gaussians for clustering

The small scale experiments on probit regression indicate that SEP performs well for fully-
observed probabilistic models. Although it is not the main focus of the section, we sought
to test the flexibility of the method by applying it to a latent variable model, specifically a
mixture of Gaussians (MoGs). A synthetic MoGs dataset containing N = 200 datapoints was
constructed comprising 4 Gaussians. The means were sampled from a Gaussian distribution,
p(µµµ j)=N(µµµ;mmm,I), the cluster identity variables hhhn were sampled from a uniform categorical
distribution, and each mixture component was isotropic p(xxxn|hhhn) = N(xxxn; µµµhhhn

,0.52I). EP,
ADF and SEP were performed to approximate the joint posterior over the cluster means {µµµ j}
and cluster identity variables {hhhn} (the other parameters were assumed known).

Figure 3.8(a) visualises the approximate posteriors after 200 iterations. All methods
return good estimates for the means, but ADF collapses towards a point estimate as expected.
SEP, in contrast, captures the uncertainty and returns nearly identical approximations to
EP. The accuracy of the methods is quantified in Fig. 3.8(b) by comparing the approximate
posteriors to those obtained from NUTS. In this case the approximate KL-divergence measure
is analytically intractable, instead we used the averaged Frobenius-norm (F-norm) of the
difference of the Gaussian parameters fitted by NUTS and EP methods. These measures
confirm that SEP approximates EP well.
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Fig. 3.5 Comparing predictions of kernel Probit regression trained by SEP/DSEP/EP, with
increasing training data size N. Although not very significant, for N = 40 the decision
boundary obtained by the DSEP method is more similar to that of the full-EP method. This
difference vanishes as N increases.
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Fig. 3.6 Comparing predictions of kernel probit regression trained by SEP/DSEP/EP, with
10% labels flipped. The same observations as to the results in 3.5 apply.

Fig. 3.7 DSEP experimental result on MNIST (mean and standard error reported, see text for
full details).
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(a) (b)

Fig. 3.8 Posterior approximation for the mean of the Gaussian components. (a) visualises
posterior approximations over the cluster means (98% confidence level). The coloured dots
indicate the true label (top-left) or the inferred cluster assignments (the rest). In (b) we show
the error (in F-norm) of the approximate Gaussians’ means (top) and covariances (bottom).

3.4.3 Probabilistic back-propagation for Bayesian neural nets

The final set of tests consider more complicated models and large datasets. Specifically
we evaluate the methods for probabilistic back-propagation (PBP) [Hernández-Lobato and
Adams, 2015], a recent state-of-the-art method for scalable Bayesian learning in neural
network models.8 Previous implementations of PBP perform several iterations of ADF
over the training data. The moment-matching operations required by ADF are themselves
intractable and they are approximated by first propagating the uncertainty on the synaptic
weights forward through the network in a sequential way, and then computing the gradient of
the marginal likelihood by back-propagation. Previous implementations of PBP are based
on ADF to reduce the large memory cost that would be required by EP when the amount of
available data is very large.

We performed neural network regression experiments with publicly available data sets
and neural networks with one hidden layer. Table 3.5 lists the analysed data sets and shows
summary statistics. We used neural networks with 50 hidden units in all cases except in the
two largest ones, i.e., Year Prediction MSD and Protein Structure, where we used 100 hidden
units. The different methods, SEP, EP and ADF were run by performing 40 passes over the
available training data, updating the parameters of the posterior approximation after seeing
each data point. The data sets were split into random training and test sets with 90% and 10%
of the data, respectively. This splitting process was repeated 20 times for the small datasets,
and the average test performances of each method were reported. In the two largest data sets,

8See Appendix A.1 for detailed update equations.
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Table 3.4 Average test results for all methods on Bayesian neural networks (mean and
standard error reported). Datasets are also from the UCI machine learning repository.

RMSE test log-likelihood
Dataset ADF SEP EP ADF SEP EP
Kin8nm 0.098±0.0007 0.088±0.0009 0.089±0.0006 0.896±0.006 1.013±0.011 1.005±0.007
Naval 0.006±0.0000 0.002±0.0000 0.004±0.0000 3.731±0.006 4.590±0.014 4.207±0.011
Power 4.124±0.0345 4.165±0.0336 4.191±0.0349 -2.837±0.009 -2.846±0.008 -2.852±0.008
Protein 4.727±0.0112 4.670±0.0109 4.748±0.0137 -2.973±0.003 -2.961±0.003 -2.979±0.003
Wine 0.635±0.0079 0.650±0.0082 0.637±0.0076 -0.968±0.014 -0.976±0.013 -0.958±0.011
Year 8.879± NA 8.922±NA 8.914±NA -3.603± NA -3.924±NA -3.929±NA

Year Prediction MSD and Protein Structure, we did the train-test splitting only one and five
times respectively. The datasets were normalised so that the input features and the targets
have zero mean and unit variance in the training set. The normalisation on the targets was
removed for prediction.

Table 3.4 shows the average test RMSE and test log-likelihood for each method. Inter-
estingly, SEP can outperform EP in this setting (possibly because the stochasticity enabled
it to find better solutions), and typically it performed similarly. Surprisingly ADF often
outperformed EP, although the results presented for ADF use a near-optimal number of
sweeps and further iterations generally degraded performance. ADF’s good performance is
most likely due to an interaction with additional the moment-approximation that is required
in PBP.

We also provide the memory consumption details for experiments using PBP in Table
3.5, where some of the results are also visualised in Figure 3.9. We observe substantial
memory reductions by running SEP instead of EP, while still attaining similar accuracies.
Especially for Year Prediction MSD dataset, which is a typical large-scale dataset both in the
number of observations N and the dimensionality D, SEP achieves tens of gigabytes savings.9

We performed the test for EP using a machine with more than 100GB RAM, while SEP
only required 2.7GB memory, including the space of storing the dataset (roughly 1.9GB).
These numbers reveal the huge memory requirement of full EP and further support SEP as a
practical alternative in big data, big model settings.

To summarise, in all the experiments presented in this section, we observed that SEP
performed almost equally well as full EP, and at the same time provided substantial memory
complexity gains. By noticing that the posterior only cares about the product of the likelihood
terms, we conjecture that, whilst SEP provides worse approximations to individual likelihood
terms, it approximates the product of the product of the likelihood terms almost as well
as the full EP case. This again justifies the motivation of SEP that it focuses only on

9In this case we used mean-field Gaussian approximations, meaning that a Gaussian factor costs O(HD)
storage with H = 50 the number of hidden units.
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Table 3.5 Datasets used in the experiments with neural networks. The memory figures
reported include dataset storage and temporal maintenance of computation graphs in Theano
[Bastien et al., 2012] (∼ 100MB for small datasets and ∼ 1.9GB for Year Prediction MSD).

Dataset N D MB (EP) MB (SEP) MB reduced
Kin8nm 8192 8 168.23 109.76 58.47
Naval Propulsion 11,934 16 261.75 113.92 147.83
Combined Cycle Power Plant 9568 4 148.70 110.99 37.71
Protein Structure 45,730 9 815.55 121.52 694.02
Wine Quality Red 1599 11 122.21 107.90 14.30
Year Prediction MSD 515,345 90 67837.90 2730.55 65107.34

EP

SEP

Memory savings (in MB)

2730.6

67837.9

Year

815.5

121.5

Protein
D = 9 

N=45,730
D = 90 

N=515,345

Fig. 3.9 A visualisation of storage savings by SEP.

the approximation to the “averaged likelihood”, and full EP, which considering accurate
approximations to each individuals, might seem like an over-kill in practice.

3.5 Summary

We have presented the stochastic expectation propagation (SEP) method for reducing EP’s
large memory consumption that is prohibitive for large datasets. We have connected the new
algorithm to a number of existing methods including assumed density filtering, variational
message passing, variational inference, stochastic variational inference and averaged EP.
Experiments on Bayesian logistic regression (both synthetic and real world) and mixture of
Gaussians clustering indicated that the new method had an accuracy that was competitive
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with EP. Experiments using the probabilistic back-propagation approach to training Bayesian
neural networks on large real world regression datasets again showed that SEP comparably
to EP with a vastly reduced memory footprint.

One notable issue that is not addressed here is the theoretical properties of SEP. Does
SEP have the same convergence properties as EP in expectation? What is the underlying
energy function that SEP is minimising, or is there one at all? in the next chapter we will
propose another unifying view of the existing variational methods, but from a very different
angle: we will manipulate the energy functions to obtain both upper- and lower-bounds of
the marginal likelihood, and discuss connections to VI and EP/SEP with further techniques.
Our hope is that, by studying the energy functions, we can get more insights on how EP-like
methods work, and better understand the principles of variational methods.

Remark (Further applications of SEP/DSEP). The flexibility of the SEP algorithms allow
further adjustments of the approximation procedure for different modelling scenarios. For
example, we touched on the distributed version of SEP (DSEP) but did not push very far
when this work was presented at NIPS 2015. Since then Zhe et al. [2016] adopted the
factor tying idea to develop a highly scalable Bayesian algorithm for online click-through
rate prediction on Yahoo! data. In more detail, their idea is DSEP essentially: they
maintain the approximating factors for both positive and negative classes, and update
them using cheap moment matching techniques. Their experimental results showed that
DSEP returns better prediction accuracy compared to widely used algorithms like Vowpal
Wabbita and follow the regularised leader (FTRL)-proximal method [McMahan et al.,
2013].
Another promising direction is the application of SEP algorithms to continual learning
[Kirkpatrick et al., 2017; Ring, 1994, 1997], where information of previous data/task
has to be maintained in some way in order to prevent catastrophic forgetting. Indeed the
online elastic weight consolidation (EWC) method developed in Schwarz et al. [2018]
can be viewed as a Laplace approximation version of SEP, which achieves state-of-the-art
performance on multiple reinforcement learning tasks. Another interesting idea would
combine the coreset algorithm with DSEP, where observed data-points in/out of the
coreset are handled with different approximating factors.

ahttp://hunch.net/~vw/

http://hunch.net/~vw/


Chapter 4

Rényi Divergence Variational Inference

We have discussed in the last chapter a class of EP-like algorithms, which unifies EP, SEP
and VI from an algorithmic point of view. Approximate inference is also widely used as
a sub-routine in approximate maximum likelihood algorithms and those used for model
selections. Historically, VI has received most attentions in this regard. This is mainly because
VI has elegant and useful theoretical properties, such as the fact that it proposes a lower-
bound of the log-model evidence. On the other hand, as discussed in the previous chapter,
the underlying objective function of SEP is unknown and might not even exist. Even the
EP energy itself, although often providing more accurate approximations, has no bounding
guarantees [Cunningham et al., 2011]. These undesirable issues make EP-like algorithms
less appropriate for model selection and approximate MLE.

To (partially) address these issues, in this chapter we will present a new class of variational
inference method using a variant of the α-divergences called Rényi divergence. We will
develop both lower- and upper-bounds to the marginal likelihood, and draw connections to
SEP and Black-box-α (introduced by us in Hernández-Lobato et al. [2016] but not included
in the thesis). This framework is also computationally compelling for Bayesian deep learning,
as it is compatible with gradient descent methods (unlike SEP methods which use moment
matching). These favourable features are demonstrated with examples including variational
auto-encoders and Bayesian neural networks. Throughout the development we will also
discuss some theoretical properties of Monte Carlo approximations and data sub-sampling.

4.1 Rényi’s α-divergence

We first review Rényi’s α-divergence [Rényi, 1961; Van Erven and Harremoës, 2014].
Rényi’s α-divergence, defined on {α : α > 0,α ̸= 1, |DR

α |<+∞}, measures the “closeness”



74 Rényi Divergence Variational Inference

Table 4.1 Special cases in the Rényi divergence family.

α Definition Notes

α → 1
∫

p(θθθ) log p(θθθ)
q(θθθ)dθθθ

Kullback-Leibler (KL) divergence,
used in VI (KL[q||p]) and EP (KL[p||q])

α = 0.5 −2log(1−Hel2[p||q]) function of the square Hellinger distance

α → 0 − log
∫

p(θθθ)>0 q(θθθ)dθθθ
zero when supp(q)⊆ supp(p)
(not a divergence)

α = 2 − log(1−χ2[p||q]) proportional to the χ2-divergence

α →+∞ logmaxθθθ∈Θ

p(θθθ)
q(θθθ)

worst-case regret in
minimum description length principle [Grünwald, 2007]

of two distributions p and q on a random variable θθθ ∈Θ:

DR
α [p||q] =

1
α−1

log
∫

p(θθθ)αq(θθθ)1−αdµ. (4.1)

Here the constraint |DR
α [p||q]|<+∞ is crucial for rewriting the divergence as the expectation

under p or q (i.e. to change the measure from dµ to dP or dQ), i.e.

Dα [p||q] =
1

α−1
logEp

[(
p(θθθ)
q(θθθ)

)α−1
]
=

1
α−1

logEq

[(
p(θθθ)
q(θθθ)

)α]
,

since it is possible that the definition (4.1) is infinity but one of the above expectations is
finite. In the following we will use dµ = dθθθ w.l.o.g.

The definition is extended to α = 0,1,+∞ by continuity. We note that when α → 1
the Kullback-Leibler (KL) divergence is recovered, which plays a crucial role in machine
learning and information theory. Some other special cases are presented in Table 4.1. The
method proposed in this work also considers α ≤ 0 (although (4.1) is no longer a divergence
for these α values), and we include from Van Erven and Harremoës [2014] some useful
properties for forthcoming derivations.

Proposition 4.1. (Monotonicity) Rényi’s α-divergence definition (4.1), extended to negative
α , is continuous and non-decreasing on α ∈ {α :−∞ < DR

α <+∞}.

Proposition 4.2. (Skew symmetry) For α ̸∈ {0,1}, DR
α [p||q] = α

1−α
DR

1−α
[q||p]. This implies

DR
α [p||q]≤ 0 for α < 0. For the limiting case DR

−∞[p||q] =−DR
+∞[q||p].
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A critical question that is still in active research is how to choose a divergence in this rich
family to obtain optimal solution for a particular application, an issue which is discussed in
Section 4.2.5.

4.2 Variational Rényi bound

Recall from previous section that the family of Rényi divergences includes the KL diver-
gence. Perhaps variational free-energy approaches can be generalised to the Rényi case?
Consider approximating the exact posterior p(θθθ |D) by minimizing Rényi’s α-divergence
DR

α [q(θθθ)||p(θθθ |D)] for some selected α > 0. Now we consider the equivalent optimisation
problem

max
q∈Q

log p(D)−DR
α [q(θθθ)||p(θθθ |D)],

when α ̸= 1, the objective can be rewritten as

Lα(q;D) := log p(D)−DR
α [q(θθθ)||p(θθθ |D)]

= log p(D)− 1
α−1

logEq

[(
q(θθθ)p(D)

p(θθθ ,D)

)α−1
]

=
1

1−α
logEq

[(
p(θθθ ,D)

q(θθθ)

)1−α
]
.

(4.2)

We name this new objective the variational Rényi (VR) bound. Importantly the above
definition can be extended to α ≤ 0, and the following theorem is a direct result of Proposition
4.1.

Theorem 4.1. The objective Lα(q;D) is continuous and non-increasing on α ∈ {α :
|Lα |<+∞}. Especially for all 0 < α+ < 1 and α− < 0,

LVI(q;D) = lim
α→1

Lα(q;D)≤ Lα+(q;D)≤ L0(q;D)≤ Lα−(q;D)

Also L0(q;D) = log p(D) if and only if the support supp(p(θθθ |D))⊆ supp(q(θθθ)).

Theorem 4.1 indicates that the VR bound can be useful for model selection by sandwich-
ing the marginal likelihood with bounds computed using positive and negative α values,
which we leave to future work. In particular L0 = log p(D) under the mild assumption
that q is supported where the exact posterior is supported. This assumption holds for many
commonly used distributions, e.g. Gaussians are supported on the entire space, and in the
following we assume that this condition is satisfied.
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Remark (on marginal likelihood estimation). Though not fully discussed in this thesis, it
is worth highlighting here the importance of robust marginal likelihood estimation, and
thus the usefulness of sandwiching estimates (with both a lower- and an upper-bound).
Dieng et al. [2017] applied the VR upper-bound to a number of real-world tasks. Grosse
et al. [2016, 2015] proposed bi-directional Monte Carlo method that can be viewed as
computing the VR bounds with a sequence of proposal distributions, aiming at reducing
the mismatch between q and p thus improving the Monte Carlo estimates. Wu et al. [2017]
applied this idea to perform the first attempt of robust predictive log-likelihood estimation
for VAEs and generative adversarial networks (GANs) [Goodfellow et al., 2014].

4.2.1 Mean-field approximation revisited

We revisit in the following the mean-field approximation by optimising the VR bound, with
Bayesian linear regression as an illustrating example. Recall the mean-field approximation
factorises over the components of θθθ = (θ1, ...,θD): q(θθθ) = ∏i qi(θi). Re-writing the VR
bound (4.2), we have

Lα(q;D) =
1

1−α
log
∫

∏
i

qi(θi)

(
p(θθθ ,D)

∏i qi(θi)

)1−α

dθθθ

=
1

1−α
log
∫

q j(θ j)
α

(∫
∏
i̸= j

qi(θi)

(
p(θθθ ,D)

∏i ̸= j qi(θi)

)1−α

dθθθ ̸= j

)
dθ j

:=
1

1−α
log
∫

q j(θ j)
α p̃ j(θ j)

1−αdθ j + const,

where p̃ j(θ j) denote the “marginal” distribution satisfying

log p̃ j(θ j) =
1

1−α
log
∫

∏
i̸= j

qi(θi)

(
p(θθθ ,D)

∏i ̸= j qi(θi)

)1−α

dθθθ ̸= j + const.

Now maximising the VR bound (when α > 0, and for α < 0 we minimise the bound) is
equivalent to minimising DR

α [q j||p̃ j] (for α > 0, and when α < 0 we minimise DR
1−α

[p̃ j||q j]),
which means logq j(θ j) = log p̃ j(θ j)+ const is the only global optimum of the mean-field
approximation procedure. One can verify that when α → 1 it recovers the traditional
variational mean-field approximation (see Section 2.2.2)

lim
α→1

log p̃ j(θ j) =
∫

∏
i ̸= j

qi(θi) log p(θθθ ,D)dθθθ ̸= j + const,
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and when α → 0 the fixed point equation returns the exact marginal of the posterior distribu-
tion:1

lim
α→0

p̃ j(θ j) = p(θ j|D).

Now consider Bayesian linear regression with 2-D input xxx and 1-D output y, as an
example:

θθθ ∼N(θθθ ; µµµ0,ΛΛΛ
−1
0 ), y|xxx∼N(y;θθθ

T xxx,σ2).

Given the observations D= {xxxn,yn}, the posterior distribution of θθθ can be computed analyti-
cally as p(θθθ |D) =N(θθθ ; µµµ,ΛΛΛ−1) with ΛΛΛ = ΛΛΛ0 +

1
σ2 ∑n xxxnxxxT

n and ΛΛΛµµµ = ΛΛΛ0µµµ0 +
1

σ2 ∑n ynxxxn.
To see how the mean-field approach works we explicitly write down the elements of the
posterior parameters

µµµ =

(
µ1

µ2

)
, ΛΛΛ =

(
Λ11 Λ12

Λ21 Λ22

)
, Λ12 = Λ21,

and define qi(θi) =N(θi;mi,λ
−1
i ) as a univariate Gaussian distribution. Then

logq1 =
1

1−α
log
∫

q2(θ2)

(
p(θθθ ,D)

q2(θ2)

)1−α

dθ2 + const

=
1

1−α
log
∫

exp
[
−1−α

2
(θθθ −µµµ)T

ΛΛΛ(θθθ −µµµ)− α

2
λ2(θ2−m2)

2
]

dθ2 + const

=
1

1−α
log
∫

N(θθθ ; µµµ, Σ̃ΣΣ)dθ2 + const

= logN(θ1;m1,λ
−1)+ const

where the new mean m1 and the precision λ1 satisfies

m1 = µ1 +C1(µ2−m2), C1 =
αλ2Λ12

(1−α)|ΛΛΛ|+αλ2Λ11
,

λ1 = Λ11− (1−α)Λ12((1−α)Λ22 +αλ2)
−1

Λ21.

One can derive the terms m2 and C2 for q2 in the same way, and show that mmm = µµµ is the only
stable fixed point of this iterative update. So we have q1 = N(θ1; µ1,λ

−1
1 ), and similarly

q2 =N(θ1; µ2,λ
−1
2 ) with λ2 = Λ22− (1−α)Λ21((1−α)Λ11+αλ1)

−1Λ12. In this example
λ1, λ2 are feasible for all α , and solving the fixed point equations, finally we have the stable

1This is not the unique fixed point of limα→0Lα = L0, since L0 = const when q has full support.
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(a) Approximated posterior.

(VI)

(b) Hyper-parameter optimisation.

Fig. 4.1 Mean-Field approximation for Bayesian linear regression (with one-sigma contours).
C.f. Figure 2.1. In this case ϕϕϕ = σ the observation noise variance. As expected when α = 0
the resulting bound coincides with the exact log marginal (see the green-black curve). The
bound is tight as σ →+∞, biasing the VI solution to large σ values.

fixed point as

λ1 = ραΛ11, λ2 = ραΛ22, ρα =
1

2α

(2α−1)+

√
1−

4α(1−α)Λ2
12

Λ11Λ22

 .
The other solution for the quadratic formula is eliminated since it violates the assumptions
that λ1 > 0 (when 0 < α < 1) and |Lα | < +∞ (when α < 0 or α > 1, since it requires
|αdiag(λλλ )+(1−α)ΛΛΛ|> 0). Thus the stable fixed point in this case is unique.

One can show that limα→1 λ1 =Λ11 (the precision of the conditional distribution p(θ1|θ2,D)),
limα→0 λ1 = Λ11−Λ12Λ

−1
22 Λ21 (the precision of the marginal distribution p(θ1|D)), and

limα→±∞ λ1 = Λ11± |Λ12|
√

Λ11Λ
−1
22 (similar results for λ2). Also ρα is continuous and

non-decreasing in α . This means one can interpolate between mass-covering (α →−∞)
and zero-forcing (α →+∞, when using uni-modal approximations it is usually called mode-
seeking) behaviour by increasing α values.

We visualise the analytical results for Bayesian linear regression in Figure 4.1(a) and
4.1(b). First as predicted, increasing α returns more confident estimate. Also notice that
α→+∞ (in cyan) returns non-zero uncertainty estimates (although it is more over-confident
than VI) which is different from the maximum a posteriori (MAP) method that only returns a
point estimate. Second, setting α = 0.0 (in green) returns q(θθθ) = ∏i p(θi|D) and the exact
marginal likelihood log p(D) (Figure 4.1(b)). Also the approximate MLE is less biased for
α = 0.5 (in blue) since now the tightness of the bound is less hyper-parameter dependent.
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4.2.2 Monte Carlo approximation of the VR bound

Although we have seen some nice properties of the VR bound optimisation through the
mean-field approximation example, we also note that when α ̸= 1, the VR bound is usually
just as intractable as the marginal likelihood for many other useful models. Also Theorem 4.1
suggests that the VR bound is to be minimised when α < 0, which performs disastrously in
MLE context. As we shall see, these issues are addressed by the MC approximation that we
will be developing as follows, under certain conditions. Therefore, MC-VR can be applied
to precisely the same set of models as MC-VI [Kucukelbir et al., 2015; Paisley et al., 2012;
Ranganath et al., 2014; Salimans and Knowles, 2013].

Consider learning a latent variable model with MLE as a running example, where the
model is specified by a conditional distribution p(xxx|zzz,ϕϕϕ) and a prior p(zzz|ϕϕϕ) on the latent
variable zzz. Examples include latent variable models treated by the variational auto-encoder
(VAE) approach [Kingma and Welling, 2014; Rezende et al., 2014] that parametrises the
likelihood with a (deep) neural network. MLE requires log p(xxx) which is obtained by
marginalising out zzz and is often intractable, so the VR bound is considered as an alternative
optimisation objective. However instead of using exact bounds, a simple Monte Carlo
(MC) method is deployed, which uses a finite number of samples zzzk ∼ q(zzz|xxx),k = 1, ...,K to
approximate the VR bound Lα ≈ L̂α,K:

L̂α,K(q;xxx) =
1

1−α
log

1
K

K

∑
k=1

[(
p(zzzk,xxx)
q(zzzk|xxx)

)1−α
]
. (4.3)

The importance weighted auto-encoder (IWAE) [Burda et al., 2016] is a special case of this
framework with α = 0 and K <+∞. But unlike traditional VI, here the MC approximation is
biased. Fortunately we can characterise the bias by the following theorems (proofs provided
in Appendix A.2).

Theorem 4.2. Assume E{zzzk}K
k=1

[|L̂α,K(q;xxx)|]<+∞ and |Lα |<+∞. Then E{zzzk}K
k=1

[L̂α,K(q;xxx)]
as a function of α ∈ R and K ≥ 1 is:
1) non-decreasing in K for fixed α ≤ 1, and non-increasing in K for fixed α ≥ 1;
2) E{zzzk}K

k=1
[L̂α,K(q;xxx)]→ Lα as K→+∞;

3) continuous and non-increasing in α with fixed K.

Corollary 4.1. For finite K, either E{zzzk}K
k=1

[L̂α,K(q;xxx)]< log p(xxx) for all α , or there exists

αK ≤ 0 such that E{zzzk}K
k=1

[L̂αK ,K(q;xxx)] = log p(xxx) and E{zzzk}K
k=1

[L̂α,K(q;xxx)]> log p(xxx) for all
α <αK . Also αK is non-decreasing in K if exists, with limK→1 αK =−∞ and limK→+∞ αK =

0.
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(a) MC approximated VR bounds. (b) Simulated MC approximations.

Fig. 4.2 (a) An illustration for the bounding properties of MC approximations to the VR
bounds (non-increasing in α and non-decreasing in K when α ≤ 1). (b) The bias of the MC
approximation, where the dash-dotted line on top of the green line (K = 1) is the analytical
value of −KL[p||q]. Best viewed in colour and see the main text for details.

The intuition behind the theorems is visualised in Figure 4.2(a). By definition, the exact
VR bound is a lower-bound or upper-bound of log p(xxx) when α > 0 or α < 0, respectively.
However the MC approximation E[L̂α,K] biases the estimate towards LVI, where the MC
approximation of the bound can be improved using more samples. Thus for finite samples
and under mild conditions, negative alpha values can potentially be used to improve the
accuracy of the approximation, although the MC approximation for these alpha values is
no longer guaranteed to be an upper bound. Figure 4.2(b) shows an empirical evaluation by
computing the exact and the MC approximation of the Rényi divergence. In this example p, q
are 2-D Gaussian distributions with µµµ p = [0,0], µµµq = [1,1] and ΣΣΣp = ΣΣΣq = III. The sampling
procedure is repeated 200 times to estimate the expectation. Clearly for K = 1 it is equivalent
to an unbiased estimate of the KL-divergence for all α (even though now the estimation is
biased for DR

α ). For K > 1 and α < 1, the MC method under-estimates the VR bound, and
the bias decreases with increasing K. For α > 1 the inequality is reversed also as predicted.

4.2.3 A unified implementation with the reparameterisation trick

Readers may have noticed that LVI has a different form compared to Lα with α ̸= 1. In
this section we show how to unify the implementation for all finite α settings using the
reparameterisation trick [Kingma and Welling, 2014; Salimans and Knowles, 2013] as an
example. This trick assumes the existence of the mapping θθθ = gφφφ (εεε), where the distribution
of the noise term εεε satisfies q(θθθ)dθθθ = p(εεε)dεεε . Then the expectation of a function F(θθθ)

over distribution q(θθθ) can be computed as Eq(θθθ)[F(θθθ)] = Ep(εεε)[F(gφφφ (εεε))]. One prevalent

example is the Gaussian reparameterisation: θθθ ∼N(µµµ,Σ)⇒ θθθ = µµµ +Σ
1
2 εεε , with εεε ∼N(000, I).
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Now we apply the reparameterisation trick to the VR bound

Lα(qφφφ ;xxx) =
1

1−α
logEεεε

[(
p(gφφφ (εεε),xxx)
q(gφφφ (εεε))

)1−α
]
. (4.4)

For notational ease we also write gφφφ = gφφφ (εεε). Then the gradient of the VR bound w.r.t. φφφ

(similar for ϕϕϕ) is

∇φφφLα(qφφφ ;xxx) =
1

1−α
∇φφφ logEεεε

[(
p(gφφφ ,xxx)
q(gφφφ )

)1−α
]

=
1

1−α

(
Eεεε

[(
p(gφφφ ,xxx)
q(gφφφ )

)1−α
])−1

Eεεε

[
∇φφφ

(
p(gφφφ ,xxx)
q(gφφφ )

)1−α
]

=
1

1−α

(
Eεεε

[(
p(gφφφ ,xxx)
q(gφφφ )

)1−α
])−1

Eεεε

[(
p(gφφφ ,xxx)
q(gφφφ )

)1−α

∇φφφ (1−α) log
p(gφφφ ,xxx)
q(gφφφ )

]

= Eεεε

[
wα(εεε;φφφ ,xxx)∇φφφ log

p(gφφφ ,xxx)
q(gφφφ )

]
.

(4.5)

where wα(εεε;φφφ ,xxx) =
(

p(gφφφ (εεε),xxx)
q(gφφφ (εεε))

)1−α
/

Eεεε

[(
p(gφφφ (εεε),xxx)
q(gφφφ (εεε))

)1−α
]

denotes the normalised impor-

tance weight. One can show that this recovers the the stochastic gradients of LVI by setting
α = 1 in (4.5) since now w1(εεε;φφφ ,xxx) = 1, which means the resulting algorithm unifies the
computation for all finite α settings. For MC approximations, we use K samples to approxi-

mately compute the weight ŵα,k(εεεk;φφφ ,xxx) ∝

(
p(gφφφ (εεεk),xxx)
q(gφφφ (εεεk))

)1−α

, k = 1, ...,K, and the stochastic
gradient becomes

∇φφφ L̂α,K(qφφφ ;xxx) =
K

∑
k=1

[
ŵα,k(εεεk;φφφ ,xxx)∇φφφ log

p(gφφφ (εεεk),xxx)
q(gφφφ (εεεk))

]
. (4.6)

When α = 1, ŵ1,k(εεεk;φφφ ,xxx)= 1/K, and it recovers the stochastic gradient VI method [Kingma
and Welling, 2014].

To speed-up learning Burda et al. [2016] suggested back-propagating only one sample
εεε j with j ∼ p j = ŵα, j, which can be easily extended to our framework. Importantly, the
use of different α < 1 indicates the degree of emphasis placed upon locations where the
approximation q under-estimates p, and in the extreme case α →−∞, the algorithm chooses
the sample that has the maximum unnormalised importance weight. We name this approach
VR-max and summarise it and the general case in Algorithm 9. Note that VR-max (and
VR-α with α < 0 and MC approximations) does not minimise DR

1−α
[p||q]. It is true that
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Algorithm 9 One gradient step for VR-α /VR-max
with single backward pass. Here ŵ(εεεk;xxx) short-
hands ŵ0,k(εεεk;φφφ ,xxx) in the main text.

1: given the current datapoint xxx, sample
εεε1, ...,εεεK ∼ p(εεε)

2: for k = 1, ...,K, compute the unnormalised weight
log ŵ(εεεk;xxx) = log p(gφφφ (εεεk),xxx)− logq(gφφφ (εεεk)|xxx)

3: choose the sample εεε j to back-propagate:
if |α|< ∞: j ∼ pk where pk ∝ ŵ(εεεk;xxx)1−α

if α =−∞: j = argmaxk log ŵ(εεεk;xxx)
4: return the gradients ∇φφφ log ŵ(εεε j;xxx)

VR EP

SEP

BB-
global local

mini-batch
sub-sampling

factor
tying

energy
approx.

fixed point
approx.

Fig. 4.3 Connecting local and global
divergence minimisation.

Lα ≥ log p(xxx) for negative α values. However Corollary 4.1 suggests that the tightest MC
approximation for given K has non-positive αK value, or might not even exist. Furthermore
the optimal αK value becomes more negative as the mismatch between q and p increases,
e.g. the VAE uses a uni-modal q distribution to approximate the typically multi-modal exact
posterior.

4.2.4 Stochastic approximation for large-scale learning

VR bounds can also be applied to full Bayesian inference with posterior approximation.
However for large datasets full batch learning is very inefficient. Mini-batch training is non-
trivial here since the VR bound cannot be represented by the expectation of a datapoint-wise
loss, except when α = 1 (VI). This section introduces two proposals for mini-batch training,
and interestingly, this recovers two existing algorithms that were motivated from a different
perspective. In the following we define the (geometric) “average likelihood” f̄D(θθθ) =
[∏N

n=1 p(xxxn|θθθ)]
1
N . Hence the joint distribution can be rewritten as p(θθθ ,D) = p0(θθθ) f̄D(θθθ)N .

Also for a mini-batch of M datapoints S= {xxxn1, ...,xxxnM} ∼D, we define the “subset average
likelihood” f̄S(θθθ) = [∏M

m=1 p(xxxnm|θθθ)]
1
M .

The first proposal considers fixed point approximations with mini-batch sub-sampling.
It first derives the fixed point conditions for the variational parameters (e.g. the natural
parameters of q) using the exact VR bound (4.2), then designs an iterative algorithm using
those fixed point equations, but with f̄D(θθθ) replaced by f̄S(θθθ). The second proposal also
applies this subset average likelihood approximation idea, but directly to the VR bound (4.2)
(so this approach is named energy approximation):

L̃α(q;S) =
1

1−α
logEq

[(
p0(θθθ) f̄S(θθθ)N

q(θθθ)

)1−α
]
. (4.7)
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Now we demonstrate with detailed derivations that fixed point approximation returns stochas-
tic EP (SEP, see Chapter 3) , and black box alpha (BB-α) [Hernández-Lobato et al., 2016]
corresponds to energy approximation. We derive the results in exponential family context,
but in general these two principles of stochastic approximation also apply. Note that both
methods use Minka’s α-divergence, and for clear distinction here we use β instead to denote
the corresponding α values for Minka’s definition, and hence the two algorithms are returned
respectively by taking M = 1 and α = 1−β/N.

Precisely, we assume the posterior approximation is defined as q(θθθ) = 1
Zq

p0(θθθ)t(θθθ)N .
Often t(θθθ) is chosen to have an exponential family form t(θθθ) ∝ exp [⟨λλλ ,ΦΦΦ(θθθ)⟩] with ΦΦΦ(θθθ)

denoting the sufficient statistic. Then picking α = 1−β/N, β ̸= 0, we obtain the exact VR
bound (by pulling out the normalising constant Zq) as

Lα(q;D) = logZq +
N
β

logEq

[(
f̄D(θθθ)
t(θθθ)

)β
]
. (4.8)

The first proposal considers deriving the exact fixed point conditions, then approximating
them with mini-batch sub-sampling. In our example the exact fixed point condition for the
variational parameters λλλ is

∇λλλLα(q;D) = 0 ⇒ Eq[ΦΦΦ(θθθ)] = Ep̃α
[ΦΦΦ(θθθ)], (4.9)

with the tilted distribution defined as

p̃α(θθθ) ∝ q(θθθ)α p0(θθθ)
1−α f̄D(θθθ)N(1−α)

∝ p0(θθθ)t(θθθ)N−β f̄D(θθθ)β .

Now given a mini-batch of datapoints S, the moment matching update can be approximated
by replacing f̄D(θθθ) with f̄S(θθθ) = [∏M

m=1 p(xxxnm |θθθ)]
1
M . More precisely, each iteration we

sample a subset of data S= {xxxn1 , ...,xxxnM} ∼D, and compute the new update for λλλ by first
computing p̃α,S(θθθ) ∝ p0(θθθ)t(θθθ)N−β f̄S(θθθ)β then taking Eq[ΦΦΦ(θθθ)]← Ep̃α,S

[ΦΦΦ(θθθ)]. This
method returns SEP when M = 1, i.e. in each iteration only one datapoint is sampled to
update the approximate posterior. Using larger mini-batch size M > 1 returns SDEP (see
Section 3.2.3) and in this case further approximation might be required to compute the fixed
point iterative updates.

The second proposal also applies this subset average likelihood approximation idea,
but directly to the VR bound (4.8), with ES denoting the expectation over mini-batch sub-
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sampling:

ES

[
L̃α(q;S)

]
= logZq +

N
β
ES

[
logEq

[(
f̄S(θθθ)
t(θθθ)

)β
]]

. (4.10)

It recovers the energy function of BB-α when M = 1. Note that the original BB-α algorithm
uses an adapted form of Amari’s α-divergence, and the α value in the BB-α algorithm
corresponds to β in our exposition. Now the gradient of this approximated energy function
becomes

∇λλλES

[
L̃α(q;S)

]
= N(Eq[ΦΦΦ(θθθ)]−ESEp̃α,S

[ΦΦΦ(θθθ)]). (4.11)

We also provide a characterisation of the energy approximation (4.10) by the following
theorem, with a proof presented in Appendix A.2.

Theorem 4.3. If the approximate distribution q(θθθ) is Gaussian N(µµµ,ΣΣΣ), and the likelihood
functions has an exponential family form p(xxx|θθθ) = exp[⟨θθθ ,ΦΦΦ(xxx)⟩−A(θθθ)], then for α ≤ 1
and r > 1 the stochastic approximation is bounded by

ES[L̃α(q;S)]≤ L1−(1−α)r(q;D)+
N2(1−α)r

2(r−1)
tr(ΣΣΣCovS∼D(Φ̄ΦΦS)).

The following corollary is a direct result of Theorem 4.3 applied to BB-α . Note here
we follow the convention of BB-α to use M = 1 and overload the notation α = β and
LBB−α(q;D) = E{xxxn}

[
L̃1−α/N(q;{xxxn})

]
.

Corollary 4.2. Assume the approximate posterior and the likelihood functions satisfy the
assumptions in Theorem 4.3, then for α > 0 and r > 1, the black-box alpha energy function
is upper-bounded by

LBB−α(q;D)≤ L1−αr
N
(q;D)+

Nαr
2(r−1)

tr(ΣΣΣCovD(ΦΦΦ)).

It is interesting that both SEP and BB-α were originally proposed to approximate (power)
EP [Minka, 2001b, 2004], which usually minimises α-divergences locally, and considers
M = 1, α ∈ [1−1/N,1) and exponential family distributions. These approximations were
performed by factor tying, which significantly reduces the memory overhead of full EP and
makes both SEP and BB-α scalable to large datasets just as is the case for SVI. The new
derivation provides a theoretical justification from an energy perspective, and also sheds
lights on the connections between local and global divergence minimisations as depicted
in Figure 4.3. Note that all these methods recover SVI when α → 1, in which global and
local divergence minimisation are equivalent. Also these results suggest again (but from a
different perspective) that, recent attempts of distributed posterior approximation (by carving
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up the dataset into pieces with M > 1 [Gelman et al., 2014; Xu et al., 2014]) can be extended
to both SEP and BB-α .

SEP is arguably better justified since it returns the exact posterior if the approximation
family Q is large enough to include the correct solution, just like VI and VR computed on
the whole dataset. BB-α might still be biased even in this scenario. However, BB-α is much
simpler to implement since the energy function can be optimised with stochastic gradient
descent. Indeed BB-α considers the same black-box approach as used for VI, by computing
a stochastic estimate of the energy function then using automatic differentiation tools to
obtain the gradients.

4.2.5 Optimisation issues with α-divergences and MC approximations

It is in general an outstanding research question on how to select the divergence measure for
a particular machine learning problem. In our case this corresponds to selecting the α value.
Also an approximate inference algorithm can be evaluated with different performance mea-
sures, and it is generally impossible to find a single α value that returns the best performance
on all evaluations. Thus we only present the evaluation in test error and test log-likelihood in
the experiments, and use them to select the α values empirically.

We discuss two conjectures to explain the difficulty of selecting α in the Bayesian neural
network experiments presented in later sections. The first conjecture is that zero-forcing
algorithms (α ≥ 1) tend to favour minimising the test error, while mass-covering methods
(α < 1) tend to improve the test log-likelihood. However zero-forcing methods can fail as
they might miss an important mode due to local optima. Similarly mass-covering methods
can be pathological if the exact posterior includes modes that are very far away from each
other. Furthermore, the form of the posterior will change with the number of observed
datapoints N, so the “optimal” setting of α for a fixed task may change with N.

The second conjecture states that the MC approximation complicates the selection of
α , since it favours zero-forcing (because of the bias introduced). For example, in order
to maximise the quantity of the MC approximation the algorithm need to make E[L̂α,K]

finite first. However, as shown by Lemma A.1 in Appendix A.2, the MC approximation
goes wrong if the support of q is strictly larger than the support of p. Hence to avoid this
pathology the optimisation procedure will ensure q = 0 whenever p is zero. Also in order
to avoid missing an important mode we already assumed that q is supported wherever p is
supported. Combining with Theorem 4.2, we conjecture that the MC approximation makes
the algorithm more “VI-like” compared to the exact case. In other words, when the MC
approximation is deployed, the effective α value is closer to α = 1 that is the value for VI
(which is precisely the case if considering K = 1). This means, if there exists αopt ̸= 1 for
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a specific task, in practice one should use α ≤ αopt (for αopt < 1, and should use α ≥ αopt

if αopt > 1) when running the MC algorithm. In general one should be very careful when
estimating the ratio between distribution with Monte Carlo methods. Also the introduced
MC approach usually has higher variance compared to the variational case (and the variance
can be as high as importance sampling [Bamler et al., 2017]), so further methods like control
variate techniques should be applied to reduce the sampling variance.

Still we want to emphasise again that for many problems, minimising an α-divergence
other than the KL-divergence can be very useful, even when using MC approximations.
Approximate EP has been applied to deep Gaussian process regression and has shown to
achieve the state-of-the-art results for benchmark datasets [Bui et al., 2016b]. A recent paper
[Depeweg et al., 2017] tested BB-α for model-based reinforcement learning with Bayesian
neural networks. In their tests using α = 0.5 successfully captured the bi-modality and
heteroskedasticity in the predictive distribution, while VI failed disastrously.

4.3 Experiments

We evaluate the VR bound methods on Bayesian neural networks and variational auto-
encoders. The implementation of all the experiments in Python is released at https://github.
com/YingzhenLi/VRbound.

4.3.1 Bayesian neural networks

The first experiment considers Bayesian neural network regression. The datasets are collected
from the UCI dataset repository.2 We use a Gaussian prior θθθ ∼N(θθθ ;000, III) for the network
weights and Gaussian approximation to the true posterior q(θθθ) =N(θθθ ; µµµq,diag(σσσq)). We
fit the parameters of q and the noise level σ by optimising the lower-bound. We follow the
toy example in Section 4.2 and consider α ∈ {−∞,0.0,0.5,1.0,+∞} in order to examine
the effect of mass-covering/zero-forcing behaviour. Stochastic optimisation uses the energy
approximation strategy proposed in Section 4.2.4.

For regression tests, we consider Protein and Year as the large datasets and the remainder
as small datasets. For all small datasets we used single-layer neural networks with 50 hidden
units (ReLUs), and for Protein and Year we used 100 units. The methods for comparison
were run for 500 epochs on the small datasets and 100, 40 epochs for the large datasets,
respectively. We used ADAM [Kingma and Ba, 2015] for optimisation with learning rate
0.001 and the standard setting for other parameters. For stochastic optimisation we used

2http://archive.ics.uci.edu/ml/datasets.html

https://github.com/YingzhenLi/VRbound
https://github.com/YingzhenLi/VRbound
http://archive.ics.uci.edu/ml/datasets.html
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mass-covering zero-forcing

Fig. 4.4 Test LL and RMSE results for Bayesian neural network regression. The lower the
better. The error bars show 1-standard deviation across 20 random splits of the data.

mini-batch size M = 32 and number of MC samples K = 100 and K = 10 for small and large
datasets, respectively. The number of dataset random splits is 20 except for the large datasets,
which is 5 and 1 for Protein and Year, respectively.

We summarise the test negative log-likelihood (LL) and RMSE with standard error
(across different random splits except for Year) for selected datasets in Figure 4.4 and Table
4.2, 4.3. In the tables the best performing results are underlined, while the worse cases are
also bold-faced. These results indicate that for posterior approximation problems, the optimal
α may vary for different datasets (although for Boston and Power the performances are very
similar).

It can be particularly tricky to approximate the posterior distribution of the weight
matrices for a neural network. Since one can obtain the same output by swapping the
positions of two hidden units and adjusting the corresponding in- and out-going weights,
there exist symmetric modes in the exact posterior of the weight matrices. In this case mass-
covering can be harmful, e.g. for Naval and Energy datasets, methods with α < 1.0 values
seem to be under-performing, not only for predictive error but also for test log-likelihood
measure. But still, we observed two major trends. Zero-forcing/mode-seeking methods
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Table 4.2 Regression experiment: Average negative test log likelihood/nats

Dataset N D α →−∞ α = 0.0 α = 0.5 α = 1.0 (VI) α →+∞

boston 506 13 2.47±0.08 2.47±0.07 2.46±0.07 2.52±0.03 2.50±0.05
concrete 1030 8 3.09±0.02 3.08±0.02 3.09±0.02 3.11±0.02 3.12±0.02
energy 768 8 1.39±0.02 1.42±0.02 1.40±0.03 0.77±0.02 1.23±0.01
naval 11934 16 -3.43±0.08 -3.02±0.48 -3.58±0.08 -6.49±0.04 -6.47±0.09
kin8nm 8192 8 -1.13±0.01 -1.13±0.01 -1.14±0.01 -1.12±0.01 -1.12±0.01
power 9568 4 2.82±0.01 2.83±0.01 2.82±0.01 2.82±0.01 2.83±0.01
protein 45730 9 2.94±0.01 2.91±0.00 2.92±0.01 2.91±0.00 2.91±0.00
wine 1588 11 0.95±0.01 0.95±0.01 0.95±0.01 0.96±0.01 0.97±0.01
yacht 308 6 1.82±0.01 1.83±0.01 1.82±0.01 1.77±0.01 2.01±0.00
year 515345 90 3.54±NA 3.55±NA 3.55±NA 3.60±NA 3.60±NA

Average Rank 2.80±0.34 3.00±0.45 2.20±0.37 3.20±0.51 3.80±0.39

Table 4.3 Regression experiment: Average test RMSE

Dataset N D α →−∞ α = 0.0 α = 0.5 α = 1.0 (VI) α →+∞

boston 506 13 2.84±0.18 2.85±0.17 2.85±0.15 2.89±0.17 2.86±0.17
concrete 1030 8 5.28±0.10 5.24±0.11 5.34±0.10 5.42±0.11 5.40±0.11
energy 768 8 0.79±0.04 0.88±0.05 0.81±0.06 0.51±0.01 0.62±0.02
naval 11934 16 0.01±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.00±0.00
kin8nm 8192 8 0.08±0.00 0.08±0.00 0.08±0.00 0.08±0.00 0.08±0.00
power 9568 4 4.08±0.03 4.10±0.04 4.07±0.04 4.07±0.04 4.08±0.04
protein 45730 9 4.57±0.05 4.44±0.03 4.51±0.03 4.45±0.02 4.45±0.01
wine 1588 11 0.64±0.01 0.64±0.01 0.64±0.01 0.63±0.01 0.63±0.01
yacht 308 6 1.12±0.09 1.24±0.11 1.11±0.08 0.81±0.05 0.96±0.07
year 515345 90 8.95±NA 9.13±NA 8.94±NA 8.91±NA 8.88±NA

Average Rank 3.40±0.38 3.70±0.51 3.20±0.31 2.40±0.45 2.30±0.38



4.3 Experiments 89

tend to focus on improving the predictive error. Mass-covering methods, on the other hand,
returns better test log-likelihood, which has been shown empirically to be correlated with
the quality of the approximated uncertainty estimate [Depeweg et al., 2017; Gal, 2016;
Hernández-Lobato and Adams, 2015]. In particular VI returns lower test log-likelihood for
most of the datasets. Furthermore, α = 0.5 produced overall good results for both test LL
and RMSE, possibly because the skew symmetry is centred at α = 0.5 and the corresponding
divergence is the only symmetric distance measure in the family. Future work should develop
algorithms to automatically select the best α values, although a naive approach could use
validation sets.

4.3.2 Variational auto-encoders

The second experiments considers variational auto-encoders for unsupervised learning. We
mainly compare three approaches: VAE (α = 1.0), IWAE (α = 0), and VR-max (α =−∞),
which are implemented upon the publicly available code.3 Four datasets are considered: Frey
Face4 (with 10-fold cross validation), Caltech 101 Silhouettes5, MNIST6 and OMNIGLOT7.
The VAE model has L = 1,2 stochastic layers with deterministic layers stacked between.
The detailed numbers of stochastic layers L, number of hidden units, and the activation
function are summarised in Table 4.4. The prefix of the number indicates whether this layer is
deterministic or stochastic, e.g. d500-s200 stands for a neural network with one deterministic
layer of 500 units followed by a stochastic layer of 200 units. For Frey Face data we train the
models using learning rate 0.0005 and mini-batch size 100. For MNIST and OMNIGLOT
we reuse the settings from Burda et al. [2016]: the training process runs for 3i passes with
learning rate 0.0001 ·10−i/7 for i = 0, ...,7, and the batch size is 20. For Caltech Silhouettes
we use the same settings as MNIST and OMNIGLOT except that the training proceeded
for ∑

7
i=0 2i = 255 epochs. We reproduce the IWAE experiments to obtain a fair comparison,

since the results in the original publication [Burda et al., 2016] mismatches those evaluated
on the publicly available code.

We report test log-likelihood results in Table 4.5 by computing log p(xxx)≈ L̂0,5000(q;xxx)
following Burda et al. [2016]. We also present some samples from the VR-max trained
auto-encoders in Figure 4.7. Overall VR-max is almost indistinguishable from IWAE. Other
positive alpha settings (e.g. α = 0.5) return worse results, e.g. 1374.64±5.62 for Frey Face
and −85.50 for MNIST with α = 0.5, L = 1 and K = 5. These worse results for α > 0

3https://github.com/yburda/iwae
4http://www.cs.nyu.edu/~roweis/data.html
5https://people.cs.umass.edu/~marlin/data.shtml
6http://yann.lecun.com/exdb/mnist/
7https://github.com/brendenlake/omniglot

https://github.com/yburda/iwae
http://www.cs.nyu.edu/~roweis/data.html
https://people.cs.umass.edu/~marlin/data.shtml
http://yann.lecun.com/exdb/mnist/
https://github.com/brendenlake/omniglot
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Table 4.4 Network architecture of tested VAE algorithms.

Dataset L architecture activation probability type (p/q)
Frey Face 1 d200-d200-s20 softplus Gaussian/Gaussian
Caltech 101 1 d500-s200 tanh Bernoulli/Gaussian
MNIST & 1 d200-d200-s50 tanh Bernoulli/Gaussian
OMNIGLOT 2 d200-d200-s100-d100-d100-s50 tanh Bernoulli/Gaussian

Table 4.5 Average Test log-likelihood. Results for VAE
on MNIST and OMNIGLOT are collected from Burda
et al. [2016].

Dataset L K VAE IWAE VR-max
Frey Face 1 5 1322.96 1380.30 1377.40
(± std. err.) ±10.03 ±4.60 ±4.59
Caltech 101 1 5 -119.69 -117.89 -118.01
Silhouettes 50 -119.61 -117.21 -117.10
MNIST 1 5 -86.47 -85.41 -85.42

50 -86.35 -84.80 -84.81
2 5 -85.01 -83.92 -84.04

50 -84.78 -83.05 -83.44
OMNIGLOT 1 5 -107.62 -106.30 -106.33

1 50 -107.80 -104.68 -105.05
2 5 -106.31 -104.64 -104.71
2 50 -106.30 -103.25 -103.72

Fig. 4.5 Bias of sampling ap-
proximation to. Results for K =
5,50 samples are shown on the
left and right, respectively.

(a) Log of ratio R = wmax/(1−wmax) (b) Weights of samples.

Fig. 4.6 Importance weights during training, see main text for details. Best viewed in colour.

indicate the preference of getting tighter approximations to the likelihood function for MLE
problems. Small negative α values (e.g. α =−1.0,−2.0) return better results on different
splits of the Frey Face data, and overall the best α value is dataset-specific.8

VR-max’s success might be explained by the tightness of the bound. To evaluate this,
we compute the VR bounds on 100 test datapoints using the 1-layer VAE trained on Frey

8Since presentation of this work at NIPS 2016, Bui et al. [2016a] revisited this idea with slightly different
architecture set-up, and showed that α ̸= 0 values are usually favoured over the IWAE approach.
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Fig. 4.7 Sampled images from the the best models trained with IWAE (left) and VR-max
(right).
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Face, with K = {5,50} and α ∈ {0,−1,−5,−50,−500}. Figure 4.5 presents the estimated
gap L̂α,K− L̂0,5000. The results indicates that L̂α,K provides a lower-bound, agreeing with
the theoretical results presented in Section 4.2.2, and that gap is narrowed as α →−∞. Also
increasing K provides improvements. The standard error of estimation is almost constant for
different α (with K fixed), and is negligible when compared to the MC approximation bias.

Another explanation for VR-max’s success is that, the sample with the largest normalised
importance weight wmax dominates the contributions of all the gradients. This is confirmed
by tracking R = wmax

1−wmax
during training on Frey Face (Figure 4.6(a)). Also Figure 4.6(b)

shows the 10 largest importance weights from K = 50 samples in descending order, which
exhibit an exponential decay behaviour, with the largest weight occupying more than 75%
of the probability mass. This means, the IWAE algorithm is not efficient in terms of
sample efficiency, since the learning signal from back-propagation is dominated by the
gradients computed on the particle with the largest weight. It also indicates that, VR-max
can provide a fast approximation to IWAE when tested on CPUs or multiple GPUs with
high communication costs. Indeed our numpy implementation of VR-max achieves up to
a 3 times speed-up compared to IWAE (9.7s vs. 29.0s per epoch, tested on Frey Face data
with K = 50 and batch size M = 100, CPU info: Intel Core i7-4930K CPU @ 3.40GHz).
However this speed advantage is less significant when the gradients can be computed very
efficiently on a single GPU.

4.4 Summary

We have introduced the variational Rényi bound and an associated optimisation framework.
We have shown the richness of the new family, not only by connecting to existing approaches
including VI/VB, SEP, BB-α , VAE and IWAE, but also by proposing the VR-max algorithm
as a new special case. Empirical results on Bayesian neural networks and variational auto-
encoders indicate that VR bound methods are widely applicable and can obtain state-of-the-art
results. Future work will focus on both experimental and theoretical aspects. Theoretical
work will study the interaction of the biases introduced by MC approximation and datapoint
sub-sampling. Also a quantitative analysis of the MC approximation bias will be very useful,
especially for model selection.

[ ] \
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This ends the first part of the thesis, which has reviewed existing variational methods
(Chapter 2), and proposed two unifying frameworks for both algorithmic (Chapter 3) and
optimisation objective (Chapter 4) aspects. Experiments on Bayesian deep learning tasks
also proved the successfulness of our efforts, on pushing variational algorithms towards
wider applicability (far beyond conjugate models) and better scalability to “big data, big
models”. I do admit that, however, the lack of theoretically rigorous selection of approximate
inference algorithms is one of the imperfections of the analysis presented here. Indeed, a
guide on choosing the optimal inference method are needed for practitioners when applying
the framework to their applications, which will be one of my research directions in the future.

So far we only studied different optimisation procedures assuming a given approximating
distribution family (mean-field Gaussians in the empirical results), which is just one side of
the story for approximate inference. The whole picture for this huge subject will never be
comprehensive without discussing the other side, i.e. the construction of q distributions. In the
second part of the thesis “wild approximate inference”, I will revisit the fundamental questions
in approximate inference, providing my point of view on the principles of approximate
distribution design, and present one of the algorithms I developed during my PhD following
these principles.





Part II

Wild Approximate Inference





Chapter 5

Wild Approximate Inference: Why and
How

The design of approximating distributions is equally, if not more, crucial to the invention of
optimisation algorithms such as the two algorithms presented in previous chapters. Mean-
field approximations are often ineffective! Apparently if the Q family is expressive enough
to contain the exact posterior, variational inference, either with KL divergence or Rényi
divergence, would return it as the only global optimum. Hence if a more complex structure
is included in the q distribution, the approximation might become much more accurate
and potentially even exact. For this purpose, it would be useful to use universal functional
approximators, e.g. neural networks, to expand the distribution family of approximations.
However, it becomes very challenging to use these flexible approximations due to many
restrictions, which cannot be addressed by simply investing more computational resources
(say more running time and memory).

In recent years, one major research direction is to go beyond mean-field methods via
development of flexible q distributions, which specifically addresses the intractability issues
when applied to VI. For example, invertible transformations are utilised to construct q
distributions which allow analytical evaluations of the approximate posterior density [Kingma
et al., 2016; Louizos and Welling, 2017; Rezende and Mohamed, 2015]. Mixture distributions
of more flexible forms are also introduced to capture the possible multi-modality of the exact
posterior, with further approximations being proposed to account for extra computational
challenges [Maaløe et al., 2016; Ranganath et al., 2016b; Salimans et al., 2015; Tran et al.,
2016]. Though effective, these methods are complicated for practitioners to understand, let
alone the design work itself that requires lots of care.

In the second theme of the thesis, an alternative research direction will be presented
towards using flexible approximations in approximate inference. Concretely, instead of
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designing approximate posterior distributions that fit into standard frameworks like VI, we
would like to develop optimisation algorithms that enable approximations of arbitrary form.
This goal is further justified by revisiting the fundamental problem that approximate inference
is trying to solve – approximating an integral both accurately and quickly. Throughout
the discussions, readers will realise that many computational constraints are irrelevant to
inference itself: it is the chosen optimisation algorithm that introduces additional constraints
on the q distribution design. Consequently, successful development of algorithms that
present no more constraints would enable the usage of arbitrary approximate distributions,
allowing practitioners to choose the q distribution that fits best to their particular tasks. In the
following, we will discuss several research directions towards this goal, with one specific
example detailed in the next chapter.

The rest of the chapter is organised as follows. In Section 5.1 we revisit the tractability
issues in Bayesian inference and argue that fast sampling should be the only condition
required by Monte Carlo based approximate inference algorithms. Based on this observation,
we suggest using implicit distributions as approximate posterior distributions, with some
examples provided in Section 5.2 to demonstrate the flexibility of this distribution class. As
implicit distributions do not exhibit tractable densities, we propose a few research directions
towards fitting these approximate posteriors in Section 5.3. Lastly we briefly discuss a
research theme – meta-learning for approximate inference algorithms – in Section 5.4, which
is enabled by wild approximate inference methods.

Remark (Related work). The material in this chapter was originally presented in a
NIPS 2016 approximate inference workshop abstract “Wild Variational Approximations”
which is a joint work with Qiang Liu [Li and Liu, 2016] (see publication page). Before
that the research scheme had not been established in a formal way, except for very
few attempts [Ranganath et al., 2016a; Wang and Liu, 2016]. Later on, several groups
explored an approach that blends VI and (adversarial) density ratio estimation [Huszár,
2017; Karaletsos, 2016; Mescheder et al., 2017; Shi et al., 2018; Tran et al., 2017], which
corresponds to one of the algorithmic options described in this chapter. We argue that our
work is more formal and general: we justify this line of research by examining the central
topics in approximate inference, and point out four research directions for developing
algorithms that can fit arbitrary q distributions that enable fast sampling.
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5.1 Revisiting tractability issues in approximate inference

In Chapter 1 the definition of an approximate inference procedure is identified. However,
here I invite the readers to consider the following question again:

What does tractability mean for an approximate inference algorithm?

This question touches the fundamental principles of approximate inference and it is
very important answer it carefully. It helps us to understand the challenges that we face,
and identify those that can be addressed by investing more computational resources, and
those that require advanced mathematical tools. Think about the history of neural networks
research as an analogy. The first challenge in the late 1960s came from theoretical limitations
of perceptrons [Minsky and Papert, 1969], and the second issue in the last ten years of the
20th century was mainly the lack of computational resources (e.g. slow computers and small
datasets) [LeCun et al., 2015]. It was only after identifying and addressing these two issues
(back-propagation [Rumelhart et al., 1986], faster machine, GPU computing and big data)
that the deep learning community started to revolutionise AI applications in the real world.
But still, there are mathematical and computational challenges for modern deep learning
which are waiting for discoveries and solutions, but these issues are out of the scope of our
discussions.

To answer the above question, we first start by revisiting the definition of approximate
inference, with Bayesian posterior inference as an illustrating example. Assume a model with
prior distribution p(zzz) and likelihood function p(xxx|zzz). Then inference means computing the
expectation of some function F(zzz) of interest under the exact posterior, which is Ep(zzz|xxx)[F(zzz)].
Examples of such F functions include F(zzz) = zzz, F(zzz) = zzzzzzT (i.e. computing the moments
of p), F(zzz) = p(y∗|zzz,xxx∗) if in supervised learning and zzz represents the model parameters
(i.e. computing a predictive distribution), and F(zzz) = δA if one wishes to evaluate the
distribution directly p(zzz ∈ A|xxx) = Ep(zzz|xxx)[δA]. For simplicity in the rest of the discussion
we assume the evaluation of F(zzz) can be done using available computational resources,
otherwise it needs more approximations.

The core idea of (optimisation based) approximate inference is to fit an approximate
posterior distribution q(zzz|xxx) in a “tractable” distribution family Q to the exact posterior
p(zzz|xxx), such that Ep(zzz|xxx)[F(zzz)] can be well approximated by

Ep(zzz|xxx)[F(zzz)]≈ Eq(zzz|xxx)[F(zzz)]. (5.1)

Critically, the primary tractability requirement here for the approximate posterior is the fast
computation of the approximate expectation on the RHS given the function F .
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Historically, approximate distributions of simple forms, such as mean-field approxima-
tions and factorised Gaussians [Jordan et al., 1999], have been proposed to obtain analytical
solutions of the approximated expectation. These approaches often require the probabilistic
model to comprise conjugate exponential families, which excludes a broad range of powerful
models, e.g. those which warp noise variables through non-linear mappings. Instead, modern
approximate inference introduces Monte Carlo (MC) estimation techniques to approximate
the predictive likelihood [Paisley et al., 2012; Ranganath et al., 2014] that we reviewed in
Section 2.2.3. The MC method enables a wider class of models to be amendable to VI (the
requirement is that the log-joint can be computed point-wise), and is key to modern training
methods of generative models such as deep latent variable models. [Kingma and Welling,
2014; Rezende et al., 2014].

Precisely, at inference time, the MC approximation method samples {zzz1, ...,zzzK} from the
approximate posterior q, and estimates the required quantity by

Eq(zzz|xxx)[F(zzz)]≈ 1
K

K

∑
k=1

F(zzzk), zzzk ∼ q(zzz|xxx). (5.2)

Consequently, this converts the fast expectation computation requirement to fast sampling
from the approximate posterior, as the expectation is further approximated by the empiri-
cal average. Fast sampling is arguably a stronger condition compared to fast expectation
computation for a given function F . The latter option typically prefers traditional numerical
integration methods since for different functions one would select different quadrature rules.
On the other hand, fast sampling can also be a weaker condition: once we have obtained the
samples from the approximate posterior, we can use them to compute an empirical estimate
of the expectation for any integrable function. Hence methods that entail fast sampling might
be preferred for tasks that require estimating expectations of a set of functions.

Unfortunately, except a few very recent attempts that will be detailed later, most approxi-
mate inference algorithms impose further constraints to the design of q. For example, MC-VI
requires fast density evaluation and/or fast density gradient evaluation for q(zzz|xxx) given a
configuration of zzz. Importantly, this requirement is only presented in the VI optimisation
procedure to seek for the best fit of q: once a (local) optimum is obtained, inference only
requires evaluating the empirical expectation, thus there is no need to compute the density
point-wise. Therefore the MC inference at test time enables the usage of implicit distribu-
tions [Diggle and Gratton, 1984; Mohamed and Lakshminarayanan, 2016] and stochastic
regularisation techniques (SRTs) [e.g. dropout techniques, see Gal, 2016; Kingma et al.,
2015; Krueger et al., 2017; Singh et al., 2016; Srivastava et al., 2014; Wan et al., 2013] that
allow for the computation of the MC predictive inference but not for fast density evaluation.
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But again at training time they are not applicable to traditional variational methods due to the
fast density evaluation constraint.

These observations raise an outstanding research question:

Can we design efficient approximate inference algorithms to train arbitrary posterior
approximations (including implicit distributions and SRTs)?

We will answer this in the next sections, by discussing proposals for training wild
approximate inference algorithms.1 We will also provide some examples of implicit posterior
approximations that are not possible to be fitted using conventional approximate inference
algorithms. Before that, I first address potential skepticism below, and argue why this is an
outstanding but under-examined research direction.

Remark (a comparison between implicit distributions and SRTs). As presented, it is
desirable to remove the fast density evaluation constraint from the fitting procedure.
However the reasons for doing so are different for implicit distributions and SRTs. First
for implicit distributions, MC samples zzz1, ...,zzzK are generated (e.g. by warping noise
variables with a neural network), in order to compute the empirical estimate 1

K ∑
K
k=1 F(zzzk).

The fast density evaluation constraint becomes an obstacle for fitting implicit distributions,
as the underlying distribution of the samples does not exhibit a tractable form.
On the other hand, in Bayesian neural networks the function F is usually defined using the
outputs of the neural network, i.e. F(zzz) = 1

N ∑
N
n=1 F̃(yn =NNzzz(xxxn)). Unlike implicit distri-

butions, SRTs often apply random transformations to the hidden units, which leads to ran-
dom outputs yk

n,n = 1, ...,N,k = 1, ...,K and the empirical estimate 1
KN ∑

K
k=1 ∑

N
n=1 F̃(yk

n).
More importantly, the random transformations applied to different inputs xxxn are different,
which is equivalent to sampling NK sets of weights zzzk,n,n = 1, ...,N,k = 1, ...,K implicitly.
Therefore even the underlying density of zzzk,n might be tractable point-wise (consider Gaus-
sian dropout [Kingma et al., 2015; Srivastava et al., 2014] as an example), evaluating them
explicitly would cost O(NK) time or O(NK) memory for parallel computing. Therefore
the fast density evaluation constraint becomes an obstacle again but for a different reason:
intractability due to limited computational budget.

5.1.1 Is it necessary to evaluate the approximate posterior distribu-
tion?

One might argue that having an accessible q distribution allows the user to understand the
properties of the exact posterior better. It might be true for low dimensional cases, as we

1Not to be confused with black-box variational inference [Ranganath et al., 2014].



102 Wild Approximate Inference: Why and How

can easily visualise the density function, and compare density values between samples to
determine which is more probable. But I would disagree with this argument for the scenario
of approximating multi-modal posterior distributions in high dimensions, which is often the
application regime of interest. Some reasons are:

• First, enforcing the tractable density constraint means that in many cases, either we
fit the posterior with a rather simple distribution (which has limited representational
power), or a complex model such as a mixture density (which entails high computa-
tional costs).

• Second, even when setting aside the computational issues for density evaluation,
visualising high dimensional distributions is itself still an open research problem. In
this regard, many data visualisation techniques consider dimension reduction methods
such as principal component analysis (PCA) [Pearson, 1901], self-organising map
[Kohonen, 1998; Venna and Kaski, 2003] and t-SNE [van der Maaten and Hinton,
2008], which in fact only require samples from the distribution, not the density values.

• Finally as motivated above, many MC-based inference tasks do not require evaluating
or comparing density values on samples. For those which do require density evaluation,
one can then fit a density estimator on the samples from q. It can still be very convenient
as in the MC estimation setting we typically assume fast sampling from the approximate
posterior.

5.1.2 Comparisons to sampling-based methods

Many Bayesian statisticians prefer sampling methods – and in fact it is the emergence
of sampling methods such as importance sampling (IS), sequential Monte Carlo (SMC)
[Doucet et al., 2001] and Markov chain Monte Carlo (MCMC) that contributed to the rapid
development of Bayesian statistics. They have very nice theoretical guarantees, for example,
IS and SMC provide unbiased estimates of the integral and are asymptotically exact when the
number of samples K→+∞. MCMC has similar asymptotic exactness guarantee but it also
requires the number of transitions T →+∞. However, I view all these sampling methods as
approximate inference algorithms, simply due to the fact that in practice one can never obtain
an infinite number of samples, nor can one simulate the MCMC dynamics for an infinite
amount of time. Furthermore, even some of these methods do construct implicit approximate
posterior distributions in practice, they still add more constraints to the inference procedures,
detailed in below.
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• (Adaptive) importance sampling (IS) and sequential Monte Carlo (SMC).
Importance sampling has a long history in statistics, e.g. see Geweke [1989]. Roughly
speaking, it proposes samples from a rather simple distribution π(zzz|xxx), then “corrects”
the sampling estimate by incorporating the importance weight

Ep(zzz|xxx)[F(zzz)]≈ 1
K

K

∑
k=1

wkF(zzzk), wk =
p(zzzk|xxx)
π(zzzk|xxx)

, zzzk ∼ π(zzz|xxx). (5.3)

One can easily see the unbiasedness of the IS estimate, and under mild conditions one
can also show it is consistent. Also self-normalised IS is sometimes used to obtain
approximate posterior samples, which effectively constructs q as

q(zzz|xxx) =
K

∑
k=1

ŵkδ (zzz = zzzk), ŵk =
wk

∑
K
k=1 w j

, zzzk ∼ π(zzz|xxx). (5.4)

In this case the q distribution depends on the proposal π and the number of samples K,
and again under mild conditions q→ p when K→+∞. In this case the estimation is
no longer unbiased, but practically the self-normalised IS estimate often enjoys the
advantage of lower variance. Importantly, the q distribution is tractable and requires
fast evaluation of the π density (up to a potentially unknown normalising constant).
SMC can be viewed as importance sampling applied to time-series models (such as
hidden Markov models), typically with extra techniques to improve sample efficiency.

However, IS and SMC provide terrible approximations to the desired integral if the
proposal π is very different from the target distribution p, mainly due to the high
variance of the estimator. To address this issue, researchers have considered adapting
the initial distribution to reduce the variance, therefore improving sample efficiency
that is key to the success of IS in practice, Indeed the (unnormalised) optimal proposal
distribution for IS is proportional to |F(zzz)|p(zzz|xxx), and in some cases the resulting
estimator has zero variance, indicating that it requires only one (!) sample to compute
the exact integral. Recently there is a plenty of research work on how to adapt the initial
distribution and combine the approach with amortised inference [Burda et al., 2016;
Cornebise, 2009; Gu et al., 2015; Le et al., 2017; Maddison et al., 2017a; Naesseth
et al., 2017; Paige and Wood, 2016]. But still, the tractability constraint of π(zzz|xxx)
largely restricts its analytic form to those have been used for VI.

• Markov Chain Monte Carlo (MCMC).
An MCMC algorithm for posterior sampling is typically specified by a transition
distribution (or transition kernel) T(zzz′|zzz), with the following conditions often assumed:
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(i) T has the target distribution p(zzz|xxx) as the unique stationary distribution:

p(zzz′|xxx) =
∫

T(zzz′|zzz)p(zzz|xxx)dzzz.

(ii) If defining

TT (zzzT |zzz0) =
∫ T−1

∏
t=0

T(zzzt+1|zzzt)dzzz0:T−1,

then for any initial distribution q0(zzz|xxx) the MCMC dynamics converges to the
target distribution as T →+∞:

lim
T→+∞

qT (zzz|xxx) = p(zzz|xxx), qT (zzz|xxx) :=
∫

TT (zzz|zzz′)q0(zzz′|xxx)dzzz′.

Conditions that such transition kernel T requires are described in e.g. chapter 11 of
Gelman et al. [1995] and Brooks et al. [2011].

In practice one often specifies an initial distribution q0(zzz|xxx) to draw starting particles,
and stops simulating the transitions after T steps according to his/her computational
budget. Consequently, this truncated Markov chain also induces an implicit q distribu-
tion

q(zzz|xxx) =
∫

TT (zzz|zzz′)q0(zzz′|xxx)dzzz′. (5.5)

In many applications the computational budget only allows simulations of a small
number of transitions, e.g. when training big models with EM. Thus having a rapidly
mixed chain would significantly reduce T , and to achieve this goal a lot of work has
explored different designs of the transition kernel, to name a few see Ahn et al. [2012];
Ding et al. [2014]; Duane et al. [1987]; Girolami and Calderhead [2011]; Neal [2011].
However, these methods are often designed as a generic sampling algorithm, which
might not be best suited for e.g. sampling from Bayesian neural network posterior
distributions.

Observing the above, I would argue that recent advances of sampling-based inference
method do not achieve the best speed-accuracy trade-off that is one of the most important
topics in approximate inference. Indeed there are two potential directions to improve
an MCMC procedure. First, as we will not be able to obtain the exact posterior from
T -step MCMC simulations anyway, removing the asymptotic exactness requirement can
potentially allow the best fit of the transition kernel, which makes q(zzz|xxx) = qT (zzz|xxx) the best
approximator to the exact posterior in such a Q class. Second, even when the transition kernel
is constrained to leave the exact posterior invariant, learning the transition kernel would enable
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fast convergence and bias reduction for the MCMC algorithm. These examples are closely
related to meta-learning [Bengio et al., 1992; Naik and Mammone, 1992; Schmidhuber,
1987; Thrun and Pratt, 1998] for approximate inference, which is further discussed in Section
5.4. Similarly for IS, there exist estimators that use some “super-efficient” weights to enable
significantly faster convergence rates than O(K−

1
2 ) the usual convergence rate for the IS

estimator (5.3) [Del Moral et al., 2006; Ghahramani and Rasmussen, 2003; Liu and Lee,
2017; Oates et al., 2017; O’Hagan, 1991]. More specifically, the recipe provided by Liu and
Lee [2017] does not require a tractable initial distribution π at all. Although these estimators
can be biased, in practice they often provide better speed-accuracy trade-off due to their
better sample efficiency.

5.2 Examples of implicit distributions

In this section we provide further examples of implicit distributions that can be fitted to the
exact posterior using the algorithmic proposals introduced later. As a reminder, we use φφφ to
denote the parameters for q, and will explicitly write q(zzz|xxx) = qφφφ (zzz|xxx) when necessary.

Ultimately for any uni-variate distribution, the sampling process can be described by
deterministically transforming a uniform noise variable with the inverse cumulative density
function (CDF) or quantile function:

z∼ p(z) ⇔ u∼ Uniform(0,1), z = CDF−1
p (u). (5.6)

For multivariate distributions, a similar process would return a set of possible configurations
CDF−1

p (u) = {inf zzz : CDFp(zzz)≥ u}, and one could then uniformly sample from it. However,
computing the (inverse) CDF can be even harder than evaluating the density p(zzz) at a given
configuration. Nevertheless, the observation above inspires us to define the approximate
distribution q by transforming a random noise variable εεε through a deterministic mapping f:

zzz∼ q(zzz|xxx) ⇔ εεε ∼ π(εεε), zzz = f(εεε,xxx). (5.7)

This definition exhibits similar flavour as the reparameterisation trick [Kingma and Welling,
2014], and in the following we will also say q is reparameterisable if the sampling process
of q follows the above procedure.

An important note here is that f might not be invertible, which differs from the invertible
transform techniques discussed in [Kingma et al., 2016; Rezende and Mohamed, 2015]. Thus
the q density cannot be evaluated by just calculating the Jacobian matrix as in the other case.
It also implies that one cannot directly apply VI to find the best mapping f simply because
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the entropy term H[q] is again intractable.Thus additional mathematical tools are required to
handle this type of approximations, which will be detailed in later sections.

5.2.1 Neural network transform with noise inputs

The simplest way to define the transformation f is to construct a deterministic deep neural
network NNφφφ which takes both the observation xxx and the noise variable εεε as input:

zzz∼ q(zzz|xxx) ⇔ εεε ∼ π(εεε), zzz = NNφφφ (εεε,xxx). (5.8)

The density network [Mackay and Gibbs, 1999] further generalises this idea using “Bayesian”
neural networks, by putting a prior distribution on the neural network parameters. In this
case the sampling procedure changes to

zzz∼ q(zzz|xxx) ⇔ εεε ∼ π(εεε),WWW ∼ π(WWW ), zzz = NNWWW (εεε,xxx). (5.9)

Since neural networks are well known to be universal functional approximators [Hornik et al.,
1989], the hope is that the constructed neural network is expressive enough to learn how to
return a point in the set of CDF−1

p ◦CDFπ . This type of distributions is also called variational
programs in [Ranganath et al., 2016a], or implicit generative models in the generative model
context [Mohamed and Lakshminarayanan, 2016].

5.2.2 Stochastic deep neural networks and recurrent neural networks

There has been a number of recent work that investigated latent variable models as q
distributions, e.g. see Maaløe et al. [2016]; Ranganath et al. [2016b]; Salimans et al. [2015];
Tran et al. [2016]. In short, the q distribution is constructed by a series of conditional
probabilities

q(zzz|xxx) =
∫

q(zzz,zzz0,zzz1, ...,zzzT−1|xxx)dzzz0:T−1 =
∫

q(zzz|zzzT−1,xxx)
T−1

∏
t=1

q(zzzt |zzzt−1,xxx)dzzz0:T−1. (5.10)

In the remainder of this section we will also write zzzT = zzz. The most general form allows
q(zzzt |zzzt−1,xxx) to have a different form at each time step t. Previous uses of this type of
approximate distribution focused on the simple case where q(zzzt |zzzt−1,xxx) has tractable density
(so that for small T the q distribution is explicit). We review some of the algorithms for
fitting them in Appendix B.
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What if q(zzzt |zzzt−1,xxx) is implicit? Following the discussions of neural network approx-
imations to the inverse CDF function, generally one can implicitly define the conditional
distribution using a neural network taking zzzt−1 and an extra “nuisance” noise variable εεε t as
the input:

zzzt ∼ q(zzzt |zzzt−1,xxx) ⇔ zzzt = ft(zzzt−1,εεε t ,xxx). εεε t ∼ π(εεε t). (5.11)

The joint distribution q(zzz0:T |xxx) is then parameterised by a stochastic deep neural network.
Again the marginal distribution q(zzzT |xxx) does not have a tractable density so that traditional
approximate inference methods do no apply.

An interesting special case of the stochastic neural network approach considers tying
the parameters of q(zzzt |zzzt−1,xxx) at every time step, which essentially makes the network a
stochastic recurrent neural network (RNN). In fact this special case can be viewed as a
truncated Markov chain, making the stochastic RNN approach closely related to MCMC.
Although we will never be able to achieve the exactness guarantee for an MCMC algorithm,
we can still use the intuition there to design an approximate q distribution that works well
for our data. For example, Ma et al. [2015] claimed that a stochastic gradient MCMC
(SG-MCMC) algorithm within the Itô diffusion framework can be framed into the following
form (with discretisation)

zzzt = zzzt+1 +ζt [(DDD(zzzt)+QQQ(zzzt))∇zzzt log p(zzz = zzzt |xxx)+Γ(zzzt)]+
√

2ζtDDD(zzzt)εεε t , εεε t ∼N(000,I),
(5.12)

where DDD(zzzt) and QQQ(zzzt) control the drift and diffusion of the dynamics, and Γ(zzzt) is a
correction term to ensure asymptotic exactness (with infinitesimal discretisation step-size).
But recall that asymptotic exactness is not required if one only cares about the approximation
quality of qT (zzz|xxx). This inspires us to derive the following stochastic RNN using NN-defined
drift and diffusion: with ∇t short-hands for ∇zzzt log p(zzz = zzzt |xxx),

zzzt = zzzt+1 +ζtf1(zzzt ,xxx,∇t)+ζtf2(zzzt ,xxx,∇t)εεε t , εεε t ∼N(000,I), (5.13)

with each of the fi functions parameterised by a neural network, or even an RNN with memory
modules [Graves et al., 2014; Hochreiter and Schmidhuber, 1997]. A promising direction
would consider learning this stochastic RNN based approximate posterior distribution so that
it generalises well to unseen target distributions. This meta-learning task can be addressed in
a similar fashion as in Andrychowicz et al. [2016]; Li and Malik [2016] – see discussions in
later sections and an initial experiment in Chapter 6.
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Remark (stochastic gradient descent (SGD) as an approximate inference method). SG-
MCMC has a close relationship to SGD in that it can be viewed as adding a properly scaled
noise term to a (pre-conditioned) SGD procedure. Therefore one can also draw inspiration
from SGD for approximate posterior design. Indeed recently Duvenaud et al. [2016] has
shown that the end points obtained by early stopping SGD (i.e. using finite T ) results
in a nonparametric variational posterior approximation. Later Mandt et al. [2016, 2017]
also showed that under some constraints, the stationary distribution of SGD also forms
an approximation to the posterior. The authors further proposed tuning the parameters
(learning rate, pre-conditioning matrix, etc.) using variational inference. Similar results
have also been discussed in Smith and Le [2018].

5.2.3 Learning to pass messages

An important research direction of graphical models is the fast computation of the marginal
distributions of the random variables associated with the nodes in a graph. In formula, given a
graphical model with graph G= (V,E), marginal inference means the computation of p(xi) =∫

p(xi,xxx\i)dxxx\i for all i ∈V . Message passing methods, such as belief propagation and EP as
reviewed in the first theme, are popular approximate inference methods for such a purpose.
Historically these graphs are constructed to have simple functions attached to each factor,
making the computation of local messages tractable and fast. But the message computation is
no longer analytic if non-linear mappings are adopted to describe the conditional distributions
or potentials. Though not a primary focus of this chapter, below we discuss two recent
approaches handling this challenging case with non-conventional methods, of which both do
not require tractable densities of the messages or beliefs.

• Adversarial training for message approximation.
In directed graphical model setting, we often specify the model distribution as p(xxx) =

∏i p(xi|pa(xi)), in which pa(xi) represent the variables attached to the parent nodes of
xi in the graph. Given observed variables xxxo, we utilise the graphical structure to design
q(xxx) = q(xxxo)∏i ̸∈o q(xi|m̃b(xi)) where m̃b(xi) denotes the variables in the Markov
blanket of xi needed for d-separation given xxxo, and the goal is to make q as close as
possible to p. Assuming an implicit q density here, a naive idea defines a global Jensen-
Shannon divergence [Lin, 1991] then using the generative adversarial network (GAN)
[Goodfellow et al., 2014] idea to (approximately) minimise it. However computing
this global divergence needs an “interpolated” distribution m(xxx) = 1

2 p(xxx) + 1
2q(xxx),

which effectively destroys the graphical structure and thus requires the discriminator
to take the entire set of variables xxx as the input. This can be very computationally
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demanding for very big graphs. Instead, Karaletsos [2016] sketched an algorithm using
local Jenson-Shanon divergences between q(xi,m̃b(xi)) and p(xi,pa(xi)),2 where a
GAN approximation for this divergence requires only inputs for a subset of variables
{xi,pa(xi),m̃b(xi)} thus can be nested into a message passing procedure. This idea
can also be extended to EP/SEP (see Chapters 2 and 3), in which we replace the
M-projection step by minimising JS[p̃n(θθθ)||q(θθθ)] that is further approximated by a
GAN procedure.

• Discriminative learning of the messages.
Learning the parameters of an undirected graphical model often requires (loopy)
belief propagation (LBP) repeatedly to infer the unobserved variables, which can be
computationally challenging. However, notice that in many supervised learning tasks
the latent variables are mostly served as a feature representation for later usage, in
which for a test datum LBP is executed to obtain this embedding anyway. Therefore
the prediction pipeline only requires the “approximate model” returned by message
passing, and never touches the true distribution of the graphical model. Observing this,
Zheng et al. [2015] and Dai et al. [2016b] proposed directly training the “approximate
model” in an end-to-end fashion using supervision data. In particular, Song et al. [2011]
took the intuition from kernel mean embeddings [Smola et al., 2007] that a distribution
can be summarised with a point in a reproducing kernel Hilbert space (RKHS), and
proposed a belief propagation algorithm to estimate the RKHS embeddings of marginal
distributions. The graph neural network [Dai et al., 2016b; Gori et al., 2005; Li et al.,
2016b; Scarselli et al., 2009] further extended this idea and parameterised the outgoing
belief features as neural networks taking the incoming belief features as inputs.
We note that this idea is different from directly using q as the underlying model. Unless
the graph exhibits a tree structure (where q converges to p), the local beliefs obtained
from LBP might not be consistent, i.e. these pseudo marginals do not always come
from the same joint distribution. Rather, the modelling pipeline still uses an intractable
but valid graphical model, where the discussed algorithms focus on improving the
predictive inference performance directly.

2In general q(xi,m̃b(xi)) can be unnormalised (usually happens in message passing), and one can define
divergences between unnormalised densities accordingly, see Minka [2005].
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5.3 Algorithmic options for fitting arbitrary posterior ap-
proximations

The implicit distributions discussed in Section 5.2 cannot be fitted using many existing
approximate inference methods such as MC-VI. In this section, we discuss four algorithmic
options for training these approximations to the posterior.3 One of the schemes is further
developed in the next chapter. Other approaches that my colleagues and I proposed (following
these ideas) include Li and Gal [2017]; Li et al. [2017] which are not presented in the thesis
due to page limit.

5.3.1 Energy approximation

Assume q is reparameterisable,4 i.e. zzz∼ qφφφ (zzz|xxx)⇔ zzz = fφφφ (xxx). Then by the chain rule, the
gradient of a given objective function L(φφφ) w.r.t. φφφ is ∇φφφL = ∇φφφ f∇fL. Therefore, if we
have an approximation L̂ to the objective function, then we can approximate the gradient as
∇φφφL≈ ∇φφφ f∇fL̂. We name this approach as energy/objective approximation.

Since the loss function L(φφφ) is often defined as L(qφφφ ), a naive method of energy
approximation considers density estimation of qφφφ and a direct plug-in of the approximate
density to the energy function. Typically a density estimator q̂, e.g. kernel density estimators
(KDE) [Fukunaga and Hostetler, 1975] or neural density estimators [Larochelle and Murray,
2011; Mackay and Gibbs, 1999], is fitted to the samples {zzzk = f(εεεk,xxx)} ∼ q, and the gradient
of logq is approximated as ∇φφφ logq(zzz|xxx)≈∇zzz log q̂(zzz|xxx)∇φφφ f. One might even want to directly
estimate logq if it turns out to be more accurate. However, practitioners should be careful
with implementations using automatic differentiation tools, since the parameters of the
density estimator q̂ should not be differentiated through (even though they might depend on
the samples zzzk).

The next idea considers analytical approximations to (part of) the energy function, e.g. the
entropy term H[q] or the KL-divergence KL[q||p0] in LVI, and let the MC approach handle
the rest. In MC-dropout [Gal and Ghahramani, 2016] KL[q||p0] is approximated by an ℓ2

regulariser of the neural network weights. In Li and Gal [2017] we extended this framework
to α-divergence methods with further approximations. Due to the page limit, we skip the
detailed discussions of this work.

3Again we note here that the discussed options are applicable to tractable q distributions as well. See
discussions in the remark in Section 5.1.

4For non-reparameterisable distributions ∇φφφ f can be computed with further approximations such as the
generalised reparameterisation trick [Ruiz et al., 2016].
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A new direction for energy approximation applies density ratio estimation methods [Qin,
1998; Sugiyama et al., 2009, 2012]. This is done by introducing an auxiliary distribution q̃
and rewriting the variational lower-bound:

LVI(θθθ ,q;xxx) = Eq

[
log

p0(zzz)p(xxx|zzz;θθθ)

q̃(zzz|xxx)
+ log

q̃(zzz|xxx)
q(zzz|xxx)

]
. (5.14)

The auxiliary distribution q̃ is required to have tractable density and is easy to sample from.
Then one can use sample-based density ratio estimation methods to fit an estimator R̃ to the
ratio between q̃ and q. The gradient approximation for general q̃ distributions can be derived
similarly as

∇φφφLVI = Eq

[
∇φφφ log

p0(zzz)p(xxx|zzz;θθθ)

q̃(zzz|xxx)
+∇zzzR̃(zzz)∇φφφ f

]
. (5.15)

A simple example considers q̃ = p0 and the classification approach for ratio estimation. In
short, we train a classifier

D(zzz sampled from p0 | zzz,xxx) = (1+ exp[−R̃(zzz)])−1

to distinguish samples from p0 and q. A related approach is the adversarial auto-encoder
[Makhzani et al., 2015] which uses the prior distribution as an auxiliary. However, the
objective function proposed in Makhzani et al. [2015] replaces the KL[q||p0] in the variational
lower-bound with Jensen-Shannon divergence [Lin, 1991], which lacks a justification from a
Bayesian point of view.5 Also the density ratio estimation idea can be extended to a sequence
of auxiliary distributions (in a similar spirit to annealed importance sampling [Neal, 2001]),
which can also be adapted slowly during training to obtain a better approximation.

Remark (concurrent work on the density ratio estimation idea). Since the presentation of
the original material at the NIPS 2016 approximate inference workshop, this density ratio
estimation proposal has also been independently considered in Huszár [2017]; Karaletsos
[2016]; Mescheder et al. [2017]; Tran et al. [2017]. Specifically in the adversarial
variational Bayes (AVB) paper [Mescheder et al., 2017], the authors first considered prior
distribution as the auxiliary q̃, then discussed an advanced technique termed as adaptive
contrast, which takes q̃ as a Gaussian approximation to q. In this case the estimation of q̃
requires many samples from q which can significantly slow down training. To address
this issue, the authors further constructed a specific type of implicit q distributions, which
allows sharing of randomness between different q(zzzn|xxxn) distributions and thus reducing

5An optimal transport [Villani, 2008] perspective of adversarial auto-encoders is presented in Tolstikhin
et al. [2018].
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Fig. 5.1 A visualisation of the exact/approximate loss. See main text for further intuition.

the total number of MC samples computed on a mini-batch of data. This trick improves
the approximation accuracy by a significant margin as density ratio estimation is accurate
when the two distributions are similar to each other.

5.3.2 Direct gradient approximation

The recent development of machine learning algorithms, including VI and SG-MCMC, relies
on advanced optimisation tools such as stochastic gradient descent with adaptive learning
rates. Informally the optimisation procedure works as the following: given the current mini-
batch of data, we first compute the gradients, then feed them to the optimiser to construct
the final update of the training parameters. In the above energy approximation example, this
gradient computation is done by first approximating the original objective function L̂≈ L,
then differentiating this approximate energy to obtain an approximate descending direction.
However, even when L̂ approximates L very well at the points visited by gradient descent,
the approximate gradient ∇φφφ L̂ can still be a poor estimator for the exact gradient ∇φφφL.
We depict this phenomenon in Figure 5.1. Recall that practically, an optimiser only visits
finite number of locations in the parameter space. As one would typically use a deep neural
network to approximate the exact loss function, without careful control the deep net can
potentially overfit to the observed evaluations, leading to strongly biased gradient updates
and bad local optima.

Here are two concrete examples for further explanation.

• Variational EM as an approximation to MLE.
The VAE algorithm can be viewed as an approximate MLE procedure, with the
maximum likelihood objective L(θθθ) = ED[log pθθθ (xxx)] approximated by the variational
lower-bound L̂(θθθ ,φφφ) = ED[LVI(qφφφ (zzz|xxx);xxx)]. As shown in the mean-field example in
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Section 4.2.1, this would bias the generative model pθθθ (zzz|xxx) towards simple solutions,
unless qφφφ (zzz|xxx) perfectly approximates the exact posterior which is rarely the case.
This issue is related to the “hidden unit over-pruning” problem [Burda et al., 2016;
Sønderby et al., 2016]: even when zzz is of relatively high dimensions like a hundred,
the VAE algorithm would turn off many of them, and learn a model which effectively
uses much fewer units.

• GAN training.
Recently generative adversarial networks (GANs) [Goodfellow et al., 2014] have
attracted large attention from the deep learning community. In a nutshell, the original
GAN algorithm proposes training the generator pθθθ (xxx) by minimising the Jensen-
Shannon divergence

min
θθθ

L(θθθ) = JS[pD||pθθθ ] =
1
2

KL
[

pD||
pD+ pθθθ

2

]
+

1
2

KL
[

pθθθ ||
pD+ pθθθ

2

]
. (5.16)

However, the generative model pθθθ (xxx) is implicitly defined in an analogous way as
the deterministic transform discussed above. Thus point-wise evaluation of pθθθ (xxx) is
intractable. Then the seminal GAN paper proposes approximating the Jenson-Shannon
divergence [Lin, 1991] with a variational lower-bound, described by a discriminator:

min
θθθ

max
φφφ

L̂(θθθ ,φφφ) = ED[logDφφφ (xxx)]+Epθθθ
[log(1−Dφφφ (xxx))]. (5.17)

Arjovsky and Bottou [2017] pointed out a fundamental problem with this approach:
since both pD and pθθθ have low-dimensional support in a high-dimensional space,
the discriminator, if powerful enough (which is typically the case when using neural
networks), is very likely to overfit, thus it can perfectly separate the two support sub-
spaces and provide meaningless gradients. Then in their follow-up work Arjovsky et al.
[2017] proposed the Wasserstein GAN (WGAN), which uses Wasserstein distance
[Villani, 2008] as the training objective, and in this case, the approximate loss function
turns out to be

min
θθθ

max
φφφ :||Dφφφ ||L≤1

L̂(θθθ ,φφφ) = ED[Dφφφ (xxx)]−Epθθθ
[Dφφφ (xxx)]. (5.18)

This modification, when adding more tricks to enforce the constraint ||Dφφφ ||L ≤ 1 such
as a gradient penalty [Gulrajani et al., 2017], has largely solved the instability issue of
GAN training.
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Another interesting explanation for why WGAN works is that the power of the discrim-
inator, or the test function Dφφφ , has been restrained. On the other hand, in the original
GAN case, over-fitting frequently happens, particularly at the beginning of training,
as neural network classifiers can easily fit almost any data, even that with random
labels as claimed by Zhang et al. [2017]. Since smoothness is typically lost when
over-fitting appears, it leads to poor approximations to the actual gradient and then a
bad-performing model. Indeed Kodali et al. [2017] also showed that the original GAN
training can be stabilised when the discriminator is also constrained to be 1-Lipschitz.

From the above two examples, we see that the energy approximation approach can
be problematic if not done in a correct way, therefore a direct gradient approximation to
the exact gradient might be preferred. There exists a rich literature on (non-parametric)
derivative estimation [De Brabanter et al., 2013; Fan and Gijbels, 1996; Ruppert and Wand,
1994; Stone, 1985; Zhou and Wolfe, 2000]; however, many of them require at least a noisy
version of logq at the sampled locations, which is intractable in our case. Instead, Singh
[1977] applied a kernel estimator directly to the first and higher order derivatives, and Sasaki
et al. [2015] improved upon this idea by performing kernel ridge regression directly on the
derivatives. Also Hyvärinen [2005] considered score matching methods for approximating
∇zzz logq(zzz|xxx), where follow-up papers [Sasaki et al., 2014; Strathmann et al., 2015] derived
kernel-based solutions and applied them to tasks such as approximate Bayesian computation
(ABC) [Beaumont et al., 2002]. The core idea of these methods is the use of integration by
parts to avoid evaluations of the actual gradients, making them applicable in our context.
In Chapter 6 we will further discuss gradient approximation techniques and propose new
gradient estimators for implicit models and wild approximate inference.

Remark (denoising auto-encoder as a score function estimator). It has been shown
in Alain and Bengio [2014]; Särelä and Valpola [2005] that denoising auto-encoders
(DAEs) [Vincent et al., 2008], once trained, can be used to compute the score function
approximately. Briefly speaking, a DAE learns to reconstruct a datum xxx from a corrupted
input x̃xx = xxx+σεεε,εεε ∼ N(000,I) by minimising the mean square error. Then the optimal
DAE can be used to approximate the score function as ∇xxx log p(xxx)≈ 1

σ2 (DAE∗(xxx)− xxx).
Sonderby et al. [2017] deployed this idea to train an implicit model for image super-
resolution, providing some promising results in some metrics. However applying similar
ideas to variational inference can be very expensive, because the estimation of ∇zzz logq(zzz|xxx)
is a sub-routine for VI which is repeatedly required.
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5.3.3 New optimisation objectives

In variational inference, the KL-divergence KL[q||p] is minimised to obtain the approximate
posterior. In general, the KL-divergence minimisation can be replaced by other optimisation-
based approximation methods, as long as with the guarantee of recovering the exact posterior
if Q contains it. However simply replacing the objective with some other f -divergence [Ali
and Silvey, 1966; Csiszár, 1963; Morimoto, 1963] does not simplify the problem as q has
an intractable density. Variational and adversarial techniques for estimating f -divergences
[Nguyen et al., 2007, 2010; Nowozin et al., 2016] do not apply either, as the exact posterior
is difficult to sample.

One promising direction is to replace the KL divergence with Stein discrepancy [Barbour,
1988; Gorham and Mackey, 2015; Stein, 1972], which has a special form that does not require
evaluating q nor sampling from p. Briefly speaking, Stein discrepancy involves a linear
functional operator Op, called Stein operator, on a set of test functions H = {h(zzz)} such
that Ep(zzz|xxx)[(Oph)(zzz)] = 0 for ∀h ∈H. Then the associated Stein discrepancy is defined as
S(q, p) = suph∈HEq[(Oph)(zzz)]. For continuous density functions, a generic Stein operator
derived from Stein’s identity [Stein, 1972, 1981] is (Oph)(zzz) = ∇zzz log p(zzz,xxx)h(zzz)+⟨∇,h(zzz)⟩,
for which Ep(zzz|xxx)[(Oph)(zzz)] = 0. Putting them together, we have the Stein discrepancy
(equipped with norm || · ||) [Gorham and Mackey, 2015]

S(q, p) = sup
h∈H
||Eq[∇zzz log p(zzz,xxx)h(zzz)+ ⟨∇,h(zzz)⟩]||, (5.19)

which only requires samples from q and the score function ∇zzz log p(zzz,xxx) and is thus indeed
tractable.

Very recently Stein’s method has been introduced to the approximate inference com-
munity. Ranganath et al. [2016a] defined H as parametric functions represented by neural
networks, and obtained an approximate posterior by solving minqS(q, p). The authors ap-
proximated the minimax optimisation with gradient descent in an analogous way to GAN
training [Goodfellow et al., 2014]. In contrast, analytic solution of the supremum in (5.19)
exists if H is defined as the unit ball in an RKHS, where Liu et al. [2016] and Chwialkowski
et al. [2016] termed the corresponding measure as the kernelised Stein discrepancy (KSD)
that will be further discussed in Chapter 6. Liu and Feng [2016] further developed an
approximate inference algorithm by directly minimising the KSD between the exact and
approximate posterior distributions.
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Fig. 5.2 A cartoon illustration of the amortised MCMC idea in Li et al. [2017].

5.3.4 Amortising stochastic dynamics

MCMC and particle-based approximate inference methods [Dai et al., 2016a; Liu and Wang,
2016], though very accurate, become inefficient when inference from multiple different
distributions is repeatedly required. As an example consider learning a (deep) generative
model, where fast (approximate) marginalisation of latent variables is desirable. Here we
consider amortised inference to learn an inference network to mimic a selected stochastic
dynamics. More precisely, we sample zzz ∼ q(zzz|xxx), simulate T -step stochastic dynamics to
obtain the updated particle zzzT , and update the q distribution to “catch-up” those updated
particles. For example, Wang and Liu [2016] used this idea to amortise a deterministic
dynamics called Stein variational gradient descent (SVGD) [Liu and Wang, 2016], where the
“catch-up” step is defined by deliberately chaining the gradients φφφ ← φφφ + εEq[∇φφφ zzz(zzzT − zzz)].
In Li et al. [2017] we extended this principle to MCMC methods and introduced different
update rules for the (implicit) q distribution. The theoretical intuition behind this approach
is illustrated in Figure 5.2. Since the MCMC “oracle” always improves the sample quality
in terms of approximating the target distribution, by following the MCMC dynamics, the q
distribution will also get improved, until the stage when zzzT has the same distribution as zzz
which means q = p. Similar intuition also applies to other deterministic dynamics as long as
they generate particles that are always approaching to the target distribution.

5.4 Application: meta-learning for approximate inference

Many inference algorithms discussed in this thesis, e.g. variational inference (with KL or
Rényi divergences) and sampling (importance sampling, SMC, MCMC, etc.), are designed as
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generic algorithms that can be directly applied to any integration problem. Can we automate
the design of inference algorithms that are tailored to specific types of machine learning tasks
(e.g. Bayesian neural network regression)? In this section we briefly discuss a meta-learning
[Bengio et al., 1992; Naik and Mammone, 1992; Schmidhuber, 1987; Thrun and Pratt, 1998]
approach towards this goal. The research scope of meta-learning is very broad, but in general
the idea is to train a learner on one or multiple tasks, in order to acquire common knowledge
on how to learn and generalise the learner to future tasks. Therefore meta-learning enables
an inference algorithm to exploit commonly shared dependencies in a class of densities (say
the posterior distribution of Bayesian neural network weights), and it is expected to produce
a better approximation to the exact posterior.

In approximate inference context we define a learner as an algorithm A : P→ Q that
maps the target distribution p ∈ P to an approximate distribution q ∈ Q. For example, the
classic variational inference algorithm can be rewritten as

AVI(p(zzz|xxx)) = argmax
q∈Q

Eq

[
log

p(xxx,zzz)
q(zzz)

]
. (5.20)

Also the T -step simulation of an MCMC procedure with kernel T and initial distribution
q0(zzz|xxx) is

AT,T,q0(p(zzz|xxx)) =
∫

TT (zzz|zzz′)q0(zzz′|xxx)dzzz′. (5.21)

Often these algorithms are approximated executed, e.g. for variational inference the maximi-
sation operator is approximated by T -step gradient ascent.

We consider meta-learning for approximate inference, which optimises A on a set of train-
ing densities {pn(zzz)}N

n=1, and generalises the learned algorithm A∗ to unseen distributions.
The training densities might come from a multi-task learning set-up, i.e. pn(zzz) = p(zzz|Dn)

where Dn is the dataset for task n. Then one can define A(p(zzz|D)) = qφφφ (zzz|D) with e.g. a
neural network, and then optimise the associated variational parameters φφφ on the datasets
D1, ...,DN . Further approximation techniques such as coresets [Huggins et al., 2016] and
inducing points [Snelson and Ghahramani, 2006] can also be utilised If the dataset Dn is
very big. In this case meta-learning for approximate inference algorithms can be viewed as
amortised inference on task level, therefore many of the recently developed techniques can
be deployed. But it might require the use of techniques discussed in previous sections, as
one might prefer the learned algorithm A to produce implicit posterior approximations to the
target densities.

In general the pn densities might be derived from different probabilistic models with
different observations and different latent variables, and the above neural network parameter-
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isation is very likely to be sub-optimal. Instead of directly parameterising the q distributions,
we propose learning an approximate inference algorithm Aφφφ based on optimisation and/or
sampling. Consider learning a Markov process for posterior inference as an example. By
parameterising Tn(zzz′n|zzzn) = Tφφφ (zzz′n|zzzn; pn) for all n = 1, ...,N, the sampler is learned by opti-
mising some meta-objective Lmeta on ATφφφ ,T,q0(pn(zzzn)) for all n = 1, ...,N. Thus the trained
transition kernel Tφφφ will have its stationary distribution close to the target pn, and/or it will
have fast convergence and low bias properties if Tφφφ (zzz′n|zzzn; pn) is implicitly defined by a
diffusion process with pn as the stationary distribution [Ma et al., 2015]. The design of the
meta-objective Lmeta should avoid evaluating the density of the approximate posterior as
an MCMC algorithm typically returns an implicit distribution. An initial experiment for
learning samplers is presented in Chapter 6.

5.5 Summary

We presented wild approximate inference as a new research area within approximate inference.
We established this area by investigating the fundamental question of what constitutes
tractable approximate inference, and discussed potential restrictions introduced by both
analytical approximate posteriors and conventional sampling methods. Then we provided
examples of implicit approximations, and briefly discussed four algorithmic options for
fitting them. Note that the recipes provided here are still mostly incomplete, and I must have
missed many creative solutions developed by other researchers very recently. Nevertheless,
it seems reasonable to believe that elucidating existing problems and pointing new research
directions would help the community develop better approximate inference methods, thus
leading to better Bayesian modelling.

In the next chapter, I will present one of our recent work that follows the gradient
approximation proposal for wild approximate inference. There we will propose a new
estimator of the score function ∇zzz logq(zzz|xxx), and evaluate its approximating accuracy by
considering applications in Bayesian deep learning.



Chapter 6

Gradient Estimators for Implicit Models

Modelling is fundamental to the success of technological innovations for artificial intelligence.
A powerful model learns a useful representation of the observations for a specified prediction
task, and generalises to unknown instances that follow similar generative mechanics. A well
established area of machine learning research focuses on developing prescribed probabilistic
models [Diggle and Gratton, 1984], where learning is based on evaluating the probability of
observations under the model. Implicit probabilistic models, on the other hand, are defined by
a stochastic procedure that allows for direct generation of samples, but not for the evaluation
of model probabilities. These are omnipresent in scientific and engineering research involving
data analysis, for instance ecology, climate science and geography, where simulators are used
to fit real-world observations to produce forecasting results.

Within the machine learning community, there is a recent interest in a specific type of
implicit models, generative adversarial networks (GANs) [Goodfellow et al., 2014], which
has been shown to be one of the most successful approaches to image generation [Arjovsky
et al., 2017; Berthelot et al., 2017; Radford et al., 2016]. Very recently, implicit distributions
have also been considered as approximate posterior distributions for Bayesian inference,
e.g. see discussions in the last chapter and recent papers including Huszár [2017]; Karaletsos
[2016]; Li et al. [2017]; Liu and Feng [2016]; Mescheder et al. [2017]; Shi et al. [2018];
Tran et al. [2017]; Wang and Liu [2016]. These examples demonstrate the superior flexibility
of implicit models, which provide highly expressive means of modelling complex data
structures.

Whilst prescribed probabilistic models can be learned by standard (approximate) maxi-
mum likelihood or Bayesian inference, implicit probabilistic models require substantially
more severe approximations due to the intractability of the model distribution. Many existing
approaches first approximate the model distribution or optimisation objective function and
then use those approximations to learn the associated parameters. However, such approxima-
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true loss

approx. loss approx. loss minima
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(a) approximate loss function

true gradient

approx. gradient
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(b) approximate gradients

Fig. 6.1 A comparison between the two approximation schemes. Since in practice the
optimiser only visits finite number of locations in the parameter space, it can lead to over-
fitting if the neural network based functional approximator is not carefully regularised, and
therefore the curvature information of the approximated loss can be very different from that
of the original loss (shown in (a)). On the other hand, the gradient approximation scheme (b)
can be more accurate since it only involves estimating the sensitivity of the loss function to
the parameters in a local region.

tion can lead to unstable training and poor results, where a prevalent example is the original
GAN framework [Goodfellow et al., 2014] that has been briefly sketched in Section 5.3.2.
Recent ideas to address this issue for GANs suggest that restricting the representational
power of the discriminator is effective in stabilising training [e.g. see Arjovsky et al., 2017;
Kodali et al., 2017]. However, such restrictions, if not carefully crafted, often introduce
undesirable biases, responsible for problems such as mode collapse in the context of GANs,
and uncertainty underestimation in variational inference methods [Turner and Sahani, 2011].

In the previous chapter a number of proposals for wild approximate inference are pre-
sented. Critically, we believe these techniques are extendable to learning implicit models,
and in this chapter we explore the direct gradient approximation idea as an alternative. A
visualisation of the two approximation schemes is provided in Figure 6.1. More specifically
we focus on approximating the score function, in which an accurate approximation of it
then allows the application of many well-studied algorithms, such as maximum likelihood,
maximum entropy estimation, variational inference and gradient-based MCMC, to implicit
models. Concretely, our contributions include:

• the Stein gradient estimator, a novel generalisation of the score matching estimator
[Hyvärinen, 2005], with both parametric and non-parametric versions;
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• a comparison of the proposed estimator with the score matching and the KDE plug-in
estimators on performing gradient-free MCMC, meta-learning of approximate posterior
samplers for Bayesian neural networks, and entropy based regularisation of GANs.

6.1 Learning implicit probabilistic models

Given a dataset D containing i.i.d. samples we would like to learn a probabilistic model p(xxx)
for the underlying data distribution pD(xxx). In the case of implicit models, p(xxx) is defined
by a generative process. For example, to generate images, one might define a generative
model p(xxx) that consists of sampling randomly a latent variable zzz∼ p0(zzz) and then defining
xxx = fθθθ (zzz). Here f is a function parametrised by θθθ , usually a deep neural network or a
simulator. We assume f to be differentiable w.r.t. θθθ . An extension to this scenario is presented
by conditional implicit models, where the addition of a supervision signal y, such as an image
label, allows us to define a conditional distribution p(xxx|y) implicitly by the transformation
xxx = fθθθ (zzz,y). A related methodology, wild approximate inference (Chapter 5) assumes a
tractable joint density p(xxx,zzz), but uses implicit proposal distributions to approximate an
intractable exact posterior p(zzz|xxx). Here the approximate posterior q(zzz|xxx) can likewise be
represented by a deep neural network, but also by a truncated Markov chain, such as that
given by Langevin dynamics with learnable step-size.

Whilst providing extreme flexibility and expressive power, the intractability of density
evaluation also brings serious optimisation issues for implicit models. This is because many
learning algorithms, e.g. maximum likelihood estimation (MLE), rely on minimising a dis-
tance/divergence/discrepancy measure D[p||pD], which often requires evaluating the model
density [c.f. Liu and Feng, 2016; Ranganath et al., 2016a]. Thus good approximations to the
optimisation procedure are the key to learning implicit models that can describe complex
data structure. In the context of GANs, the Jensen-Shannon divergence is approximated
by a variational lower-bound represented by a discriminator [Barber and Agakov, 2003;
Goodfellow et al., 2014]. Related work for wild variational inference [Huszár, 2017; Li
and Liu, 2016; Mescheder et al., 2017; Tran et al., 2017] uses a GAN-based technique
to construct a density ratio estimator for q/p0 [Mohamed and Lakshminarayanan, 2016;
Sugiyama et al., 2009, 2012; Uehara et al., 2016] and then approximates the KL-divergence
term in the variational lower-bound:

LVI(q) = Eq [log p(xxx|zzz)]−KL[qφφφ (zzz|xxx)||p0(zzz)]. (6.1)
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In addition, Li and Liu [2016] and Mescheder et al. [2017] exploit the additive structure
of the KL-divergence and suggest discriminating between q and an auxiliary distribution
that is close to q, making the density ratio estimation more accurate. Nevertheless all
these algorithms involve a minimax optimisation, and the current practice of gradient-based
optimisation is notoriously unstable.

The stabilisation of GAN training is itself a recent trend of related research [e.g. see Ar-
jovsky et al., 2017; Salimans et al., 2016]. However, as the gradient-based optimisation only
interacts with gradients, there is no need to use a discriminator if an accurate approximation
to the intractable gradients could be obtained. As an example, consider a variational inference
task with the approximate posterior defined as zzz∼ qφφφ (zzz|xxx)⇔ εεε ∼ π(εεε),zzz = fφφφ (εεε,xxx). Notice
that the variational lower-bound can be rewritten as

LVI(q) = Eq [log p(xxx,zzz)]+H[qφφφ (zzz|xxx)], (6.2)

the gradient of the variational parameters φφφ can be computed by a sum of the path gradient
of the first term (i.e. Eπ

[
∇f log p(xxx, f(εεε,xxx))T∇φφφ f(εεε,xxx)

]
) and the gradient of the entropy term

∇φφφH[q(zzz|xxx)]. Expanding the latter, we have

∇φφφH[qφφφ (zzz|xxx)] =−∇φφφEπ(εεε)[logqφφφ (fφφφ (εεε,xxx))]

=−Eπ(εεε)[∇φφφ logqφφφ (fφφφ (εεε,xxx))]

=−Eπ(εεε)[∇φφφ logqφφφ (zzz|xxx)|zzz=fφφφ (εεε,xxx)+∇φφφ fφφφ (εεε,xxx)∇f logqφφφ (fφφφ (εεε,xxx)|xxx)]

=−Eqφφφ (zzz|xxx)[∇φφφ logqφφφ (zzz|xxx)]−Eπ(εεε)[∇φφφ fφφφ (εεε,xxx)∇f logqφφφ (fφφφ (εεε,xxx)|xxx)],
(6.3)

in which the first term in the last line is zero [Roeder et al., 2017]. As we typically assume
the tractability of ∇φφφ f, an accurate approximation to ∇zzz logq(zzz|xxx) would remove the require-
ment of discriminators, speed-up the learning and obtain potentially a better model. Many
gradient approximation techniques exist [De Brabanter et al., 2013; Fan and Gijbels, 1996;
Stone, 1985; Zhou and Wolfe, 2000], and in particular, in the next section we will review
kernel-based methods such as kernel density estimation [Singh, 1977] and score matching
[Hyvärinen, 2005] in more detail, and motivate the main contribution of this chapter.



6.2 Gradient approximation with the Stein gradient estimator 123

6.2 Gradient approximation with the Stein gradient esti-
mator

We propose the Stein gradient estimator as a novel generalisation of the score match-
ing gradient estimator. Before presenting it we first set-up the notation. Column vec-
tors and matrices are boldfaced. The random variable under consideration is xxx ∈ X with
X = Rd×1 if not specifically mentioned. To avoid misleading notation we use the dis-
tribution q(xxx) to derive the gradient approximations for general cases. As Monte Carlo
methods are heavily used for implicit models, in the rest of the paper we mainly consider
approximating the gradient ggg(xxxk) := ∇xxxk logq(xxxk) for xxxk ∼ q(xxx),k = 1, ...,K. We use xi

j to
denote the jth element of the ith sample xxxi. We also denote the matrix form of the col-
lected gradients as G :=

(
∇xxx1 logq(xxx1), · · · ,∇xxxK logq(xxxK)

)T ∈ RK×d , and its approximation
Ĝ :=

(
ĝ(xxx1), · · · , ĝ(xxxK)

)T with ĝ(xxxk) = ∇xxxk log q̂(xxxk) for some q̂(xxx).

6.2.1 Stein gradient estimator: inverting Stein’s identity

We start from introducing Stein’s identity that was first developed for Gaussian random
variables [Stein, 1972, 1981] then extended to general cases [Gorham and Mackey, 2015;
Liu et al., 2016]. Let h : Rd×1→ Rd′×1 be a differentiable multivariate test function which
maps xxx to a column vector h(xxx) = [h1(xxx),h2(xxx), ...,hd′(xxx)]T. We further assume the boundary
condition for h:

q(xxx)h(xxx)|∂X = 000, or lim
xxx→∞∞∞

q(xxx)h(xxx) = 0 if X= Rd. (6.4)

This condition holds for almost any test function if q has sufficiently fast-decaying tails
(e.g. Gaussian tails). Now we introduce Stein’s identity [Gorham and Mackey, 2015; Liu
et al., 2016; Stein, 1981]

Eq[h(xxx)∇xxx logq(xxx)T +∇xxxh(xxx)] = 000, (6.5)

in which the gradient matrix term ∇xxxh(xxx) = (∇xxxh1(xxx), · · · ,∇xxxhd′(xxx))
T ∈Rd′×d. This identity

can be proved using integration by parts: for the ith row of the matrix h(xxx)∇xxx logq(xxx)T, we
have

Eq[hi(xxx)∇xxx logq(xxx)T] =
∫

hi(xxx)∇xxxq(xxx)Tdxxx

= q(xxx)hi(xxx)|∂X−
∫

q(xxx)∇xxxhi(xxx)Tdxxx

=−Eq[∇xxxhi(xxx)T].

(6.6)
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Observing that the gradient term ∇xxx logq(xxx) of interest appears in Stein’s identity (6.5), we
propose the Stein gradient estimator by inverting Stein’s identity. As the expectation in (6.5)
is intractable, we further approximate the above with Monte Carlo (MC):

1
K

K

∑
k=1
−h(xxxk)∇xxxk logq(xxxk)T + err =

1
K

K

∑
k=1

∇xxxkh(xxxk), xxxk ∼ q(xxxk), (6.7)

with err ∈Rd′×d the random error due to MC approximation, which has mean 000 and vanishes
as K→+∞. Now by temporarily denoting

H =
(
h(xxx1), · · · ,h(xxxK)

)
∈ Rd′×K, ∇xxxh =

1
K

K

∑
k=1

∇xxxkh(xxxk) ∈ Rd′×d,

equation (6.7) can be rewritten as

− 1
K

HG+ err = ∇xxxh.

Thus we consider a ridge regression method (i.e. adding an ℓ2 regulariser) to estimate G:

ĜStein
V := argmin

Ĝ∈RK×d
||∇xxxh+

1
K

HĜ||2F +
η

K2 ||Ĝ||
2
F , (6.8)

with || · ||F the Frobenius norm of a matrix and η ≥ 0. Simple calculation shows that

ĜStein
V =−(K+ηIII)−1⟨∇,K⟩, (6.9)

where
K := HTH, Ki j =K(xxxi,xxx j) := h(xxxi)Th(xxx j),

⟨∇,K⟩ := KHT
∇xxxh, ⟨∇,K⟩i j =

K

∑
k=1

∇xk
j
K(xxxi,xxxk).

One can show that the RBF kernel satisfies Stein’s identity [Liu et al., 2016]. In this case
h(xxx)=K(xxx, ·),d′=+∞ and by the reproducing kernel property [Berlinet and Thomas-Agnan,
2011], h(xxx)Th(xxx′) = ⟨K(xxx, ·),K(xxx′, ·)⟩H =K(xxx,xxx′).
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6.2.2 Stein gradient estimator minimises the kernelised Stein discrep-
ancy

In this section we derive the Stein gradient estimator again, but from a divergence/discrepancy
minimisation perspective. Stein’s method also provides a tool for checking if two distributions
q(xxx) and q̂(xxx) are identical. If the test function set H (containing one-dimensional test
functions h ∈ H) is sufficiently rich, then one can define a Stein discrepancy measure
(equipped with norm || · ||) by

S(q, q̂) := sup
h∈H
||Eq [∇xxx log q̂(xxx)h(xxx)+∇xxxh(xxx)] ||, (6.10)

see Gorham and Mackey [2015] for an example derivation. The definition can be generalised
to multi-dimension test functions h(xxx), and in particular, when H is defined as a unit ball
in an RKHS induced by a kernel K(xxx, ·) and || · || is the ℓ2 norm, Liu et al. [2016] and
Chwialkowski et al. [2016] showed that the supremum in (6.10) can be analytically obtained
as (recall ggg(xxx) = ∇xxx logq(xxx), ĝgg(xxx) = ∇xxx log q̂(xxx)):

S2(q, q̂) = Exxx,xxx′∼q
[
(ĝgg(xxx)−ggg(xxx))TK(xxx,xxx′)(ĝgg(xxx′)−ggg(xxx′))

]
, (6.11)

which is also named the kernelised Stein discrepancy (KSD). Chwialkowski et al. [2016]
showed that for C0-universal kernels satisfying the boundary condition, KSD is indeed a dis-
crepancy measure: S2(q, q̂) = 0⇔ q = q̂. Gorham and Mackey [2017] further characterised
the power of KSD on detecting non-convergence cases. Furthermore, if the kernel is twice
differentiable, then using the same technique as to derive (6.16) one can compute KSD by
(with Kxxxxxx′ shorthand for K(xxx,xxx′)):

S2(q, q̂) = Exxx,xxx′∼q
[
ĝgg(xxx)TKxxxxxx′ ĝgg(xxx

′)+ ĝgg(xxx)T
∇xxx′Kxxxxxx′+∇xxxK

T
xxxxxx′ ĝgg(xxx

′)+Tr(∇xxx,xxx′Kxxxxxx′)
]
.

(6.12)
In practice KSD is estimated with samples {xxxk}K

k=1 ∼ q, and simple derivations show that
the V-statistic of KSD can be reformulated as S2

V (q, q̂) =
1

K2 Tr(ĜTKĜ+ 2ĜT⟨∇,K⟩)+C.
Thus the l2 error in (6.8) is equivalent to the V-statistic of KSD if h(xxx) =K(xxx, ·), and we
have the following:

Theorem 6.1. ĜStein
V is the solution of the following KSD V-statistic minimisation problem

ĜStein
V = argmin

Ĝ∈RK×d
S2

V (q, q̂)+
η

K2 ||Ĝ||
2
F . (6.13)
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One can also minimise the U-statistic of KSD to obtain gradient approximations, and a
full derivation of which, including the optimal solution, can be found in Appendix A.3. In
experiments we use V-statistic solutions and leave comparisons between these methods to
future work.

6.2.3 Comparisons to existing kernel-based gradient estimators

There exist other gradient estimators that do not require explicit evaluations of ∇xxx logq(xxx),
e.g. the denoising auto-encoder (DAE) [Alain and Bengio, 2014; Vincent, 2011; Vincent et al.,
2008] which, with infinitesimal noise, also provides an estimate of ∇xxx logq(xxx) at convergence.
However, applying such gradient estimators result in a double-loop optimisation procedure
since the gradient approximation is repeatedly required for fitting implicit distributions,
which can be significantly slower than the proposed approach. Therefore we focus on “quick
and dirty” approximations and only include comparisons to kernel-based gradient estimators
in the following.

KDE gradient estimator: plug-in estimator with density estimation

A naive approach for gradient approximation would first estimate the intractable den-
sity q̂(xxx) ≈ q(xxx) (up to a constant), then approximate the exact gradient by ∇xxx log q̂(xxx) ≈
∇xxx logq(xxx). Specifically, Singh [1977] considered kernel density estimation (KDE) q̂(xxx) =
1
K ∑

K
k=1K(xxx,xxxk)×C., then differentiated through the KDE estimate to obtain the gradient

estimator:

ĜKDE
i j =

K

∑
k=1

∇xi
j
K(xxxi,xxxk)/

K

∑
k=1

K(xxxi,xxxk). (6.14)

Interestingly for translation invariant kernels K(xxx,xxx′)=K(xxx−xxx′) the KDE gradient estimator
(6.14) can be rewritten as ĜKDE =−diag(K111)−1 ⟨∇,K⟩. Inspecting and comparing it with
the Stein gradient estimator (6.9), one might notice that the Stein method uses the full
kernel matrix as the pre-conditioner, while the KDE method computes an averaged “kernel
similarity” for the denominator. We conjecture that this difference is key to the superior
performance of the Stein gradient estimator when compared to the KDE gradient estimator
(see later experiments). The KDE method only collects the similarity information between
xxxk and other samples xxx j to form an estimate of ∇xxxk logq(xxxk), whereas for the Stein gradient
estimator, the kernel similarity between xxxi and xxx j for all i, j ̸= k are also incorporated. Thus
it is reasonable to conjecture that the Stein method can be more sample efficient, which also
implies higher accuracy when the same number of samples are collected.
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Score matching gradient estimator: minimising MSE

The KDE gradient estimator performs indirect approximation of the gradient via density
estimation, which can be inaccurate. An alternative approach directly approximates the
gradient ∇xxx logq(xxx) by minimising the expected ℓ2 error w.r.t. the approximation ĝgg(xxx) =
(ĝ1(xxx), · · · , ĝd(xxx))

T:
F(ĝgg) := Eq

[
||ĝgg(xxx)−∇xxx logq(xxx)||22

]
. (6.15)

It has been shown in Hyvärinen [2005] that this objective can be reformulated as

F(ĝgg) = Eq
[
||ĝgg(xxx)||22 +2⟨∇, ĝgg(xxx)⟩

]
+C, ⟨∇, ĝgg(xxx)⟩=

d

∑
j=1

∇x j ĝ j(xxx). (6.16)

The key insight here is again the usage of integration by parts: after expanding the ℓ2 loss
objective, the cross term can be rewritten as Eq

[
ĝgg(xxx)T∇xxx logq(xxx)

]
= −Eq [⟨∇, ĝgg(xxx)⟩] , if

assuming the boundary condition (6.4) for ĝgg (see (6.6)). The optimum of (6.16) is referred as
the score matching gradient estimator. The ℓ2 objective (6.15) is also called Fisher divergence
[Johnson, 2004] which is a special case of KSD (6.11) by selecting K(xxx,xxx′) = δxxx=xxx′ . Thus
the Stein gradient estimator can be viewed as a generalisation of the score matching estimator.

The comparison between the two estimators is more complicated. Certainly by the
Cauchy-Schwarz inequality the Fisher divergence is stronger than KSD in terms of detecting
convergence [Liu et al., 2016]. However it is difficult to perform direct gradient estimation
by minimising the Fisher divergence, since (i) the Dirac kernel is non-differentiable so that it
is impossible to rewrite the divergence in a similar form to (6.12), and (ii) the transformation
to (6.16) involves computing ∇xxxĝgg(xxx). So one needs to propose a parametric approximation
to G and then optimise the associated parameters accordingly, and indeed Sasaki et al. [2014]
and Strathmann et al. [2015] derived a parametric solution by first approximating the log
density up to a constant as log q̂(xxx) := ∑

K
k=1 akK(xxx,xxxk)+C, then minimising (6.16) to obtain

the coefficients âscore
k and constructing the gradient estimator as

Ĝscore
i· =

K

∑
k=1

âscore
k ∇xxxiK(xxxi,xxxk). (6.17)

Therefore the usage of parametric estimation can potentially remove the advantage of using
a stronger divergence. Conversely, the proposed Stein gradient estimator (6.9) is non-
parametric in that it directly optimises over functions evaluated at locations {xxxk}K

k=1. This
brings in two key advantages over the score matching gradient estimator: (i) it removes
the approximation error due to the use of restricted family of parametric approximations
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and thus can be potentially more accurate; (ii) it has a much simpler and ubiquitous form
that applies to any kernel satisfying the boundary condition, whereas the score matching
estimator requires tedious derivations for different kernels repeatedly (see Appendix A.3).

In terms of computation speed, since in most of the cases the computation of the score
matching gradient estimator also involves kernel matrix inversions, both estimators are of the
same order of complexity, which is O(K3 +K2d) (kernel matrix computation plus inversion).
Low-rank approximations such as the Nyström method [Smola and Schökopf, 2000; Williams
and Seeger, 2001] can enable speed-up, but this is not investigated in the paper. Again we
note here that kernel-based gradient estimators can still be faster than e.g. the DAE estimator
since no double-loop optimisation is required. Certainly it is possible to apply early-stopping
for the inner-loop DAE fitting. However the resulting gradient approximation might be very
poor, which leads to unstable training and poorly fitted implicit distributions.

Remark (score matching methods). As a side note, score matching can also be used to
learn the parameters of an unnormalised density. In this case the target distribution q
would be the data distribution and q̂ is often a Boltzmann distribution with intractable
partition function. As a parameter estimation technique, score matching is also related to
contrastive divergence [Hinton, 2002], pseudo likelihood estimation [Hyvärinen, 2006],
and denoising auto-encoders [Vincent, 2011]. Generalisations of score matching methods
are also presented in [Lyu, 2009; Marlin et al., 2010].

6.2.4 Adding predictive power

Though providing potentially more accurate approximations, the non-parametric estimator
(6.9) has no predictive power as described so far. Crucially, many tasks in machine learning
require predicting gradient functions at samples drawn from distributions other than q, for
example, in MLE q(xxx) corresponds to the model distribution which is learned using samples
from the data distribution instead. To address this issue, we derive two predictive estimators,
one generalised from the non-parametric estimator and the other minimises KSD using
parametric approximations.

Predictions using the non-parametric estimator. Let us consider an unseen datum y.
If y is sampled from q, then one can also apply the non-parametric estimator (6.9) for
gradient approximation, given the observed data X = {xxx1, ...,xxxK} ∼ q. Concretely, if writing
ĝgg(y) ≈ ∇y logq(y) ∈ Rd×1 then the non-parametric Stein gradient estimator computed on
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X∪{y} is[
ĝgg(y)T

Ĝ

]
=−(K∗+ηIII)−1

[
∇yK(y,y)+∑

K
k=1 ∇xxxkK(y,xxxk)

⟨∇,K⟩+∇yK(·,y)

]
, K∗ =

[
Kyy KyX
KXy K

]
,

with ∇yK(·,y) denoting a K×d matrix with rows ∇yK(xxxk,y), and ∇yK(y,y) only differen-
tiates through the second argument. Thus by simple matrix calculations, we have:

∇y logq(y)T ≈−
(
Kyy +η−KyX(K+ηI)−1KXy

)−1(
∇yK(y,y)+

K

∑
k=1

∇xxxkK(y,xxxk)+KyXĜStein
V −KyX(K+ηI)−1

∇yK(·,y)

)
.

(6.18)
For translation invariant kernels, typically ∇yK(y,y) = 000, and more conveniently,

∇xxxkK(y,xxxk) = ∇xxxk(xxxk−y)∇(xxxk−y)K(xxxk−y) =−∇yK(xxxk,y).

Thus equation (6.18) can be further simplified to (with column vector 111 ∈ RK×1)

∇y logq(y)T ≈−
(
Kyy +η−KyX(K+ηI)−1KXy

)−1(
KyXĜStein

V −
(
KyX(K+ηI)−1 +111T)

∇yK(·,y)
)
.

(6.19)

In practice one would store the computed gradient ĜStein
V , the kernel matrix inverse (K+

ηI)−1 and η as the “parameters” of the predictive estimator. For a new observation y∼ p in
general, one can “pretend” y is a sample from q and apply the above estimator as well. The
approximation quality depends on the similarity between q and p, and we conjecture here
that this similarity measure, if can be described, is closely related to the KSD.

Fitting a parametric estimator using KSD. The non-parametric predictive estimator
could be computationally demanding. Setting aside the cost of fitting the “parameters”, in
prediction the time complexity for the non-parametric estimator is O(K2 +Kd). Also storing
the “parameters” needs O(Kd) memory for ĜStein

V and (K+ηI)−1. These costs make the
non-parametric estimator undesirable for high-dimensional data, since in order to obtain
accurate predictions it often requires K scaling with d as well. To address this, one can also
minimise the KSD using parametric approximations, in a similar way as to derive the score
matching estimator in Section 6.2.3. More precisely, we define a parametric approximation
in a similar fashion as (6.17), and in Appendix A.3 we show that if the RBF kernel is used for
both the KSD and the parametric approximation, then the linear coefficients aaa = (a1, ...,aK)

T
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can be calculated analytically: âaaStein
V = (ΛΛΛ+ηI)−1bbb, where

ΛΛΛ =X⊙ (KKK)+K(K⊙X)K− ((KK)⊙X)K−K((KK)⊙X),

bbb =(Kdiag(X)K+(KK)⊙X−K(K⊙X)− (K⊙X)K)111,
(6.20)

with ⊙ denoting element-wise product, and X denoting the “gram matrix” that has elements
Xi j = (xxxi)Txxx j. Then for an unseen observation y ∼ p the gradient approximation returns
∇y logq(y)≈ (âaaStein

V )T∇yK(·,y). In this case one only maintains the linear coefficients âaaStein
V

and computes a linear combination in prediction, which takes O(K) memory and O(Kd) time
and therefore is computationally cheaper than the non-parametric prediction model (6.18).

6.3 Applications

We present some case studies that apply the gradient estimators to implicit models. Detailed
settings (architecture, learning rate, etc.) are presented in Appendix A.3. Implementation is
released at https://github.com/YingzhenLi/SteinGrad.

6.3.1 Synthetic example: Hamiltonian flow with approximate gradi-
ents

We first consider a simple synthetic example to demonstrate the accuracy of the proposed
gradient estimator. More precisely we consider the kernel induced Hamiltonian flow (not
an exact sampler) [Strathmann et al., 2015] on a 2-dimensional banana-shaped object:
xxx ∼ B(xxx;b = 0.03,v = 100) ⇔ x1 ∼ N(x1;0,v),x2 = ε + b(x2

1 − v),ε ∼ N(ε;0,1). The
approximate Hamiltonian flow is constructed using the same operator as in Hamiltonian
Monte Carlo (HMC) [Duane et al., 1987; Neal, 2011], except that the exact score function
∇xxx logB(xxx) is replaced by the approximate gradients. We still use the exact target density
to compute the rejection step as we mainly focus on testing the accuracy of the gradient
estimators. We test both versions of the predictive Stein gradient estimator (see Section 6.2.4)
since we require the particles of parallel chains to be independent with each other. We fit the
gradient estimators on K = 200 training datapoints from the target density. The bandwidth
of the RBF kernel is computed by the median heuristic and scaled up by a scalar between
[1,5]. All three methods are simulated for T = 2,000 iterations, they share the same initial
locations that are constructed by target distribution samples plus Gaussian noises of standard
deviation 2.0, and the results are averaged over 200 parallel chains.

https://github.com/YingzhenLi/SteinGrad
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Fig. 6.2 Kernel induced Hamiltonian flow compared with HMC. Top: samples generated
from the dynamics, training data (in cyan), an the trajectory of a particle for T = 1 to 200
starting at the star location (in yellow). Bottom: statistics computed during simulations. See
main text for details.

We visualise the samples and some MCMC statistics in Figure 6.2. In general all the
resulting Hamiltonian flows are HMC-like, which give us the confidence that the gradient
estimators extrapolate reasonably well at unseen locations that are close to the training data.
However all of these methods have trouble exploring the extremes, because at those locations
there are very few or even no training data-points. Indeed we found it necessary to use
large (but not too large) bandwidths, in order to both allow exploration of those extremes,
and ensure that the corresponding test function is not too smooth. In terms of quantitative
metrics, the acceptance rates are reasonably high for all the gradient estimators, and the KSD
estimates (across chains) as a measure of sample quality are also close to that computed
on HMC samples. The returned estimates of E[x1] are close to zero which is the ground
true value. We found that the non-parametric Stein gradient estimator is more sensitive to
hyper-parameters of the dynamics, e.g. the stepsize of each HMC step. We believe a careful
selection of the kernel (e.g. those with long tails) and a better search for the hyper-parameters
(for both the kernel and the dynamics) can further improve the sample quality and the chain
mixing time, but this is not investigated here.

6.3.2 Meta-learning of approximate posterior samplers for Bayesian
NNs

One of the recent focuses on meta-learning has been on learning optimisers for training
deep neural networks, e.g. see Andrychowicz et al. [2016]; Li and Malik [2016]. Could
analogous goals be achieved for approximate inference? In this section we attempt to learn
an approximate posterior sampler for Bayesian neural networks (Bayesian NNs, BNNs) that
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generalises to unseen datasets and architectures, and we refer to Section 5.4 for a motivation
of this approach.

In a nutshell, we consider a binary classification task: p(y = 1|xxx,θθθ) = sigmoid(NNθθθ (xxx)),
p0(θθθ) =N(θθθ ;000,I). After observing the training data D= {(xxxn,yn)}N

n=1, we first obtain the
approximate posterior qφφφ (θθθ)≈ p(θθθ |D) ∝ p0(θθθ)∏

N
n=1 p(yn|xxxn,θθθ), then approximate the pre-

dictive distribution for a new observation as p(y∗= 1|xxx∗,D)≈ 1
K ∑

K
k=1 p(y∗= 1|xxx∗,θθθ k),θθθ k ∼

qφφφ (θθθ). In this task we define an implicit approximate posterior distribution qφφφ (θθθ) as the fol-
lowing stochastic RNN θθθ t+1 = f(θθθ t ,∇t ,εεε t): given the current location θθθ t and the mini-batch
data {(xxxm,ym)}M

m=1, the update for the next step is

θθθ t+1 = θθθ t +ζ ∆φφφ (θθθ t ,∇t)+σσσφφφ (θθθ t ,∇t)⊙ εεε t , εεε t ∼N(εεε;000,I),

∇t = ∇θθθ t

[
N
M

M

∑
m=1

log p(ym|xxxm,θθθ t)+ log p0(θθθ t)

]
.

(6.21)

The coordinates of the noise standard deviation σσσφφφ (θθθ t ,∇t) and the moving direction ∆φφφ (θθθ t ,∇t)

are parametrised by a coordinate-wise neural network, i.e.

σσσφφφ (θθθ t ,∇t) = [σσσφφφ (θθθ t(1),∇t(1)), ...,σσσφφφ (θθθ t(d),∇t(d))]T

with θθθ t(i) denoting the ith dimension of vector θθθ t (similarly for ∇t(i) and ∆φφφ (θθθ t ,∇t)). If
properly trained, this neural network will learn the best combination of the current location
and gradient information, and produce approximate posterior samples efficiently on different
probabilistic modelling tasks.

We propose using the variational inference objective (6.2) computed on the samples {θθθ k
t }

to learn the variational parameters φφφ . More specifically, we simulate the approximate sampler
for T = 10 transitions and sum over the variational lower-bounds computed on the samples
of every step. This gives the maximisation objective

L(φφφ) =
T

∑
t=1

LVI(qt),

with qt(θθθ) as the marginal distribution of θθθ t (therefore depends on φφφ ). In practice the
variational lower-bound LVI(qt) is further approximated by Monte Carlo and data sub-
sampling:

LVI(qt)≈
N

KM

M

∑
m=1

K

∑
k=1

log p(ym|xxxm,θθθ
k
t )+ log p0(θθθ

k
t )− logqt(θθθ

k
t ).
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model +

(a) SGLD

model NN

(b) NN-based approx. sampler

Fig. 6.3 Comparing the computation graphs of the two samplers. SGLD can be viewed as
stochastic gradient descent plus properly scaled Gaussian noise. Instead of using the “plus”
operation, the NN-based sampler combine the three inputs with a neural network, and the
parameters φφφ are then trained by the method described in the main text.

Since in this case the gradient of the log joint distribution can be computed analytically,
we only approximate the gradient of the entropy term H[q] as in (6.3), with the exact score
function replaced by the presented gradient estimators.

We briefly describe the test protocol. We take from the UCI repository [Lichman, 2013]
six binary classification datasets (australian, breast, crabs, ionosphere, pima, sonar), train an
approximate sampler on crabs with a small neural network that has one 20-unit hidden layer
with ReLU activation, and generalise to the remaining datasets with a bigger network that
has 50 hidden units and uses sigmoid activation. We use ionosphere as the validation set to
tune ζ . The remaining 4 datasets are further split into 40% training subset for simulating
samples from the approximate sampler, and 60% test subsets for evaluating the sampler’s
performance. Besides the gradient estimators we also compare with two baselines: an
approximate posterior sampler trained by maximum a posteriori (MAP), and stochastic
gradient Langevin dynamics (SGLD) [Welling and Teh, 2011] evaluated on the test datasets
directly. A comparison between SGLD and the proposed neural network based approximate
sampler is visualised in Figure 6.3.

For architecture details, we use a one hidden layer neural network with 20 hidden units
to compute the noise standard deviation σσσφφφ (θθθ t ,∇t) and the moving direction ∆φφφ (θθθ t ,∇t)

of the next update. Softplus non-linearity is used for the hidden layer and to compute
the noise variance we apply ReLU activation to ensure non-negativity. The step-size ζ is
selected as 10−5 which is tuned on the KDE approach. For SGLD step-size 10−5 also returns
overall good results.1 We report the results using the non-parametric Stein gradient estimator
as we found it works better than the parametric version. The RBF kernel is applied for

1We note here that the results can be further improved with carefully tuned learning rate for both SGLD and
the NN-based samplers, but here we are mainly interested in the same step-size set-up in order to compare the
velocity of the particles defined by the underlying dynamics of the samplers.
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Fig. 6.4 Generalisation performances for trained approximate posterior samplers.

gradient estimation, with the hyper-parameters determined by a grid search on the bandwidth
σ2 ∈ {0.25,1.0,4.0,10.0,median trick} and η ∈ {0.1,0.5,1.0,2.0}.

Figure 6.4 presents the (negative) test log-likelihood (LL), classification error, and an
estimate of the KSD U-statistic S2

U(p(θθθ |D),q(θθθ)) (with data sub-sampling) over 5 splits of
each test dataset.2 The Stein approach performs equally well or a little better than SGLD
in terms of test-LL and test error. The KDE method is slightly worse and is close to MAP,
indicating that the KDE estimator does not provide a very informative gradient for the
entropy term. The score matching estimator method produces the worst results among the
trained samplers even after carefully tuning the bandwidth and the regularisation parameter
η , although the difference is not significant. Future work should investigate the usage of
advanced recurrent neural networks such as an LSTM [Hochreiter and Schmidhuber, 1997],
which is expected to return better performance.

6.3.3 Towards addressing mode collapse in GANs using entropy regu-
larisation

GANs are notoriously difficult to train in practice. Besides the instability of gradient-based
minimax optimisation which has been partially addressed by many recent proposals [Arjovsky
et al., 2017; Berthelot et al., 2017; Salimans et al., 2016], they also suffer from mode collapse.
We propose adding an entropy regulariser to the GAN generator loss. Concretely, assume the

2After conference publication (see publication page) I fixed a few issues of the previous implementation
(mainly for the score matching estimator) and re-run the experiments, which is reported in this thesis.
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generative model pθθθ (xxx) is implicitly defined by xxx = fθθθ (zzz),zzz ∼ p0(zzz), then the generator’s
loss is defined by

J̃gen(θθθ) = Jgen(θθθ)−αH[pθθθ (xxx)], (6.22)

where Jgen(θθθ) is the original loss function for the generator from any GAN algorithm and α

is a hyper-parameter. In practice the gradient of (6.22) is estimated using Monte Carlo.
As an illustrating example, in the following we consider the very recently proposed

boundary equilibrium GAN (BEGAN) [Berthelot et al., 2017] approach. In BEGAN the
discriminator is defined as an auto-encoder Dϕϕϕ(xxx) that reconstructs the input xxx. After
selecting a ratio parameter γ > 0, a control rate β0 initialised at 0, and a “learning rate”
λ > 0 for the control rate, the loss functions for the generator xxx = fθθθ (zzz),zzz∼ p0(zzz) and the
discriminator are:

J(xxx) = ||Dϕϕϕ(xxx)− xxx||, || · ||= || · ||22 or || · ||1,
Jgen(θθθ ;ϕϕϕ) = J(fθθθ (zzz)), zzz∼ p0(zzz)

Jdis(ϕϕϕ;θθθ) = J(xxx)−βtJgen(θθθ ;ϕϕϕ), xxx∼D

βt+1 = βt +λ (γJ(xxx)−J(fθθθ (zzz))).

(6.23)

The main idea behind BEGAN is that, as the reconstruction loss J(·) is approximately Gaus-
sian distributed, with γ = 1 the discriminator loss Jdis is (approximately) proportional to the
Wasserstein distance between loss distributions induced by the data distribution pD(xxx) and the
generator p(xxx). In practice it is beneficial to maintain the equilibrium γEpD [J(xxx)] =Ep [J(xxx)]
through the optimisation procedure described in (6.23) that is motivated by proportional con-
trol theory. This approach effectively stabilises training, however it suffers from catastrophic
mode collapse problem (see the left most panel in Figure 6.5).

We empirically investigate the entropy regularisation idea on BEGAN using (continuous)
MNIST. As described before, we simply subtract an entropy term from the generator’s loss
function, i.e. with K samples zzz1, ...,zzzk ∼ p0(zzz),

J̃gen(θθθ ;ϕϕϕ) =
1
K

K

∑
k=1

J(fθθθ (zzz
k))+α

1
K

K

∑
k=1

log p(fθθθ (zzz
k)), (6.24)

where the rest of the optimisation objectives remains as in (6.23). This procedure would
maintain the equilibrium γEpD [J(xxx)] = Ep [J(xxx)]−αH[p]. We approximate the gradient
∇θθθH[p] using the estimators presented above. For the purpose of updating the control rate βt

two strategies are considered to approximate the contribution of the entropy term. The first
proposal considers a plug-in estimate of the entropy term with a KDE estimate of p(xxx), which
is consistent with the KDE estimator but not necessary with the other two (as they use kernels
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when representing log p(xxx) or ∇xxx log p(xxx)). The second one uses a proxy of the entropy loss
−H̃[p] = 1

K ∑
K
k=1 ∇xxxk log p̂(xxxk)Txxxk with ∇xxxk log p̂(xxxk) is the approximate gradient obtained

by the estimators. It is the surrogate loss used to (approximately) compute ∇φφφH[p]:

∇φφφH[p]≈ ∇φφφ H̃[p] =
1
K

K

∑
k=1

∇xxxk log p̂(xxxk)T
∇φφφ xxxk.

We compare the non-parametric V-statistic Stein gradient estimator to both KDE and
score matching estimators. We use a convolutional generative network and a convolutional
auto-encoder and select the hyper-parameters of BEGAN γ ∈ {0.3,0.5,0.7}, α ∈ [0,1]
and λ = 0.001. The Epanechnikov kernel K(xxx,xxx′) := 1

d ∑
d
j=1(1− (x j − x′j)

2) is used as
the pixel values lie in a unit interval (see Appendix A.3 for the expression of the score
matching estimator), and to ensure the boundary condition we clip the pixel values into range
[10−8,1−10−8]. Readers are referred to Appendix A.3 for a detailed experimental set-up.

The generated images are visualised in Figure 6.5. BEGAN without entropy regularisation
fails to generate diverse samples even when trained with learning rate decay. The other three
images clearly demonstrate the benefit of the entropy regularisation technique, with the Stein
approach obtaining the highest diversity without compromising visual quality.

We further consider four metrics to assess the trained models quantitatively. First 500
samples are generated for each trained model, then we compute their nearest neighbours in
the training set using ℓ1 distance, and obtain a probability vector p by averaging over these
neighbour images’ label vectors. In Figure 6.6 we depict the entropy of p (top left), averaged
ℓ1 distances to the nearest neighbour (top right), and the difference between the largest and
smallest elements in p (bottom right). The error bars are obtained by 5 independent runs.
These results demonstrate that the Stein approach performs significantly better than the
other two, in that it learns a better generative model not only faster but also in a more stable
way. Interestingly the KDE approach achieves the lowest average ℓ1 distance to nearest
neighbours, possibly because it tends to memorise training examples. We next train a fully
connected network π(y|xxx) on MNIST that achieves 98.16% text accuracy, and compute on
the generated images an empirical estimate of the inception score [Salimans et al., 2016]
Ep(xxx)[KL[π(y|xxx)||π(y)]] with π(y) =Ep(xxx)[π(y|xxx)] (bottom left panel). High inception score
indicates that the generate images tend to be both realistic looking and diverse, and again the
Stein approach out-performs the others on this metric by a large margin.

Concerning computation speed, all the three methods are of the same order: 10.20s/epoch
for KDE, 10.85s/epoch for Score, and 10.30s/epoch for Stein.3 This is because K < d
(in the experiments K = 100 and d = 784) so that the complexity terms are dominated by

3All the methods are timed on a machine with an NVIDIA GeForce GTX TITAN X GPU.
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BEGAN BEGAN+KDE BEGAN+Score BEGAN+Stein

Fig. 6.5 Visualisation of generated images from trained BEGAN models.

Fig. 6.6 Quantitative evaluation on entropy regularised BEGAN. The higher the better for the
LHS panels and the other way around for the RHS ones. See main text for details.

kernel computations (O(K2d)) required by all the three methods. Also for a comparison, the
original BEGAN method without entropy regularisation runs for 9.05s/epoch. Therefore
the main computation cost is dominated by the optimisation of the discriminator/generator,
and the proposed entropy regularisation can be applied to many GAN frameworks with little
computational burden.

6.4 Summary

We have presented the Stein gradient estimator as a novel generalisation to the score matching
gradient estimator. With a focus on learning implicit models, we have empirically demon-
strated the efficacy of the proposed estimator by showing state-of-the-art results on three
canonical learning tasks: approximating gradient-free MCMC, meta-learning for approx-
imate posterior samplers, and unsupervised learning for image generation. Future work
will expand the understanding of gradient estimators in both theoretical and practical sides.
Theoretical development will compare both the V-statistic and U-statistic Stein gradient
estimators. Practical work will improve the sample efficiency of kernel estimators in high
dimensions and develop fast yet accurate approximations to the matrix inversion part. Finally
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follow-up work will study the generalisation of the Stein gradient estimator to non-kernel
settings and discrete distributions.

[ ] \

Here comes the end of the second theme of the thesis, where we have discussed prin-
ciples of approximate inference algorithm design (Chapter 5) and presented one concrete
example (Chapter 6) on learning wild approximations. Readers might have noticed that wild
approximate inference is still a very new research direction: many related papers in citation
are freshly baked within a year of this thesis submission, and the proposals in development
are inspired by recent success in machine learning and deep learning. Thus both theoretical
analyses and extensive comparisons to traditional approaches are much in need, which will
then help identify the ideal application scenarios and possibly potential pitfalls of the method.

The presented two themes have substantial differences. In the next chapter, which
concludes the thesis, I will summarise the contributions of the thesis to the approximate
inference community, and discuss the connections and comparisons between the two themes.
Expositions of important research questions will also be provided, and hopefully this will
serve as a principled guide for future development of approximate inference algorithms.



Chapter 7

Conclusions and Future Work

Approximate inference is a huge subject, which studies both the structure of the approximate
distribution, and the optimisation algorithms used to fit them. The thesis has mainly investi-
gated the latter part, presenting a number of new approximate inference algorithms and their
applications to Bayesian deep learning tasks. A summary of the contributions is provided in
Section 7.1, where I will also discuss comparisons and connections between the two thesis
themes. Much work is still required to enable generic q distributions to be fitted accurately
and efficiently, and in Section 7.2 I will briefly provide my perspective on this matter, and
raise several important questions to be answered in the future.

7.1 More discussions on the two themes

Although the thesis mainly discussed new optimisation algorithms for approximate inference,
the material was organised into two themes.

I Unifying variational methods. (Chapters 2, 3, 4)
In this part of the thesis, we studied two main classes of variational algorithms, namely
expectation propagation (EP) and variational inference (VI). The main contributions are
the two novel frameworks: stochastic EP (Chapter 3) and Rényi divergence VI (Chapter
4). SEP significantly improves the memory efficiency of the EP-like algorithms, making
them scalable to datasets comprising millions of instances. Extensions to the distributed
SEP case further provide a highly flexible framework that unifies global and local
approximation algorithms from an algorithmic perspective. Next we introduced the
VR bound framework that enables the deployment of Monte Carlo methods for α-
divergence methods, provides both upper- and lower-bounds to the marginal likelihood,
and again connects global and local approaches, but from an energy point of view.
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II Wild approximate inference. (Chapters 5, 6)
This theme presented a new research direction for approximate inference, with the goal
of allowing arbitrarily complex approximate posteriors to be deployed. In Chapter 5,
I argued that the density evaluation requirement should be removed when designing
Monte Carlo based approximate inference algorithms. I showed that this allows the use
of very flexible q distributions, and presented several examples of them. Later I wrote
a generic guide for these designs, containing four different algorithmic options. One of
the schemes (direct gradient approximation) was further developed in Chapter 6, in
which an initial experiment on meta-learning for approximate inference was presented.

The two themes were motivated in very different ways. The study of the unified frame-
works aimed at developing new algorithms that both advance the understanding of existing
variational methods, and adapt well to the application areas for Bayesian deep learning. All
the discussions and comparisons in that part were based on one assumption: the candidate
approximate distribution family Q is pre-defined, such as mean-field Gaussians. Indeed in the
empirical studies we used implementations of almost the same set-up, except that we tuned a
few of the algorithmic settings such as the α values and the number of MC samples K.

Wild approximate inference, on the other hand, encourages the use of very complex
approximate distributions. There is no reason to expect an accurate approximation with a
distribution that factorises in general, even when it is fitted using algorithms with elegant
theoretical properties (like VI/EP studied in the first theme). However, instead of providing
recipes for complex approximate distribution designs (see some recent examples in Appendix
B) which fit the existing algorithms, we made a bold move to developing algorithms that
enable approximations of arbitrary form. By doing this, we allow the users to focus on
the statistical properties that they want to plant into the approximations, rather than the
algorithmic tractability aspects that restrict the flexibility of the q distribution.

Considering hyper-parameter optimisation, there is another notable difference between
the two themes. For the first theme, we designed energy functions to allow training both
the hyper-parameters and the q distribution, where as for the second theme, we decoupled
the algorithms for inference and learning.1 In this way, wild approximate inference is more
in line with numerical integration methods like quadrature and Monte Carlo: all of them
treat (approximate) Bayesian inference as a computational task, and leave the learning
procedure to hyper-parameter optimisation and potentially model selection. However, when
compared to the VAE approach, it becomes harder to understand the interaction between
the approximate inference results and the hyper-parameter updates. In this regard, the VR

1Although for example the approximate maximum likelihood procedure does not require the inference
optimisation to converge.
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bound framework might be preferred, as both procedures are coupled, and can be analysed
by examining the single loss function in use. We will continue the discussion on this matter
in the next section.

Nevertheless, there is one important technique that has repeatedly been discussed in both
themes: the Monte Carlo approximation method. It has been crucial to the recent success
of Bayesian deep learning [Blundell et al., 2015; Gal, 2016; Graves, 2011; Kingma and
Welling, 2014; Li et al., 2017; Rezende et al., 2014], as for deep neural networks most of the
quantities that a Bayesian would like to compute are analytically intractable, even when using
approximate posterior distributions with simple forms. In this thesis, except for SEP, the MC
approximation is applied to all the other algorithms when performing empirical evaluations.
Even SEP is compatible with Monte Carlo methods: when the moment matching step has
no analytical solution, Monte Carlo methods can be deployed to estimate the sufficient
statistics of the tilted distribution that are required for the update [Barthelmé and Chopin,
2011; Gelman et al., 2014].

7.2 Open problems

Arguably, approximate inference is the key subject for research in Bayesian deep learning and
large-scale Bayesian modelling in general. Therefore it is important to identify the challenges
and open questions for future investigation. The final section of the thesis is organised in
three parts. In the first two subsections, I discuss open research problems for the two themes.
Then in the end, I ask the final question on the relationship between approximate inference
and Bayesian modelling.

7.2.1 Research challenges for EP-like methods

Is SEP guaranteed to converge?
One can study the energy functions and prove that Rényi divergence VI and BB-α methods

are guaranteed to converge under mild conditions. However, since the development in 2015,
little progress has been made to find the energy (or Lyapunov) function of SEP. One important
research direction is to identify the existence of this energy function. On the other hand,
Dehaene and Barthelmé [2015]; Dehaene and Barthelmé [2018] used the AEP (the batch
version of SEP) to study the convergence of EP without looking at an energy function.
Although having assumed some restrictive conditions for simplicity, the proof ideas in
Dehaene and Barthelmé [2015]; Dehaene and Barthelmé [2018] can still be useful for future
research.
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More theoretical supports on selecting the α-divergence?
We have conjectured the behaviour of the α-divergence methods using both toy examples

(see Section 4.2.1) and empirical results. However, there exists no formal theory so far
which support (or disprove) these hypotheses. Furthermore, most of these intuitions apply to
uni-modal approximations, and it is still largely unknown how the approximation methods
perform when multi-modal distributions are fitted using α-divergence methods. Perhaps
proving theoretical results for the general set-up might be hard, so a sensible plan would
first propose theorems on toy problems, and also design (counter) examples that (dis)agree
with the intuitions provided in this thesis. Also algorithmic design for automatic divergence
selection would be much welcomed, in this regard, one can use Bayesian optimisation
methods [Močkus, 1975; Snoek et al., 2012], or design an objective function to learn the α

values [Dikmen et al., 2015].

Generalisation results for future observations?
In many applications of Bayesian deep learning, the predictive performances are mainly

the focus of the model evaluation. Variational inference might be preferred in this regard,
as under some assumptions, the PAC-Bayes framework provides generalisation bounds on
future observations (coming from the same underlying distribution as the training data) that
are directly related to the variational free-energy [Germain et al., 2016; McAllester, 1998].
Preliminary results showed that some generalisation bounds of other forms could also be
proved using Rényi divergences [Bégin et al., 2016], however it is unclear how this is related
to the α-divergence framework studied in this thesis. Future research on this challenge
would also advance the understanding of α-divergence methods, therefore helping address
the above question as well.

7.2.2 Open challenges for wild approximate inference

How do we design the approximate posterior?
A good design for the approximate posterior is still very much in need, even when the

wild approximate inference framework allows more flexible q distributions to be fitted by
relaxing the algorithmic tractability constraints. For example, the density ratio estimation
method discussed in Section 5.3 requires a rather significant number of MC samples, which
can be very expensive when applied to mini-batch optimisations for latent variable models.
One very interesting solution to this issue is by sharing the randomness across the inference
procedure associated with different latent variables [Mescheder et al., 2017]. Another
important concern considers “better compression of posterior correlation”, i.e. how we can
design the approximation to capture the correlation between variables with the least amount
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of computation and memory. This can be especially useful for Bayesian neural networks, and
having the structural information of the posterior can significantly improve both predictive
performance and uncertainty calibration.

Variance reduction/control variate methods for wild approximate inference?
With Monte Carlo approximations, the stochastic gradients used to update the q distri-

butions can be very noisy. Efforts have been made recently to reduce the variance of the
gradient signal for the MC-VI method, including control variate approaches, see Gu et al.
[2016]; Mnih and Gregor [2014]; Paisley et al. [2012]. We note that variance reduction has
also been an important research direction for both reinforcement learning [Greensmith et al.,
2004; Gu et al., 2017] and stochastic optimisation [Defazio et al., 2014; Johnson and Zhang,
2013; Le Roux et al., 2012].2 It might be helpful to borrow ideas from those fields to develop
control variate methods for wild approximate inference.

Wild approximate inference methods for discrete latent variables?
One of the imperfections of this thesis is that we did not discuss approximating posterior

distributions for discrete variables. In this case the path derivative (i.e. differentiation through
an MC sample) is not available, and traditional VI has resorted to the REINFORCE gradient
[Williams, 1992], potentially with control variate methods [Gu et al., 2016; Mnih and Gregor,
2014; Mnih and Rezende, 2016; Titsias and Lázaro-Gredilla, 2015]. However, many of these
methods still rely on a tractable q density (or at least the tractability of the score function),
which is not applicable in the wild approximate inference set-up. Some ad-hoc solutions
include 1) a continuous relaxation of the discrete density, such as the Concrete distribution
[Jang et al., 2017; Maddison et al., 2017b] which has some successful applications [Gal
et al., 2017; Kusner and Hernández-Lobato, 2016]; 2) weak derivatives or Stein discrepancies
defined on discrete distributions, e.g. see Ranganath et al. [2016a].

Principled approaches towards meta-learning for approximate inference?
We briefly discussed the research direction of meta-learning for approximate inference

algorithms in Section 5.4, with an initial attempt also presented in Section 6.3.2. Another
interesting approach would consider learning variational objectives for fitting the posterior
distributions, i.e. the algorithm is defined by

Aφφφ (pn(zzzn)) = argmax
q∈Q

Lφφφ (pn(zzzn),q(zzzn)), (7.1)

2Three NIPS 2016 tutorials – on VI, deep RL and stochastic optimisation, respectively – had spent a
considerate amount of time discussing variance reduction.
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and the parameters φφφ are learned by optimising a meta-objective Lmeta on A fφφφ (pn(zzzn))

for all n = 1, ...,N. However there exists no principled guide for the construction of such
meta-objective in order to learn a superior algorithm. It might be useful to consider some
desirable properties that one would like to incorporate. For example we might want: 1)
reduced bias when Lφφφ is used as a surrogate for maximum likelihood, see Turner and Sahani
[2011]; 2) reduced variance when Monte Carlo is deployed in the algorithm Aφφφ . The former
property can be achieved by learning a lower-bound Lφφφ to the log marginal likelihood that is
(approximately) equally tight everywhere (c.f. Section 4.2.1), and for the latter, one might
consider learning transferable control variates across different densities.

7.2.3 Approximate inference as computation, or modelling?

Conceptually, Bayesian inference is easy: one just needs to specify a model (including a
prior distribution and a likelihood function), and later use a posterior distribution to study
the unknown factors and quantify uncertainty given the observations. In particular, as a
natural result of Bayes’ rule, the posterior distribution is completely determined by the model
and the observations. Therefore traditionally, exact posterior evaluation has been regarded
as a computational task: no more assumptions are required, and the only thing left is to
proceed the computation of Bayes’ rule. Model selection can also be performed using the
Bayes factor for example, or even frequentist style hypothesis tests on the “predictive model”
p(xxx∗|D) =

∫
p(xxx∗|θθθ)p(θθθ |D)dθθθ . Both of them can be computed easily if assuming exact

inference is available.
Practically, however, Bayesian inference is hard: for most useful models in the real

world, it is impractical to compute the exact posterior unless we have an unlimited amount of
computational resources. Fortunately, we now have many efficient approximate inference
algorithms, some of them approximate the computation of the posterior, and some of them
directly approximate the predictive distribution. All of them are motivated as providing an
accurate approximation to the Bayesian inference procedure, therefore at first glance, they
should follow the philosophy of exact inference and be treated as a computation task as well.
From this perspective, researchers are encouraged to develop new algorithms that focus on
improving the approximation accuracy and running speed, and discovering better designs of
the q distribution to reduce the biases further.

On the other hand, the Bayesian decision process relies on the inference results which
can only be performed approximately in practice. Critically, as long as we are proposing
approximations, we are making further assumptions about the inference procedure and thus
to the whole (approximate) decision making process! In this sense, we should also add the
inference procedure to the decision, or predictive modelling procedure. Here is a simple
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example in favour of this claim: consider a model whose posterior distribution is a truncated
Gaussian. Then VI with a Gaussian approximation returns terrible approximations (because
the zero-forcing property of VI would force the q distribution to be a Dirac delta function),
and based on this approximate inference result, the later model checking process can reject
this under-performing “approximate Bayesian prediction model” even when the original
model with exact inference is well behaved. We can potentially identify this false rejection
of the model (in the usual Bayesian sense) by changing the approximation algorithm to EP,
or the q distribution to allow a non-smooth density. Indeed this view has also been discussed
in e.g. Dawid [1984]; Gelman et al. [1996]; Gelman and Shalizi [2013]; Meng [1994] which
adds a bit of frequentist flavour to the predictive model selection procedure.

What is the take home message from this interpretation? Besides the encouragement of
developing better approaches to improve the inference procedure (which is the same call as
from the perspective of computation), an interesting direction is to understand the bias of
existing inference methods. With a better understanding of how these biases might interact
with downstream decision making tasks, we can then carefully select the best inference
method to achieves a desirable “predictive model”. For example, VI is known for penalising
complicated models (if the prior prefers the simple ones) [Hinton and Van Camp, 1993].
Therefore, we can design specific types of the approximate posterior (e.g. Gaussian dropout
[Kingma et al., 2015; Srivastava et al., 2014]) to further sparsify Bayesian neural networks
without compromising the predictive accuracy [Louizos et al., 2017; Molchanov et al., 2017].

Finally, just to be clear: both views of approximate inference are useful for discovering
new research directions that are generally beneficial to enrich the literature. For example,
they can be used to propose criteria for evaluating an approximate inference procedure, and
derive new principles for algorithmic design. I hope that, by investigating this problem, the
community can draw inspiration from both views, and obtain a better understanding of the
roles of approximate inference for modern Bayesian analysis.
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Appendix A

Proofs and Derivations

A.1 Derivations of PBP in Chapter 3

We briefly describe the approximation techniques used in probabilistic back-propagation
(PBP) for training Bayesian neural networks [Hernández-Lobato and Adams, 2015]. In this
case the model is the following:

p(yn|xxxn,W,γ) =N(yn;NNW (xxxb),γ
−1), p(W |λ ) = ∏

i, j,l
N(W l

i j;0,λ−1),

p(λ ) = Gamma(λ ;α
λ
0 ,β

λ
0 ), p(γ) = Gamma(γ;α

γ

0 ,β
γ

0 ),

(A.1)

where αλ
0 ,β

λ
0 ,α

γ

0 ,β
γ

0 are prior parameters that are all set to 6. We are interested in computing
the approximate posterior of the following form:

q(W,γ,λ ) = ∏
i, j,l

N(W l
i j; µ

l
i j,v

l
i j)Gamma(λ ;α

λ ,β λ )Gamma(γ;α
γ ,β γ), (A.2)

which is iteratively solved by EP. Since the moments of the random variables can also be
obtained by differentiating through the (log) normalising constant of the tilted distribution
logZ, PBP first approximately computes the normalising constant by

Z =
∫

p(y|xxx,W,γ)q(W,γ,λ )dWdγdλ

≈
∫

N(y;zzzL,γ
−1)N(zzzL|mmmL,vvvL)Gamma(γ;α

γ ,β γ)dzzzLdγ // PBP forward pass

=
∫

T(y;zzzL,β
γ/α

γ ,2α
γ)N(zzzL|mmmL,vvvL)dzzzL // student-t distribution

≈N(y;mmmL,β
γ/(αγ −1)+ vvvL). // Gaussian approx.

(A.3)
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It remains to specify the forward pass of PBP which approximate NNW (xxx),W ∼ q(W ) by
zzzL ∼N(zzzL|mmmL,vvvL). A short summary of the idea is the following. Assume the inputs zzzl−1

to the lth layer are Gaussian distributed: zzzl−1 ∼N(zzzl−1|mmml−1,vvvl−1), then when the network
is wide, due to the central limit theorem the pre-activation aaal = Wzzzl−1/

√
dim(zzzl−1) is

approximately Gaussian distributed with mean and variance determined by the means and
variances of zzzl−1 and W l . If the activation function is ReLU, then the distribution of zzzl is a
mixture of delta mass δ (zzzl = 000) and truncated Gaussian at zero. The last step approximates
this mixture distribution with a Gaussian distribution that matches the mean and variance,
which leads to N(zzzl|mmml,vvvl) that is used in later forward pass. We refer to Hernández-Lobato
and Adams [2015] for the detailed derivation of mmml and vvvl .

In the SEP experiments for PBP the update equations are almost the same, except that Z is
computed using the cavity distribution q−1(W,γ,λ )∝ p(W |λ )p(λ )p(γ) f (W )N−1 f (γ)N−1 f (λ ).

A.2 Proofs of theorems in Chapter 4

A.2.1 Proof of Theorem 4.2

Proof. 1) First we prove for α ≤ 1, E{hhhk}[L̂α,K] is non-decreasing in K. It is straight forward
to show the results holds for α = 1. We follow the proof in Burda et al. [2016] for fixed
α < 1. Let K > 1 and the subset of indices I = {i1, ..., iK′} ⊂ {1, ...,K},K′ < K randomly
sampled from integers 1 to K. Then for any α < 1:

E{hhhk}K
k=1

[L̂α,K] =
1

1−α
E{hhhk}

[
log

1
K

K

∑
k=1

(
p(hhhk,xxx)
q(hhhk|xxx)

)1−α
]

=
1

1−α
E{hhhk}

[
logEI⊂{1,...,K}

[
1
K′

K′

∑
k=1

(
p(hhhik ,xxx)
q(hhhik)

)1−α
]]

≥ 1
1−α

E{hhhk}

[
EI⊂{1,...,K}

[
log

1
K′

K′

∑
k=1

(
p(hhhik ,xxx)
q(hhhik)

)1−α
]]

(logx is concave)

=
1

1−α
E{hhhk}

[
log

1
K′

K′

∑
k=1

(
p(hhhk,xxx)
q(hhhk|xxx)

)1−α
]
= E{hhhk}K′

k=1
[L̂α,K′]

We used Jensen’s inequality of logarithm for the lower-bounding result here. When α > 1
we can proof similar result but with inequality reversed, simply because now 1−α < 0.
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2) Next we prove that, when K→ ∞ and |Lα |<+∞, we have E{hhhk}K
k=1

[L̂α,K]→ Lα if

L̂α,K is absolutely integrable wrt. qdµ = dQ for all K ≥ 1 (in other words E{hhhk}K
k=1

[|L̂α,K|]<
+∞). We only prove it for α ≤ 1, and for α > 1 it can be proved in a similar way. First we
use Jensen’s inequality again for all finite K:

E{hhhk}K
k=1

[L̂α,K] =
1

1−α
E{hhhk}

[
log

1
K

K

∑
k=1

(
p(hhhk,xxx)
q(hhhk|xxx)

)1−α
]

≤ 1
1−α

logE{hhhk}

[
1
K

K

∑
k=1

(
p(hhhk,xxx)
q(hhhk|xxx)

)1−α
]
= Lα .

This implies limsupK→+∞E{hhhk}K
k=1

[L̂α,K]≤ Lα .

Then as an intermediate result we prove L̂α,K → Lα almost surely when K→ ∞. For
α ̸= 1, since function log is continuous we again swap the limit and logarithm:

lim
K→+∞

1
1−α

log
1
K

K

∑
k=1

(
p(hhhk,xxx)
q(hhhk|xxx)

)1−α

=
1

1−α
log lim

K→+∞

1
K

K

∑
k=1

(
p(hhhk,xxx)
q(hhhk|xxx)

)1−α

.

Now since we assume |Lα |<+∞, this implies Eq

[(
p(hhh,xxx)
q(hhh|xxx)

)1−α
]

is finite. Also notice for

all α values the ratio p/q is non-negative. Thus by the strong law of large numbers we have

lim
K→+∞

1
K

K

∑
k=1

(
p(hhhk,xxx)
q(hhhk|xxx)

)1−α

= Eq(hhh|xxx)

[(
p(hhh,xxx)
q(hhh|xxx)

)1−α
]

a. s.,

then L̂α,K → Lα almost surely as K → +∞. When α = 1 we can use similar method to
prove limK→+∞ L̂1,K = LVI almost surely.

Finally, using the non-increasing in α result we will prove later we have L̂α,K ≥ L̂1,K .
Thus we can apply Fatou’s Lemma and obtain the following almost surely (notice E[L̂1,K] =

LVI for all K):
Lα −LVI = E[ lim

K→+∞
L̂α,K− L̂1,K]

≤ liminf
K→+∞

E{hhhk}K
k=1

[L̂α,K− L̂1,K]

= liminf
K→+∞

E{hhhk}K
k=1

[L̂α,K]−LVI.

Combining with the supremum bound, we have E{hhhk}K
k=1

[L̂α,K]→Lα when K goes to infinity.
For α > 1 we use Jensen’s inequality to bound the limit infimum and the non-increasing
property in α to bound the limit supremum. Thus the convergence result holds for all
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α ∈ {α : |Lα |<+∞}.

3) E[L̂α,K] is non-increasing in α: since expectation preserves monotonicity, it is suf-
ficient to prove the result for L̂α,K . This can be proved in similar way as Theorem 3 and
39 in Van Erven and Harremoës [2014], and we include the prove here for completeness.
Notice that for α < β function x

1−α

1−β defined on x > 0 is convex when α < 1 and concave
when α > 1. So applying Jensen’s inequality:

L̂α,K =
1

1−α
log

1
K

K

∑
k=1

(
p(hhhk,xxx)
q(hhhk|xxx)

)1−α

=
1

1−α
log

1
K

K

∑
k=1

((
p(hhhk,xxx)
q(hhhk|xxx)

)1−β
) 1−α

1−β

≥ 1
1−α

log

(
1
K

K

∑
k=1

(
p(hhhk,xxx)
q(hhhk|xxx)

)1−β
) 1−α

1−β

= L̂β ,K.

Continuity in α: First we show L̂α,K is continuous in α when p(hhhk,xxx) ̸= 0 for hhhk ∼ q.
For α ̸= 0,1,∞ and for any sequence {αn}→ α it is sufficient to show that

lim
n→∞

log
1
K ∑

k
q(hhhk|xxx)αn p(hhhk,xxx)1−αn

= log lim
n→∞

1
K ∑

k
q(hhhk|xxx)αn p(hhhk,xxx)1−αn (logx is a continuous function)

= log
1
K ∑

k
lim
n→∞

q(hhhk|xxx)αn p(hhhk,xxx)1−αn (finite sum)

= log
1
K ∑

k
q(hhhk|xxx)

(
p(hhhk,xxx)
q(hhhk|xxx)

)1−limn→∞ αn

(ax is continuous in x for all a > 0)

= log
1
K ∑

k
q(hhhk|xxx)α p(hhhk,xxx)1−α .

We note that since we assume L̂α,K is absolutely integrable, we have p/q > 0 almost
everywhere on the support of q. Hence {L̂αn,K} has point-wise limit L̂α,K almost everywhere
as n→+∞.

For α = 0,1,∞ the Rényi divergence is defined by continuity so one can use the same
technique to show the continuity of L̂α,K on those α values for fixed K. Then since αn→ α ,
for any ε > 0, there exists n that is large enough such that αm ∈ (α − ε,α + ε) for all
m > n. Using the monotonicity result, we have for ∀m > n, L̂αm,K is bounded in the interval
(L̂α+ε,K, L̂α−ε,K) and by assumption we have E[|L̂α−ε,K|] < +∞ and E[|L̂α+ε,K|] < +∞.
This allows us to apply the dominated convergence theorem to prove limn→+∞E[L̂αn,K] =
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E[limn→+∞ L̂αn,K] = E[L̂α,K]. Thus we have proved that E[L̂α,K] is continuous on α ∈
{|Lα |<+∞} if L̂α,K is absolutely integrable.

A.2.2 Proof of Corollary 4.1

The next question we are interested is that, given a fixed number of samples K, can we tune
the α parameter to achieve the best approximation to the marginal likelihood? This is an
important question as in practice only finite amount of computation resource is allowed. In
the following we will discuss a corollary result based on Theorem 4.2, but to prove it we first
introduce the following lemmas. As we assume supp(p)⊆ supp(q), there might exist some
regions that q > 0 but p = 0. We define ρ =

∫
supp(q)\supp(p) dQ with dQ = qdµ , and rewrite

the computation of E[L̂α,K]. The following lemma shows the importance of the absolute
integrable assumption in Theorem 4.2.

Lemma A.1. Assume ρ > 0. Then for all finite K and α < 0, E{hhhk}K
k=1

[L̂α,K(q;xxx)] = −∞

and thus L̂α,K is not integrable wrt. qdµ = dQ.

Proof. We define q̃ as the q distribution restricted on the support of p, i.e. q̃ = q/(1−ρ)

defined on supp(p). Then for any fixed K <+∞ and α < 0, we have

E{hhhk}K
k=1∼q[L̂α,K(q;xxx)] =ρ

K log0+
K

∑
k=1

(
K
k

)
ρ

K−k(1−ρ)k
(
E{hhh j}k

j=1∼q̃[L̂α,k(q̃;xxx)]+
logk
1−α

)
−(1−ρ

K)

(
log(1−ρ)+

logK
1−α

)
.

Thus E{hhhk}K
k=1

[L̂α,K(q;xxx)] =−∞ for all finite K and α < 0.

The above example shows the pathology of MC approximation which is further discussed
in Section 4.2.5. From now on we assume L̂α,K is absolutely integrable w.r.t. dQ in order to
apply Theorem 4.2.

Lemma A.2. Assume α < 0, L̂α,K absolutely integrable wrt. qdµ = dQ for all K, Lα >

LVI, and |Lα | < +∞. Then there exists 1 ≤ Kα < +∞ such that for all K ≤ Kα < K′,
E{hhhk}K

k=1
[L̂α,K(q;xxx)] ≤ log p(xxx) < E{hhhk}K′

k=1
[L̂α,K′(q;xxx)]. Also Kα is non-decreasing in α

with limα→0 Kα =+∞ and limα→−∞ Kα ≥ 1.

Proof. 1) Existence of Kα : first from Theorem 4.2 we have E[L̂α,K] is non-decreasing in K
when α < 0. Then since for all α , E[L̂α,1] = LVI ≤ log p(xxx), we have Kα ≥ 1 if Kα exists.
Also from Theorem 4.2 we have limK→+∞E[L̂α,K] =Lα > log p(xxx) for all α < 0. Hence for
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ε = Lα − log p(xxx) there exist K that is finite but large enough such that Lα −E[L̂α,K′]< ε

for all K′ > K. Now we can define ε = Lα − log p(xxx) and take Kα as the minimum of such
K, and it is straight-forward to show that 1≤ Kα <+∞.

2) Kα is non-decreasing in α : suppose there exist α > β such that Kα < Kβ . Then there
exist Kα < K ≤ Kβ such that E[L̂α,K]> log p(xxx)≥ E[L̂β ,K]. But Theorem 4.2 says E[L̂α,K]

is non-increasing in α , a contradiction.
3) Since limK→+∞E[L̂α,K] = Lα and Lα ↓ log p(xxx) when α ↑ 0, we have limα→0 Kα =

+∞. Also since Kα is non-decreasing in α and is lower-bounded by 1, we have the limit
exists and limα→−∞ Kα ≥ 1.

Now we prove Corollary 4.1 which answers the question of approximating the marginal
likelihood with finite sample MC bound. It is sufficient to prove the corollary with the
conditions assumed in Lemma A.2 since Kα =+∞ for the other cases, and if so for all α < 0,
then αK =−∞ for all finite K.

Proof. 1) Existence of αK for limα→−∞ Kα < K < +∞: from Lemma A.2 we can find
α > β such that Kα ≥ K ≥ Kβ . This means E[L̂α,K]≤ log p(xxx)≤ E[L̂β ,K]. Since E[L̂α,K]

is continuous in α for any fixed K, there exits α ≤ γ ≤ β to have E[L̂γ,K] = log p(xxx). Note
that γ might not be unique, so we define αK as the minimum of such γ , which also gives
E[L̂α,K]> log p(xxx) for all α < αK .

2) αK is non-decreasing in K: suppose there exist K < K′ with αK > αK′ . Then we
can find αK > α > αK′ such that E[L̂α,K] > log p(xxx) = E[L̂αK′ ,K′] ≥ E[L̂α,K′]. But from
Theorem 4.2 E[L̂α,K] is non-decreasing in K, a contradiction.

3) Since limK→+∞E[L̂α,K] =Lα and Lα ↓ log p(xxx) when α ↑ 0, we have limK→+∞ αK =

0. Also for all α , E[L̂α,1] = LV I ≤ log p(xxx), so limK→1 αK =−∞.

A.2.3 Proof of Theorem 4.3

Proof. We substitute the exponential family likelihood term into the stochastic approximation
of the VR bound with α < 1, and use Hölder’s inequality for any 1/r+1/s = 1, r > 1 (define
α̃ = 1− (1−α)r):

ES[L̃α(q;S)] =
1

1−α
logEq[

(
p0(θθθ) f̄D(θθθ)N

q(θθθ)
f̄S(θθθ)N

f̄D(θθθ)N

)1−α

]

≤ Lα̃(q;D)+
1

(1−α)s
ES

{
logEq[exp[N(1−α)s⟨Φ̄ΦΦS− Φ̄ΦΦD,θθθ⟩]]

}
= Lα̃(q;D)+

1
(1−α)s

ES[Kθθθ (N(1−α)s(Φ̄ΦΦS− Φ̄ΦΦD))],
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where Φ̄ΦΦS and Φ̄ΦΦD denote the mean of the sufficient statistic ΦΦΦ(xxx) on the mini-batch S and
the whole dataset D, respectively. For Gaussian distribution q(θθθ) =N(µµµ,ΣΣΣ) the cumulant
generating function Kθθθ (ttt) has a closed form

Kθθθ (ttt) = µµµ
T ttt +

1
2

tttT
ΣΣΣttt.

Define tttS =N(1−α)s∆S with ∆S = Φ̄ΦΦS−Φ̄ΦΦD, then ES[tttS] = 000 and the upper-bound becomes

ES[L̃α(q;S)]≤ Lα̃(q;D)+
1

(1−α)s
ES[Kθθθ (tttS)]

= Lα̃(q;D)+
1

(1−α)s
ES[µµµ

T tttS+
1
2

tttT
SΣΣΣtttS]

= Lα̃(q;D)+
N2(1−α)s

2
ES[∆

T
SΣΣΣ∆S]

= Lα̃(q;D)+
N2(1−α)s

2
tr(ΣΣΣCovS∼D(Φ̄ΦΦS)).

Applying the condition of Hölder’s inequality 1/r+1/s = 1 proves the result.

A.3 Derivations and experimental details of Chapter 6

A.3.1 Parametric Stein gradient estimator: the RBF kernel case

Direct minimisation of KSD V-statistic and U-statistic

The V-statistic of KSD is the following: given samples xxxk ∼ q,k = 1, ...,K and recall K jl =

K(xxx j,xxxl)

S2
V (q, q̂) =

1
K2

K

∑
j=1

K

∑
l=1

[
ĝgg(xxx j)TK jl ĝgg(xxxl)+ ĝgg(xxx j)T

∇xxxl K jl +∇xxx jKT
jl ĝgg(xxx

l)+Tr(∇xxx j,xxxl K jl)
]
.

(A.4)
The last term ∇xxx j,xxxl K jl will be ignored as it does not depend on the approximation ĝgg. Using
matrix notations defined in the main text, readers can verify that the V-statistic can be
computed as

S2
V (q, q̂) =

1
K2 Tr(KĜĜT +2⟨∇,K⟩ĜT)+C. (A.5)
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Using the cyclic invariance of matrix trace leads to the desired result in the main text. The
U-statistic of KSD removes terms indexed by j = l in (A.4), in which the matrix form is

S2
U(q, q̂) =

1
K(K−1)

Tr((K−diag(K))ĜĜT +2(⟨∇,K⟩−∇diag(K))ĜT)+C. (A.6)

with the jth row of ∇diag(K) defined as ∇xxx jK(xxx j,xxx j). For most translation invariant kernels
this extra term ∇diag(K) = 000, thus the optimal solution of Ĝ by minimising KSD U-statistic
is

ĜStein
U =−(K−diag(K)+ηIII)−1⟨∇,K⟩. (A.7)

Parametric Stein estimator with RBF kernel

We define a parametric approximation in a similar way as for the score matching estimator:

log q̂(xxx) :=
K

∑
k=1

akK(xxx,xxxk)+C, K(xxx,xxx′) = exp
[
− 1

2σ2 ||xxx− xxx′||22
]
. (A.8)

Now we show the optimal solution of aaa = (a1, ...,aK)
T by minimising (A.4). To simplify

derivations we assume the approximation and KSD use the same kernel. First note that the
gradient of the RBF kernel is

∇xxxK(xxx,xxx′) =
1

σ2K(xxx,xxx′)(xxx′− xxx). (A.9)

Substituting (A.9) into (A.4):

S2
V (q, q̂) =C+♣+2♠,

♣=
1

K2

K

∑
k=1

K

∑
k′=1

K

∑
j=1

K

∑
l=1

akak′Kk jK jlKlk′
1

σ4 (xxx
k− xxx j)T(xxxk′− xxxl),

♠=
1

K2

K

∑
k=1

K

∑
j=1

K

∑
l=1

akKk jK jl
1

σ4 (xxx
k− xxx j)T(xxx j− xxxl).

We first consider summing the j, l indices in ♣. Recall the “gram matrix” Xi j = (xxxi)Txxx j, the
inner product term in ♣ can be expressed as Xkk′+X jl−Xkl−X jk′ . Thus the summation
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over j, l can be re-written as

ΛΛΛ :=
K

∑
j=1

K

∑
l=1

Kk jK jlKlk′(Xkk′+X jl−Xkl−X jk′)

= X⊙ (KKK)+K(K⊙X)K− ((KK)⊙X)K−K((KK)⊙X).

And thus ♣= 1
σ4 aaaTΛΛΛaaa. Similarly the summation over j, l in ♠ can be simplified into

−bbb :=
K

∑
j=1

K

∑
l=1

Kk jK jl(Xk j +X jl−Xkl−X j j)

= − (Kdiag(X)K+(KK)⊙X−K(K⊙X)− (K⊙X)K)111,

which leads to ♠ = − 1
σ4 aaaTbbb. Thus minimising S2

V (q, q̂) plus an l2 regulariser returns the
Stein estimator aaaStein

V in the main text.
Similarly we can derive the solution for KSD U-statistic minimisation. The U statistic

can also be represented in quadratic form S2
U(q, q̂) =C+ ♣̃+2♠̃, with ♠̃=♠ and

♣̃=♣− 1
K2

K

∑
k=1

K

∑
k′=1

K

∑
j=1

akak′Kk jK j jK jk′
1

σ4 (Xkk′+X j j−Xk j−X jk′).

Summing over the j indices for the second term, we have

K

∑
j=1

Kk jK j jK jk′(Xkk′+X j j−Xk j−X jk′)

= X⊙ (Kdiag(K)K)+Kdiag(K⊙X)K− ((Kdiag(K))⊙X)K−K((diag(K)K)⊙X).

Working through the analogous derivations reveals that âaaStein
U = (Λ̃ΛΛ+ηI)−1bbb, with

Λ̃ΛΛ =X⊙ (K(K−diag(K))K)+K((K⊙X)−diag(K⊙X))K

− ((K(K−diag(K)))⊙X)K−K(((K−diag(K))K)⊙X).

A.3.2 Score matching estimator: the Epanechnikov kernel case

In this section we provide analytical solutions for the score matching estimator (more
specifically the linear coefficient aaa = (a1, ...,aK)) for the case of the Epanechnikov kernel.
The solution for the RBF kernel case is referred to Strathmann et al. [2015].
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The Epanechnikov kernel is defined as K(xxx,xxx′) = 1
d ∑

d
i=1(1− (xi− x′i)

2), where the first
and second order gradients w.r.t. xi is

∇xiK(xxx,xxx′) =
2
d
(x′i− xi), ∇xi∇xiK(xxx,xxx′) =−2

d
.

Thus the score matching objective with log q̂(xxx) = ∑
K
k=1 akK(xxx,xxxk)+C is reduced to

F(aaa) =
1
K

K

∑
j=1

[
||

K

∑
k=1

ak
2
d
(xxxk− xxx j)||22−2

K

∑
k=1

ak
2
d

d

]

=
4
K

K

∑
j=1

[
1
d2

K

∑
k=1

K

∑
k′=1

akak′(xxx
k− xxx j)T(xxxk′− xxx j)−aaaT111

]
:= 4(aaaT

ΣΣΣaaa−aaaT111),

with the matrix elements

ΣΣΣkk′ =
1
d2

[
(xxxk)Txxxk′+

1
K

K

∑
j=1

(
||xxx j||22− (xxxk + xxxk′)Txxx j

)]
.

Define the “gram matrix” Xi j = (xxxi)Txxx j, we write the matrix form of ΣΣΣ as

ΣΣΣ =
1
d2

[
X+

1
K

(
Tr(X)−2X111111T)] .

Thus with an l2 regulariser, the fitted coefficients are

âaascore =
d2

2

[
X+

1
K

(
Tr(X)−2X111111T)+ηI

]−1

111.

A.3.3 Score matching estimator: the Cauchy kernel case

The Cauchy kernel is defined as K(xxx,xxx′) =
(

1+ ||xxx−xxx′||22
2σ2

)−1
, where the first and second order

gradients w.r.t. xi is

∇xiK(xxx,xxx′) =
1

σ2K(xxx,xxx′)2(x′i− xi),

∇xi∇xiK(xxx,xxx′) =− 1
σ2K(xxx,xxx′)2 +

2
σ4K(xxx,xxx′)3(x′i− xi)

2.

We separate the score matching objective in two parts and handle each of them in the
following. Writing K2 := K⊙K, we have
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K

∑
j=1
||ggg(xxx j)||22 =

1
σ4

K

∑
j=1

(
K

∑
k=1

akK(xxxk,xxx j)2(xxxk− xxx j)

)T( K

∑
k′=1

ak′K(xxxk′,xxx j)2(xxxk′− xxx j)

)

=
1

σ4 ∑
k,k′

akak′
K

∑
j=1

K2
jkK2

jk′(xxx
k− xxx j)T(xxxk′− xxx j)

=
1

σ4 ∑
k,k′

akak′
K

∑
j=1

K2
jkK2

jk′(Xkk′+X j j−X jk−X jk′)

=
1

σ4 aaaT [K2K2⊙X+K2diag(X)K2− (K2⊙X)K2−K2(K2⊙X)
]

aaa

2
K

∑
j=1
⟨∇,ggg(xxx j)⟩= 2

σ2

K

∑
j=1

K

∑
k=1

ak

(
−dK(xxxk,xxx j)2 +2K(xxxk,xxx j)3 ||xxxk− xxx j||22

σ2

)

=
2

σ2

K

∑
j=1

K

∑
k=1

ak

(
−dK2

jk +4K3
jk(K

−1
jk −1)

)
=

2
σ2

K

∑
k=1

ak

K

∑
j=1

K2
jk(4−d−4K jk)

=− 2
σ2 aaaT [K2⊙ (4K+(d−4)I)

]
111

Therefore the optimal coefficient for the Cauchy kernel case is âaascore = (ΛΛΛ+ηI)−1bbb,
with

ΛΛΛ = K2K2⊙X+K2diag(X)K2− (K2⊙X)K2−K2(K2⊙X),

bbb = σ
2K2⊙ (4K+(d−4)I).

A.3.4 Parametric Stein gradient estimator with the Cauchy kernel

The derivation for the parametric Stein gradient estimator with the Cauchy kernel is very
similar with that for the RBF kernel:

S2
V (q, q̂) =C+♢+2♡,

♢=
1

K2

K

∑
k=1

K

∑
k′=1

K

∑
j=1

K

∑
l=1

akak′K2
k jK jlK2

lk′
1

σ4 (xxx
k− xxx j)T(xxxk′− xxxl),

♡=
1

K2

K

∑
k=1

K

∑
j=1

K

∑
l=1

akK2
k jK

2
jl

1
σ4 (xxx

k− xxx j)T(xxx j− xxxl).
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Similar rearrangement as in the RBF kernel case returns ♢ = 1
σ4 aaaTΛΛΛaaa and ♡ = − 1

σ4 aaaTbbb,
with

ΛΛΛ = X⊙ (K2KK2)+K2(K⊙X)K2− ((K2K)⊙X)K2−K2((KK2)⊙X),

bbb = (K2diag(X)K2+(K2K2)⊙X−K2(K2⊙X)− (K2⊙X)K2)111,

which leads to the solution âaaStein
V = (ΛΛΛ+ηI)−1bbb.

A.3.5 Experimental detals

Neural network based sampler experiment

For the training task, we use a one hidden layer neural network with 20 hidden units to
compute the noise variance and the moving direction of the next update. In a nutshell it
takes the ith coordinate of the current position and the gradient θθθ t(i),∇t(i) as the inputs,
and output the corresponding coordinate of the moving direction ∆φφφ (θθθ t ,∇t)(i) and the noise
variance σσσφφφ (θθθ t ,∇t)(i). Softplus non-linearity is used for the hidden layer and to compute
the noise variance we apply ReLU activation to ensure non-negativity. The step-size ζ is
selected as 10−5 which is tuned on the KDE approach. For SGLD step-size 10−5 also returns
overall good results.

The training process is the following. For each iteration, we simulate the approximate
sampler for T = 10 transitions and sum over the variational lower-bounds computed on the
samples of every step. Concretely, the maximisation objective is an MC estimate of

L(φφφ) =
T

∑
t=1

LVI(qt),

where qt(θθθ) is implicitly defined by the marginal distribution of θθθ t that is dependent on φφφ

and q0(θθθ 0). The simulated samples at time T are stored to initialise the Markov chain for
the next iteration, i.e. q0(θθθ 0) =

1
K ∑

K
k=1 δ (θθθ 0 = θθθ

k
T ) with θθθ

k
T obtained from the last iteration.

For every 50 iterations we restart the simulation by randomly sampling the locations from
the prior, meaning that q0(θθθ 0) = p(θθθ 0) at this iteration. The MAP baseline considers
an alternative objective function by removing the logqt(θθθ t) term from the above MC-VI
objective. Early stopping is applied using the validation dataset, and the learning rate is set
to 0.001, the number of epochs is set to 500.

We perform hyper-parameter search for the kernel, i.e. a grid search on the bandwidth
σ2 ∈ {0.25,1.0,4.0,10.0,median trick} and η ∈ {0.01,0.1,0.5,1.0,2.0}. We found the
median heuristic is sufficient for the KDE and Stein approaches. However, we failed to



A.3 Derivations and experimental details of Chapter 6 181

obtain desirable results using the score matching estimator with median heuristics, and for
other settings the score matching approach underperforms when compared to KDE and Stein
methods.

Entropy-regularised BEGAN experiments

In the experiment, we construct a deconvolutional net for the generator and a convolutional
auto-encoder for the discriminator. The convolutional encoder consists of 3 convolutional
layers with filter width 3, stride 2, and number of feature maps [32, 64, 64]. These convolu-
tional layers are followed by two fully connected layers with [512, 64] units. The decoder
and the generative net have a symmetric architecture but with stride convolutions replaced by
deconvolutions. ReLU activation function is used for all layers except the last layer of the
generator, which uses sigmoid non-linearity. The reconstruction loss in use is the squared ℓ2

norm || · ||22. The randomness p0(zzz) is selected as uniform distribution in [-1, 1] as suggested
in the original paper [Berthelot et al., 2017]. The mini-batch size is set to K = 100. Learning
rate is initialised at 0.0002 and decayed by 0.9 every 10 epochs, which is tuned on the KDE
model. The selected γ and α values are: for KDE estimator approach γ = 0.3,αγ = 0.05,
for score matching estimator approach γ = 0.3,αγ = 0.1, and for Stein approach γ = 0.5
and αγ = 0.3. The presented results use the KDE plug-in estimator for the entropy estimates
(used to tune β ) for the KDE and score matching approaches. Initial experiments found that
for the Stein approach, using the KDE entropy estimator works slightly worse than the proxy
loss, thus we report results using the proxy loss. An advantage of using the proxy loss is that
it directly relates to the approximate gradient. Furthermore we empirically observe that the
performance of the Stein approach is much more robust to the selection of γ and α when
compared to the other two methods.





Appendix B

Optional Materials

B.1 Other divergences

Although not usually used in approximate inference context, in this section we briefly review
another two families of divergences, namely f -divergences and Bregman divergences. Both
of them are very general divergence families: they contain many useful cases, and more
interestingly, they have some nice connections to the two KL divergences.

f -divergences

The f -divergences were introduce by Csiszár [1963], Morimoto [1963] and Ali and Silvey
[1966], and are sometimes referred as Csiszár’s f -divergences, Csiszár-Morimoto divergences
or Ali-Silvey distances. This family of divergences is defined as follows.

Definition B.1. ( f -divergence) Given a convex function f : R+→ R satisfying f (1) = 0,
the corresponding f -divergence on P is defined as a function D f [·||·] : P×P→ R with the
following form

D f [p||q] =
∫

q(θθθ) f
(

p(θθθ)
q(θθθ)

)
dθθθ , p,q ∈ P. (B.1)

By taking f (x) =− logx and f (x) = x logx, in which both are convex in x, we recover
the two KL divergence KL[q||p] and KL[p||q], respectively. The convexity of function f is
required by Jensen’s inequality in order to prove the conditions of a valid divergence.

Amari’s α-divergence is a special instance of f -divergence, by taking f (x) = 4
1−α2 (1−

x
1+α

2 )− 2
1−α

(x−1). But more interestingly, if f is smooth, then one can show with Taylor ex-
pansion that the corresponding f -divergence can be represented by a series of chi-divergences,
which are essentially special cases of α-divergences (up to scaling constant) with integer
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α values. This means many approximate inference algorithms using α-divergence can be
adapted to the general f -divergence case without major modification, which also justifies the
focus of α-divergences in this thesis.

Bregman divergences

Bregman divergences were introduced by Bregman [1967] as an important tool for geometry
studies. It also use convex functions defined on a convex set Ω.

Definition B.2. (Bregman divergence) Given a strictly convex, and differentiable function
f : Ω→ R, the corresponding Bregman divergence on P is defined as a function B f [·||·] :
Ω×Ω→ R with the following form

B f [r||s] = f (r)− f (s)−⟨∇ f (s),r− s⟩Ω, r,s ∈Ω, (B.2)

where ⟨·, ·⟩Ω denotes the inner product defined on Ω.

Bregman divergences have also been extensively applied to design and analyse algorithms
for optimisation. A widely used algorithm called mirror gradient descent [Beck and Teboulle,
2003; Nemirovski and Yudin, 1983] can be viewed as solving an optimisation problem using
proximal methods with a “regulariser” as the Bregman divergence between the current and
the proposed locations

θθθ t+1 = argmin
θθθ

{⟨θθθ ,∇θθθ tL(θθθ t)⟩+
1
γt

B f [θθθ ||θθθ t ]}. (B.3)

This and related optimisation techniques have recently been incorporated to approximate
inference algorithms in order to improve convergence, e.g. see Altosaar et al. [2017]; Dai
et al. [2016a]; Khan et al. [2015].

To conclude the review of divergences, we include a theoretical result proved by Amari
[2009], which shows the deep connections between α-divergence and the above two families
of divergences.

Proposition B.1. ([Amari, 2009]) Amari’s α-divergence is the unique class of divergence
sitting at the intersection of f -divergences and Bregman divergences classes.

Seeing why α-divergence is a special case of Bregman divergence is slightly involved. In
this case Ω is defined as the set Ω = {kα(p) : p ∈ P} with

kα(p(θθθ)) =
2

1−α

(
p(θθθ)

1−α

2 −1
)
, α ̸= 1

kα(p(θθθ)) = log p(θθθ), α = 1,
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and the inner product is defined as ⟨g,h⟩Ω =
∫

g(θθθ)h(θθθ)dθθθ . Then simple calculations show
that DA

α [p||q] = B fα [kα(p)||kα(q)] with fα(g(θθθ)) = 2
1+α

∫
k−1

α (g(θθθ))dθθθ . The statement of
uniqueness is proved in Amari [2009] which is skipped here.

Perhaps one of the more well-known results compared to the above proposition is the
relationship to the KL divergence in exponential family setup. Consider two exponential
family distributions p(θθθ), q(θθθ) with sufficient statistic ΦΦΦ(θθθ) and natural parameters λλλ p, λλλ q,
respectively. Recall the log partition function

A(λλλ ) := log
∫

exp[λλλ T
ΦΦΦ(θθθ)]dθθθ

is convex in λλλ , and here the inner product is defined as ⟨xxx,y⟩ := xxxTy. Then simple calculation
reveals that

KL[p||q] = A(λλλ q)−A(λλλ p)−⟨λλλ q−λλλ p,Ep[ΦΦΦ(θθθ)]⟩
= A(λλλ q)−A(λλλ p)−⟨λλλ q−λλλ p,∇λλλ p

A(λλλ p)⟩ // Proposition 2.1

= BA[λλλ q||λλλ p].

(B.4)

B.2 Sketching variational methods by constraint relaxations

This is an optional section continuing the discussion of Section 2.3.3 in the main text. The
material is adapted from my NIPS 2016 approximate inference workshop abstract (see
publication page).

B.2.1 Further constraint relaxations by weighted averaging

In EP we need N Lagrange multipliers {λλλ−n} because of the individual moment matching
constraint Eq[ΦΦΦ] = Ep̃n [ΦΦΦ]. This can bring a large amount of memory burden for large
datasets and “big” models. To solve this issue, we start from the re-formulated energy function
(2.34), and then replace the N number of equality constraints q = p̃n by a single one that
we call weighted averaged moment matching: Eq[ΦΦΦ] = ∑n wnEp̃n [ΦΦΦ], with www = (w1, ...,wn)

denote the weighing vector that sum to 1. The motivation here is to reduce the number
of Lagrange multipliers (thus saving memory), but still to ensure q is close to the tilted
distributions in some averaged measure. Empirical evaluations have shown state-of-the-art
performances for this relaxation method [Hernández-Lobato et al., 2016] even though it is a
very bad approximation to the N equality constraints in (2.27).

We proceed to solve the corresponding constrained optimisation problem. We also apply
the KL duality (2.29) to (2.34) (but for simplicity now we directly use λλλ

T
q ΦΦΦ(θ)), and denote



186 Optional Materials

the transformed energy (in a similar way as in (2.30)) as Fααα({ p̃n},q,λλλ q). Now we have the
following Lagrangian

min
q,{ p̃n},λλλ q

max
λ ,{νn},ν

Fααα({p̃n},q,λλλ q)+λλλ
T (Eq[ΦΦΦ]−∑

n
wnEp̃n[ΦΦΦ])+ ... (B.5)

where we have omitted the multipliers for the normalisation constraints. This returns
p̃n(θθθ) =

1
Zn

p0(θθθ) fn(θθθ)
αn exp

[
αnwnλλλ

T
ΦΦΦ(θθθ)

]
, but the fixed point condition for q becomes(

∑n
1

αn
−1
)

λλλ q = λλλ , indicating λλλ as a function of λλλ q. Thus we can directly obtain a
single-loop algorithm for the following minimisation

min
λλλ q

(
∑
n

1
αn
−1
)

logZq−∑
n

1
αn

log
∫

p0(θθθ) fn(θθθ)
αn exp

[
βnλλλ qΦΦΦ(θθθ)

]
dθθθ (B.6)

with βn =
(

∑m
1

αm
−1
)

αnwn. Black-box alpha (BB-α) [Hernández-Lobato et al., 2016] is

a special case of the above by defining αn = α,∀n and wn = ( 1
αn
− 1

N )/(∑m
1

αm
− 1) = 1

N ,
which leads to βn = 1− α

N . In this case the weighing vector www is implicitly defined by the
choice of α .

Remark. The original derivation of BB-α in Hernández-Lobato et al. [2016] directly
started from the power EP energy (2.35) and tied the local parameters λλλ n (or in other
words it added new constraints in the dual space). Our derivation here provides a proper
justification from a constrained primal energy optimisation perspective.

B.2.2 Distributed black-box alpha

Variational methods have been shown to be very efficient for distributed computing, e.g. see
Gelman et al. [2014]; Hasenclever et al. [2017]; Xu et al. [2014] for EP and Broderick et al.
[2013] for VI. In our set-up this is equivalent to a different decoupling strategy. It first groups
the factors into K subset-level factors Fk = ∏ fnk with the corresponding index set Nk = {nk},
where usually Ni∩N j = /0, i ̸= j and ∪kNk = {1, ...,N}, then it performs EP at the group
level. Now we rewrite the variational free energy and also assume for simplicity αk ̸= 0 and
αnk = αk for nk ∈ Nk:

FVFE(q) =

(
1−∑

k

1
αk

)
KL[q||p0]−∑

k

1
αk

Eq

[
log

p0(θθθ)Fk(θθθ)
αk

q(θθθ)

]
. (B.7)

One can easily show the distributed EP objective by repeating the decoupling and Lagrangian
computation procedures as in Section 2.3.3, with the moment-matching constraints applied
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to p̃k for subset-level factor Fk rather than for individual factor fn. An equivalent derivation
starts from power EP in Section 2.3.3 but with an extra set of constraints restricting p̃i =

p̃ j,∀i, j ∈ Nk. Simple calculations reveal that in this case 1/αk in (B.7) equals to the sum of
1/αnk for all nk ∈ Nk.

Monte Carlo (MC) methods are deployed to compute these moments since now we
incorporate multiple factors in the second integral. The EP/MC mixed approach combines
the advantages from both worlds: it provides more accurate approximations than full EP
since it’s less “local”, while it remains faster than full MC methods (as the tilted distribution
contains less difficult factors) and is straight-forward to parallelise. In an extreme case where
K = 1 and α ̸= 0,1, the above derivation recovers the VR bound (see Chapter 4), with the q
distribution restricted to exponential families.

We further present a mixed approach that nests BB-α in distributed EP, and again for
simplicity we assume αnk =αk for nk ∈Nk. We still decouple all the q distributions associated
with factor f̃n to p̃n as in (2.34), but then relax the equality constraint to 1

|Nk|∑nk∈Nk
Ep̃nk

[ΦΦΦ] =

Eq[ΦΦΦ], ∀k. Solving the Lagrangian and defining λλλ q = ∑k λλλ k returns the following energy:

(∑
k

|Nk|
αk
−1) logZq−∑

k

1
αk

∑
nk∈Nk

log
∫

p0(θθθ) fnk(θθθ)
αk exp

[
(λλλ q−

αk

|Nk|
λλλ k)

T
ΦΦΦ(θθθ)

]
dθθθ ,

(B.8)
This means the local parameters λλλ k are updated in a BB-α fashion, while the final ap-
proximation q is constructed in an EP way. Potentially this approach can both reduce the
approximation bias of BB-α (as we use more than one set of local parameters) and be com-
putationally faster than distributed EP (as often now the moments for the tilted distribution
become tractable).

B.2.3 Nested variational methods

We further provide several EP-like recipes for latent variable models. As we shall see again,
different decoupling and constraint relaxation strategies return algorithms that have different
global and local behaviour.

Assume now the exact posterior becomes p(θθθ ,{zzzn}|{xxxn})∝ p0(θθθ)∏n p0(zzzn)p(xxxn|zzzn,θθθ).

We note that the algorithms discussed below also applies to models that has intermediate-
level variables, i.e. those latent variables that are attached to a subset of data. The goal is
to approximate the exact posterior of both θθθ and zzzn, and we assume a factorised approx-
imation q(θθθ ,{zzzn}) = q(θθθ)∏n q(zzzn|xxxn). Note that in VI/VB literature the local variational
approximation is often denoted as q(zzzn). However as at optimum q(zzzn) depends on xxxn, here
we explicitly write down this dependence as q(zzzn|xxxn). This notation is also convenient for
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the application of amortised inference (see Section 2.2.4) which uses a recognition model
(i.e. sharing parameters between q(zzzn)) to parameterise the local variational distribution.

Full power EP/BB-α treatment

We repeat the term rearranging and argument decoupling procedure as in (2.34). This returns:

Fααα(q,{p̃n}) =
(

1−∑
n

1
αn

)
KL[q(θθθ)||p0(θθθ)]+∑

n

(
1− 1

αn

)
KL[q(zzzn|xxxn)||p0(zzzn)]

−∑
n

1
αn

Ep̃n

[
log

p0(θθθ)p0(zzzn)p(xxxn|zzzn,θθθ)
αn

p̃n(θθθ ,zzzn)

]
,

(B.9)
subject to p̃n(θθθ ,zzzn) = q(θθθ)q(zzzn|xxxn),∀n. The next step is to relax the equality constraint
to moment-matching constraints denoted as Ep̃n[ΦΦΦ(θθθ ,zzzn)] = Eq[ΦΦΦ(θθθ ,zzzn)]. The choice of
the sufficient statistic ΦΦΦ also plays an important role here, and for simplicity we omit the
dependence to the observations xxxn, and assume a factorised sufficient statistic, i.e. ΦΦΦ(θθθ ,zzzn) =

[ΦΦΦ(θθθ),ψψψ(zzzn)]. We leave the general case to future work.
Now we proceed to solve the fixed points using similar methods presented in the main

text. We still use the KL duality (2.29) for q(θθθ), and write that for the latent variables as

−KL[q(zzzn|xxxn)||p0(zzzn)] = min
η(zzzn,xxxn)

−Eq[η(zzzn,xxxn)]+ logEp0 [exp[η(zzzn,xxxn)]] . (B.10)

To simplify computations we assume η(zzzn,xxxn) = ηηη(xxxn)
T ψψψ(zzzn) w.l.o.g. Substitution into

(B.9) returns the modified form Fααα(q,{ p̃n},λλλ q,{ηηη(xxxn)}) which is defined in a similar way
as (2.30). Associating Lagrange multiplier λλλ−n and ηηηn for the moment matching constraints
of ΦΦΦ and ψψψ respectively, we have the following Lagrangian

Fααα(q,{ p̃n},λλλ q,{ηηη(xxxn)})+∑
n

1
αn

[
λλλ

T
−n(Eq[ΦΦΦ]−Ep̃n[ΦΦΦ])+ηηη

T
n (Eq[ψψψ]−Ep̃n[ψψψ])

]
+ ...

(B.11)
where we have omitted the multipliers for the normalisation constraints. Finding the fixed
point wrt. p̃n returns the following tilted distribution:

p̃n(θθθ ,zzzn) =
1
Zn

p0(θθθ)p0(zzzn)p(xxxn|zzzn,θθθ)
αn exp

[
λλλ

T
−nΦΦΦ(θθθ)+ηηη

T
n ψψψ(zzzn)

]
. (B.12)

Also zeroing the gradient wrt. q yields the fixed point conditions (up to a constant)(
∑
n

1
αn
−1
)

λλλ q = ∑
n

1
αn

λλλ−n,
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just like in power EP, and (1−αn)ηηη(xxxn) = ηηηn. The second one is similar to the BB-α
case so we directly assume it holds and drop the optimisation problem of ηηηn. Furthermore,
substituting p̃n back into (B.11) and zeroing the gradient wrt. q, we arrive at the following
power EP energy

(∑
n

1
αn
−1) log

∫
p0(θθθ)exp

[
λλλ

T
q ΦΦΦ(θθθ)

]
dθθθ +∑

n
(

1
αn
−1) log

∫
p0(zzzn)exp

[
ηηη(xxxn)

T
ψψψ(zzzn)

]
dzzzn

−∑
n

1
αn

log
∫

p0(θθθ)p0(zzzn)p(xxxn|zzzn,θθθ)
αn exp

[
λλλ

T
−nΦΦΦ(θθθ)+(1−αn)ηηη(xxxn)

T
ψψψ(zzzn)

]
dθθθdzzzn

subject to (∑
n

1
αn
−1)λλλ q = ∑

n

1
αn

λλλ−n.

(B.13)
To make the KL duality tight we define the approximation q obtained from the dual energy
optimisation as

q(θθθ) =
1
Zq

p0(θθθ)exp
[
λλλ

T
q ΦΦΦ(θθθ)

]
, q(zzzn|xxxn) =

1
Zq(xxxn)

p0(zzzn)exp
[
ηηη(xxxn)

T
ψψψ(zzzn)

]
.

We also present a much cleaner version of the energy function by substituting the q distribu-
tions into the power EP energy (with a further definition λλλ n =

1
αn
(λλλ q−λλλ−n)) and rearranging

terms:

− log
∫

p0(θθθ)exp
[
λλλ

T
q ΦΦΦ(θθθ)

]
dθθθ −∑

n

1
αn

logEq(θθθ)q(zzzn|xxxn)

 p0(zzzn)p(xxxn|zzzn,θθθ)

q(zzzn|xxxn)exp
[
λλλ

T
n ΦΦΦ(θθθ)

]
αn


subject to λλλ q = ∑

n
λλλ n.

(B.14)
The BB-α variant can be derived similarly by further constraint relaxations. The detailed

derivation is omitted here, but in summary we keep the constraint for ψψψ but modify the other
constraint by Eq(θθθ)[ΦΦΦ] = 1

N ∑nEp̃n[ΦΦΦ]. One can show that the dual energy becomes (again
after rearranging terms)

−∑
n

1
α

logEq(θθθ)q(zzzn|xxxn)

[(
p0(θθθ)

1
N p0(zzzn)p(xxxn|zzzn,θθθ)

q(θθθ)
1
N q(zzzn|xxxn)

)α]
, (B.15)

with q(θθθ) and q(zzzn|xxxn) defined as exponential family distributions. Extensions to general q
distributions can be justified using Rényi divergences minimisation methods presented in
Chapter 4.
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Nesting power-EP/BB-α in VI

This section discusses how to use power EP/BB-α as an inner loop computation for variational
inference. It starts from (B.9), but only applies constraint relaxations to the moments for the
latent variables. In other words, now the constraints are Eq[ψψψ(zzzn)] = Ep̃n[ψψψ(zzzn)] and q(θθθ) =
p̃n(θθθ). For computational convenience we assume p̃n(θθθ ,zzzn) = q(θθθ)p̃n(zzzn|θθθ) w.l.o.g. so
that there is only one set of constraints Eq(zzzn|xxxn)[ψψψ(zzzn)] = Eq(θθθ)p̃n(zzzn|θθθ)[ψψψ(zzzn)] (besides the
normalisation ones). Denote ηηηn as the associated Lagrange multipliers for the moment
maching constraints, then solving the corresponding Lagrangian yields (1−αn)ηηη(xxxn) = ηηηn

again, and

p̃n(zzzn|θθθ) =
1

Zn(xxxn,θθθ)
p0(zzzn)p(xxxn|zzzn,θθθ)

αn exp
[
(1−αn)ηηη(xxxn)

T
ψψψ(zzzn)

]
. (B.16)

Note that now the normalising constant Zn(xxxn,θθθ) is also a function of θθθ . We still keep
the free-form optimisation for q(θθθ). Substitution of p̃n(zzzn|θθθ) into the Lagrangian returns a
“mixed form” of energy (again after rearranging terms)

min
q

KL[q(θθθ)||p0(θθθ)]−∑
n
Eq(θθθ)

[
1

αn
logEq(zzzn|xxxn)

[(
p0(zzzn)p(xxxn|zzzn,θθθ)

q(zzzn|xxxn)

)αn
]]

, (B.17)

where q(zzzn|xxxn) is restricted to have an exponential family form:

q(zzzn|xxxn) ∝ p0(zzzn)exp
[
ηηη(xxxn)

T
ψψψ(zzzn)

]
.

Remark. A naive modification of the constraints to Eq[ΦΦΦ(θθθ)] = Ep̃n[ΦΦΦ(θθθ)] and
q(zzzn|xxxn) = p̃n(zzzn) does not lead to a nested approach of VI in power-EP/BB-α . We
omit the details here, but a try-out for the BB-α variant returns the following energy

min
q ∑

n
KL[q(zzzn|xxxn)||p0(zzzn)]−∑

n

1
α
Eq(zzzn|xxxn) logEq(θθθ)

[(
p0(θθθ)

1/N p(xxxn|zzzn,θθθ)

q(θθθ)1/N

)α]
,

(B.18)
with q(θθθ) also restricted as an exponential family distribution.
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Nesting VI in power-EP/BB-α

Recall in the beginning we mentioned that the decoupling process plays a crucial role on the
dual form of the energy. Now we decouple the variational distributions in a different way:

Fααα(q,{ p̃n}) =
(

1−∑
n

1
αn

)
KL[q(θθθ)||p0(θθθ)]

−∑
n

1
αn

Ep̃n(θθθ)q(zzzn|xxxn)

[
log

p0(θθθ)p0(zzzn)
αn p(xxxn|zzzn,θθθ)

αn

p̃n(θθθ)q(zzzn|xxxn)αn

]
,

(B.19)
In this case we only relax the constraints to p̃n(θθθ) to moment matching: Eq[ΦΦΦ] = Ep̃n[ΦΦΦ].

We also reuse the derivations in Section 2.3.3 of the main text by noticing now

log fn(θθθ) = Eq(zzzn|xxxn)

[
log

p0(zzzn)p(xxxn|zzzn,θθθ)

q(zzzn|xxxn)

]
, (B.20)

and thus omit the detailed expression of the energy functions. Readers are referred to (2.35)
in the main text. This algorithm (with the power EP variant) returns the same stationary
points as VI if the model is conjugate, i.e. log p(xxxn|zzzn,θθθ) is linear in ΦΦΦ(θθθ).

Variational message passing between tilted distributions

Applying similar derivations as in B.2.3 to the decoupling B.9 returns a slightly different
algorithm that applies variational message passing (VMP) [Winn and Bishop, 2005] to the
tilted distributions. Here we also directly enforce the factorisation assumption, i.e. p̃(θθθ ,zzzn) =

p̃n(θθθ)p̃n(zzzn). This returns the same fixed point as with the joint tilted distribution version if
we optimise the free energy under equality constraints. However the stationary points differs
from those derived above when relaxing the constraint to moment matching. This is because,
as p̃ factorises, the fixed point solution of the Lagrangian should contain “messages” sent
between p̃n(θθθ) and p̃(zzzn). To be precise, we solve the fixed point of the Lagrangian (B.11)
(but with factorised p̃). The fixed point conditions for q remain the same, but those for p̃
become

p̃n(θθθ) =
1
Zn

p0(θθθ)exp
[
λλλ

T
−nΦΦΦ(θθθ)+αnEp̃(zzzn)[log p(xxxn|zzzn,θθθ)]

]
, (B.21)

p̃n(zzzn) =
1

Zn(xxxn)
p0(zzzn)exp

[
ηηη

T
n ψψψ(zzzn)+αnEp̃n(θθθ)[log p(xxxn|zzzn,θθθ)]

]
. (B.22)
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Substituting these new fixed point equations back to the Lagrangian returns a different dual
energy function

(∑
n

1
αn
−1) logZq +∑

n
(

1
αn
−1) logZq(xxxn)−∑

n

1
αn

(logZn + logZn(xxxn))

+∑
n
Ep̃n(θθθ)p̃n(zzzn) [log p(xxxn|zzzn,θθθ)]

subject to (∑
n

1
αn
−1)λλλ q = ∑

n

1
αn

λλλ−n.

(B.23)

The BB-α version can also be derived similarly which we omit here.
In general the above algorithm behaves differently when compared to VMP, since 1)

the local messages are computed using the tilted distributions and 2) for non-conjugate
models the tilted distributions contain more complex structure compared to q. In below we
provide a fixed point iteration procedure to find the stationary points of the above constrained
optimisation problem.

1 Select a datapoint xxxn;

2 Compute cavity distribution q−n(θθθ) (either using power EP or BB-α);

3 Compute cavity distribution q−1(zzzn) when αn ̸= 1, otherwise q−1(zzzn) = p0(zzzn);

4 Run VMP/VI on this single datapoint xxxn with prior terms changed to q−n(θθθ) and
q−1(zzzn). This procedure calculates p̃n(θθθ) and p̃(zzzn);

5 Compute the moment matching update qnew(θθθ)← proj[p̃n(θθθ)] (similarly for q(zzzn));

6 Compute the final update for q with qnew (either using power EP or BB-α).

B.3 VR-bound optimisation for discrete distributions

Although in Chapter 4 we mainly focused on continuous distributions, here we also briefly
show that a recent variance reduction technique for discrete distributions, called variational
inference with Monte Carlo objectives (VIMCO) [Mnih and Rezende, 2016], can also be
applied to the MC approximated VR bounds. This proposal has also been considered in Webb
and Teh [2016] and their initial evaluation showed that using Rényi divergences provides
advantages over the original VIMCO approach.
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Consider the gradient of the MC approximated bound w.r.t. φφφ , the parameter of the
recognition model:

∇φφφE{hhhk}[L̂α,K(q;xxx)] =
K

∑
j=1

E{hhhk}

[
1

1−α
log

1
K

K

∑
k=1

(
p(hhhk,xxx)
q(hhhk|xxx)

)1−α

∇φφφ logq(hhh j|xxx)

]
−E{hhhk}

[
ŵα,k∇φφφ logq(hhhk|xxx)

]
,

with ŵα,k =
(

p(hhhk,xxx)
q(hhhk|xxx)

)1−α

/∑
K
k=1

(
p(hhhk,xxx)
q(hhhk|xxx)

)1−α

. Notice that for any function f (hhhk ̸= j) we have

E{hhhk}[ f (hhhk ̸= j)∇φφφ logq(hhh j|xxx)] = E{hhh j ̸=k}[ f (hhhk ̸= j)Eq(hhhk|xxx)[∇φφφ logq(hhh j|xxx)]] = 0.

This means we can choose some function f (hhhk ̸= j) that is correlated with the MC estimate to
reduce the variance of the stochastic gradient. We follow Mnih and Rezende [2016] to define

∆− j :=
1

1−α
log

1
K

K

∑
k=1

(
p(hhhk,xxx)
q(hhhk|xxx)

)1−α

− 1
1−α

log
1

K−1 ∑
k ̸= j

(
p(hhhk,xxx)
q(hhhk|xxx)

)1−α

,

so the gradient w.r.t. φφφ can be re-written as

∇φφφE{hhhk}[L̂α,K(q;xxx)] =
K

∑
j=1

E{hhhk}
[
∆− j logq(hhh j|xxx)

]
−E{hhhk}

[
ŵα,k∇φφφ logq(hhhk|xxx)

]
. (B.24)

B.4 Going beyond mean-field: further examples

B.4.1 Invertible transformations and normalising flows

In Section 5.2 we have discussed distributions constructed by warping a random noise
variable through a deep neural network. However the non-linear mapping f might not be
invertible, resulting in an intractable density. Instead, here we introduce the idea of invertible
transformations which allow tractable evaluation point-wise, and discuss extensions such as
normalising flows.

Now consider adding the invertibility constraint to the non-linear mapping f which acts
on the latent variables zzz ∈ Rd . This means:

f : Rd → Rd, ∃ggg : Rd → Rd s.t. ggg◦ f(zzz) = f◦ggg(zzz) = zzz.

In the following we also write f−1 = ggg, and assume the mapping is smooth, i.e. ∇zzzf(zzz) exists
everywhere. Therefore, given a distribution q(zzz) and by temporarily denoting y = f(zzz), we
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have
q(y) = q(zzz)|det(∇zzzf(zzz))|−1. (B.25)

Then when density evaluation is required on a given y, one would compute the inverse
mapping zzz = f−1(y), compute the density value q(zzz), and obtain the determinant of the
Jacobian det(∇zzzf(zzz)). We can further construct a highly non-linear invertible mapping by
composing invertible transforms, i.e.

zzzT = fT ◦ fT−1 ◦ · · · ◦ f1(zzz0),

which induces a random variable zzzT given the distribution of zzz0:

q(zzzT ) = q(zzz0)
T

∏
t=1
|det(∇zzzt−1ft(zzzt−1))|−1. (B.26)

This type of distributions is named normalising flow distributions, and in principle one can
construct arbitrarily complex distributions by increasing T or having expressive mappings
ft . However, in practice the representation power of these distributions is largely restrictive
due to the constraints introduce by the algorithms to fit them. We provide two application
scenarios to explain why.

• Maximum likelihood training for generative models.
Consider a generative model defined as the following:

zzz0 ∼ p(zzz0) =N(zzz;000,I), xxx = zzzT = fT ◦ fT−1 ◦ · · · ◦ f1(zzz0),

in which the parameters of the mappings ft are collected into θθθ . Then given a dataset
D = {xxxn}N

n=1 a maximum likelihood estimate of θθθ requires solving the following
optimisation problem:

θθθ
ML = argmax

θθθ

N

∑
n=1
{log p(zzzn

0)−
T

∑
t=1

log |det(∇zzzn
t−1

ft(zzzn
t−1))|}|zzzn

T=xxxn. (B.27)

Although now the density log p(xxx) is tractable thanks to the invertible transform rules,
for high dimensional observations xxx the above optimisation task can still be very chal-
lenging. First computing the determinant of the Jacobian det(∇zzzn

t−1
ft(zzzn

t−1)) normally
requires O(d3) time if the Jacobian matrix is dense, which can be very expensive for
e.g. image data with hundreds of dimensions. Second, one would typically expect to
use more invertible transformations when modelling high dimensional data, indicating
that T also increases with d.
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• Variational inference with normalising flows.
One can also use a normalising flow to construct the approximate posterior distribution

zzz0 ∼ q(zzz0), zzzT = fT ◦ fT−1 ◦ · · · ◦ f1(zzz0),

and fit the variational parameters φφφ by maximising the variational lower-bound:

LV I(q;xxx) = Eq(zzzT )[log p(xxx,zzzT )]−Eq(zzzT )[logq(zzzT )]. (B.28)

The reconstruction term can be easily calculated following the LOTUS rule (see Section
2.5.1)

Eq(zzzT )[log p(xxx,zzzT )] = Eq(zzz0)[log p(xxx, fT ◦ fT−1 ◦ · · · ◦ f1(zzz0))],

however, the second entropy term still involves evaluating the determinant of the
Jacobian matrices:

H[q(zzzT )] = Eq(zzz0)

[
− logq(zzzn

0)+
T

∑
t=1

log |det(∇zzzn
t−1

ft(zzzn
t−1))|

]
,

which, for similar reasons as in the MLE example, can still be very expensive.

Importantly, in both examples, one needs to compute a sequence of Jacobian matrices
as a sub-routine of the optimisation procedure. So to make them practical for real-world
problems, researchers have designed a number of invertible mappings f whose Jacobian is
diagonal/low-rank/triangular. Then the induced normalising flow distribution allows faster
density evaluation that scales almost linearly to the dimension d. Some examples include:

• Individual/block mapping:
denoting zt [i] as the ith element of the vector zzzt

q(zzz0) =
d

∏
i=1

q(z0[i]), zT [i] = fT ◦ fT−1 ◦ · · · ◦ f1(z0[i]),

and obviously the Jacobian matrix is diagonal, and the determinant can be computed
in linear time. This idea can also be generalised to block mappings, which construct
invertible transformations on a subset of the random variables. The resulting Jacobian
matrix is block-diagonal whose determinant can still be evaluated in a fast way.

• Linear time invertible transform:
Rezende and Mohamed [2015] proposed a linear time invertible mapping as the
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following
f(zzz) = zzz+uuuσ(wwwTzzz+b),

where the free parameters are uuu ∈ Rd , w ∈ Rd and b ∈ R, and σ(·) denotes a smooth
invertible non-linearity. Then one can evaluate the log-det of the Jacobian in linear
time as

log |det(∇zzzf(zzz))|= |1+uuuT
σ
′(wwwTzzz+b)www|.

• NICE and realNVP: introducing coupling mappings.
Dinh et al. [2014] introduced an invertible mapping which is composed by transforma-
tions with auto-regressive structure. The algorithm starts from splitting the variables
into disjoint sets zzz = [zzz1,zzz2], zzz1 ∈ Re, then define the transform:

y = [y1,y2] = f(zzz) ⇔ y1 = zzz1,y2 = ggg(zzz2;m(zzz1)),

where m : Re→Rc (no need to be invertible) and ggg : Rd−e+c→Rd−e is a “conditional”
invertible mapping, i.e. one can compute zzz2 given m(zzz1) and y2. For this mapping the
Jacobian matrix and its determinant are

∇zzzf(zzz) =

[
I 000

∇zzz1ggg ∇zzz2ggg

]
, |det(∇zzzf(zzz))|y=f(zzz) = |det(∇zzz2ggg)|zzz2=ggg−1(y2;m(y1)).

The authors named this type of mappings as non-linear independent component esti-
mation (NICE). One can then stack the NICE mappings to construct a deep non-linear
transformation, and in particular to allow non-linear behaviour of the output variables,
define

xxx = [xxx1,xxx2] = f2(y) ⇔ xxx2 = y2,xxx1 = ggg2(y
1;m2(y2)).

In their following work, Dinh et al. [2017] further extended NICE to real-valued
non-volume preserving flow (realNVP), by defining

ggg(zzz2,m(zzz1)) = zzz2⊙ exp(s(zzz1))+ t(zzz1), m(zzz1) = [s(zzz1), t(zzz1)],

and constructing the splitting zzz = [zzz1,zzz2] using check-board masks and channel masks.

• Inverse auto-regressive flow:
Kingma et al. [2016] introduced the inverse auto-regressive flow (IAF) which defines
the invertible transform as

zzzt = sigmoid(ssst)⊙zzzt−1+(1−sigmoid(ssst))⊙mmmt , [ssst ,mmmt ] =Auto-regressiveNN[t](zzzt−1).
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Here the Auto-regressiveNN[t](zzzt−1) is a network acting on the previous random
variable zzzt , such that the ith element of ssst (and mmmt) only depends on zzzt−1[1 : (i−1)].
Therefore, the Jacobian ∇zzzt−1ssst (and ∇zzzt−1mmmt) is a lower-triangular matrix with zeros
on the diagonal, so that the determinant of the Jacobian ∇zzzt−1zzzt is

det(∇zzzt−1zzzt) =
d

∏
i=1

sigmoid(ssst)[i].

As a side note, one can also construct continuous time normalising flow using stochastic
differential equations. Further, one can add auxiliary variables and apply invertible mappings
to the augmented space, and then use the marginal distribution of zzz as the induced probability
density. A prevalent example is the Hamiltonian Monte Carlo (HMC) method [Neal, 2011],
which essentially deploys a deterministic dynamics in the augmented space of {zzz, ppp}. Impor-
tantly this flow (with Leapfrog discretisation) is volume preserving in the joint space (zzz, ppp),
i.e. the determinant of the Jacobian is 1 [Neal, 2011]. This idea has also been investigated
in Salimans et al. [2015] where the authors discretised the HMC dynamics and learned the
HMC parameters with VI.

B.4.2 Mixture and hierarchical densities for posterior approximations

Besides invertible transformations which “go deeper” and construct highly non-linear warp-
pings, another direction for improving posterior approximations is to “go wider”, i.e. using
mixture densities with many simple components. For example, Jaakkola and Jordan [1998]
had applied a Gaussian mixture density to approximate the intractable exact posterior, and
indeed with sufficiently many components, the mixture density can approximate any dis-
tribution arbitrarily well. However, their method relies on a further approximation to the
variational lower-bound and applies to only a small set of probabilistic models. In the
following we present the recent retake on fitting this type of approximate densities, which
introduces auxiliary variables/bounds and is compatible with the MC estimation framework.

As a simple example, consider the following mixture density:

q(zzz|xxx) =
∫

q(zzz|aaa,xxx)q(aaa|xxx)daaa.

In the Gaussian mixture density example, q(zzz|aaa,xxx) is a Gaussian distribution with its mean
and variance determined by the auxiliary variable aaa, and q(aaa|xxx) is typically a categorical
distribution representing the probability of selecting a component. Substituting this mixture
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density into the variational lower-bound, we have

LVI(q;xxx) = Eq[log p(xxx,zzz)]−Eq[log
∫

q(zzz|aaa,xxx)q(aaa|xxx)daaa], (B.29)

and computing the entropy term can be very expensive if q contains many, or even infinite
number of component. To address this issue, a first attempt by Gershman et al. [2012]
introduced a further lower-bound to the entropy term, again using the Jensen’s inequality:

H[q] =−Eq[logq(zzz|xxx)]

=−
∫

q(aaa|xxx)q(zzz|aaa,xxx) logq(zzz|xxx)dzzzdaaa

≥−
∫

q(aaa|xxx) log
(∫

q(zzz|xxx)q(zzz|aaa,xxx)dzzz
)

daaa

=−
∫

q(aaa|xxx) log
(∫

q(zzz|aaa,xxx)q(zzz|aaa′,xxx)q(aaa′|xxx)daaa′dzzz
)

daaa.

(B.30)

According to the fact that the integral of the product of Gaussians is still Gaussian, the
integral inside the logarithm can also be expressed as a mixture of Gaussian. However, this
does not remove the requirement of evaluating all components thus no computational gains.

An alternative, and more appealing approach, considers adding an auxiliary density
r(aaa|zzz,xxx) for the sake of obtaining a better lower-bound. More precisely, we subtract from the
variational lower-bound (B.29) the KL divergence from q(aaa|zzz,xxx) to r(aaa|zzz,xxx):

LVI(q;xxx)−KL[q(aaa|zzz,xxx)||r(aaa|zzz,xxx)] = Eq

[
log

p(xxx,zzz)r(aaa|xxx,zzz)
q(zzz|aaa,xxx)q(aaa|xxx)

]
, (B.31)

and this auxiliary lower-bound is tight (to the variational lower-bound) iff. r(aaa|zzz,xxx) =
q(aaa|zzz,xxx). Therefore we can optimise the auxiliary distribution r(aaa|zzz,xxx) as well to reduce the
bias of the auxiliary bound, which usually leads to improved approximation quality of the q
distribution. Furthermore, MC estimation methods is applicable to the auxiliary lower-bound
that also returns an unbiased estimator.

The auxiliary lower-bound idea was extensively discussed in Maaløe et al. [2016];
Ranganath et al. [2016b]; Salimans et al. [2015]; Tran et al. [2016], and specifically, Salimans
et al. [2015] considered a hierarchy of auxiliary variables, i.e. aaa = {aaa1, ...,aaaL}, and

q(zzz,aaa|xxx) = q(zzz|aaaL,xxx)q(aaa1|xxx)
L−1

∏
l=1

q(aaal+1|aaal,xxx).
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The corresponding auxiliary distribution is then defined as

r(aaa|zzz,xxx) = r(aaaL|zzz,xxx)
L−1

∏
l=1

r(aaal|aaal+1,xxx).

B.5 Inequalities and identities

B.5.1 Jensen’s inequality

Proposition B.2. (Jensen’s inequality) If f (x) is a convex function, then for any distribution
p(x),

Ep(x)[ f (x)]≥ f (Ep(x)[x]).

A visual proof is provided in Figure B.1.

(a) for discrete distributions (b) for continuous distributions

Fig. B.1 A visual proof of the Jensen’s inequality.

B.5.2 Hölder’s inequality

Proposition B.3. (Hölder’s Inequality) Let (X,Σ,µ) be a measure space and let p,q ∈
[1,+∞] satisfying 1

p +
1
q = 1, then for all measurable functions f , g on X,

∫
| f (x)g(x)|dµ ≤

(∫
| f (x)|pdµ

) 1
p
(∫
|g(x)|qdµ

) 1
q

.

Setting p = q = 2 recovers the Cauchy-Schwarz inequality.
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Proof. We assume ∃x ∈ X s.t. f (x) ̸= 0 w.l.o.g., then

∫
| f (x)g(x)|dµ =

(∫
| f (x)|pdµ

)∫
[(|g(x)|| f (x)|1−p)q]

1
q
| f (x)|p∫
| f (x)|pdµ

dµ

≤
(∫
| f (x)|pdµ

)[∫
(|g(x)|| f (x)|1−p)q | f (x)|p∫

| f (x)|pdµ
dµ

] 1
q

=

(∫
| f (x)|pdµ

)1− 1
q
[∫
|g(x)|qdµ

] 1
q

=

(∫
| f (x)|pdµ

) 1
p
[∫
|g(x)|qdµ

] 1
q

.

For the second line we used the Jensen’s inequality, with the function h(x) = x
1
q which is

convex when q >= 1, and the probability measure p(x) = | f (x)|p∫
| f (x)|pdµ

. For the third and the

last lines we used the assumption that 1
p +

1
q = 1.

B.5.3 Stein’s identity

We provide a proof of Stein’s identity in 1D case. The general case can be proved accordingly.

Proposition B.4. (Stein’s identity, one dimensional case) Let p(x) be a differentiable prob-
ability density function of x ∈ R. Let h(x) be a function such that limx→±∞ p(x)h(x) = 0.
Then

Ep[h(x)∇x log p(x)+∇xh(x)] = 0.

Proof. Using integration by parts, we have

Ep[h(x)∇x log p(x)+∇xh(x)] =
∫

p(x)h(x)∇x log p(x)dx+
∫

p(x)∇xh(x)dx

=
∫

h(x)∇x p(x)dx+
∫

p(x)∇xh(x)dx

=
∫

∇x[h(x)p(x)]dx

= h(x)p(x)|+∞
−∞ = 0. // boundary condition

Stein [1972] proposed the following lemma for Gaussian distribution.

Lemma B.1. ([Stein, 1972]) Let p(x)=N(x; µ,σ2), and the function h(x) satisfies |Ep[g(x)(x−
µ)]|<+∞ and |Ep[∇xg(x)]|<+∞. Then

Ep[g(x)(x−µ)] = σ
2Ep[∇xg(x)].
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Later, Chen [1975] extended the characterisation to Poisson distribution.

Lemma B.2. ([Chen, 1975]) A random variable x taking values in N is Poisson distributed
with rate λ , if and only if P(x) satisfies

EP[λh(x+1)− xh(x)] = 0

for all bounded functions h : N→ R.

Proof. Assume x is Poisson distributed with rate λ , then

EP[λh(x+1)− xh(x)] =
+∞

∑
n=0

λh(n+1)exp[−λ ]
λ n

n!
−

+∞

∑
n=0

nh(n)exp[−λ ]
λ n

n!

=
+∞

∑
n=1

h(n)exp[−λ ]
λ n

(n−1)!
−

+∞

∑
n=1

h(n)exp[−λ ]
λ n

(n−1)!
= 0.

Conversely if the identity holds for every function h(x), then setting h(x) = δx−k for some k,
by assumption we have

EP[λh(x+1)− xh(x)] = λP(x = k−1)− kP(k) = 0,

which implies
P(x = k)

P(x = k−1)
=

λ

k
=

Poissonλ (x = k)
Poissonλ (x = k−1)

.

Since it holds for all k ∈ N+, we conclude that x is Poisson distributed.




	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Inference, integration and optimisation
	1.1.1 Exact Bayesian inference as integration
	1.1.2 Approximate Bayesian inference as optimisation

	1.2 Questions to be answered for algorithmic design
	1.3 Thesis outline

	I Unifying Variational Methods
	2 Divergences, Algorithms and Applications
	2.1 Statistical divergences for probability distributions
	2.1.1 Kullback-Leibler (KL) divergence
	2.1.2 Amari's -divergences

	2.2 Variational inference with KL-divergence
	2.2.1 Kullback-Leibler divergence and variational free-energy
	2.2.2 A mean-field approximation example
	2.2.3 Monte Carlo variational inference
	2.2.4 Amortised inference

	2.3 Expectation propagation with -divergences
	2.3.1 Factor graphs and exponential families
	2.3.2 Expectation propagation
	2.3.3 EP energy: a primal-dual story

	2.4 A battle between VI and EP: which I should prefer?
	2.5 Applications: Bayesian deep learning
	2.5.1 Deep generative models
	2.5.2 Bayesian neural networks

	2.6 Summary and outlook

	3 Stochastic Expectation Propagation
	3.1 Memory efficient factor tying
	3.1.1 A quick comparison between EP and ADF
	3.1.2 Stochastic expectation propagation

	3.2 Algorithmic extensions to SEP
	3.2.1 Parallel SEP: relating the EP fixed points to SEP
	3.2.2 Stochastic power EP: relationships to variational methods
	3.2.3 Distributed SEP: controlling granularity of the approximation
	3.2.4 SEP for latent variable models

	3.3 Computational complexity
	3.4 Experiments
	3.4.1 Bayesian probit regression
	3.4.2 DSEP experiments and grouping tests
	3.4.3 Probabilistic back-propagation for Bayesian neural nets

	3.5 Summary

	4 Rényi Divergence Variational Inference
	4.1 Rényi's -divergence
	4.2 Variational Rényi bound
	4.2.1 Mean-field approximation revisited
	4.2.2 Monte Carlo approximation of the VR bound
	4.2.3 A unified implementation with the reparameterisation trick
	4.2.4 Stochastic approximation for large-scale learning
	4.2.5 Optimisation issues with -divergences and MC approximations

	4.3 Experiments
	4.3.1 Bayesian neural networks
	4.3.2 Variational auto-encoders

	4.4 Summary


	II Wild Approximate Inference
	5 Wild Approximate Inference: Why and How
	5.1 Revisiting tractability issues in approximate inference
	5.1.1 Is it necessary to evaluate the approximate posterior distribution?
	5.1.2 Comparisons to sampling-based methods

	5.2 Examples of implicit distributions
	5.2.1 Neural network transform with noise inputs
	5.2.2 Stochastic deep neural networks and recurrent neural networks
	5.2.3 Learning to pass messages

	5.3 Algorithmic options for fitting arbitrary posterior approximations
	5.3.1 Energy approximation
	5.3.2 Direct gradient approximation
	5.3.3 New optimisation objectives
	5.3.4 Amortising stochastic dynamics

	5.4 Application: meta-learning for approximate inference
	5.5 Summary

	6 Gradient Estimators for Implicit Models
	6.1 Learning implicit probabilistic models
	6.2 Gradient approximation with the Stein gradient estimator
	6.2.1 Stein gradient estimator: inverting Stein's identity
	6.2.2 Stein gradient estimator minimises the kernelised Stein discrepancy
	6.2.3 Comparisons to existing kernel-based gradient estimators
	6.2.4 Adding predictive power

	6.3 Applications
	6.3.1 Synthetic example: Hamiltonian flow with approximate gradients
	6.3.2 Meta-learning of approximate posterior samplers for Bayesian NNs
	6.3.3 Towards addressing mode collapse in GANs using entropy regularisation

	6.4 Summary

	7 Conclusions and Future Work
	7.1 More discussions on the two themes
	7.2 Open problems
	7.2.1 Research challenges for EP-like methods
	7.2.2 Open challenges for wild approximate inference
	7.2.3 Approximate inference as computation, or modelling?


	References
	Appendix A Proofs and Derivations
	A.1 Derivations of PBP in Chapter 3
	A.2 Proofs of theorems in Chapter 4
	A.2.1 Proof of Theorem 4.2
	A.2.2 Proof of Corollary 4.1 
	A.2.3 Proof of Theorem 4.3

	A.3 Derivations and experimental details of Chapter 6
	A.3.1 Parametric Stein gradient estimator: the RBF kernel case
	A.3.2 Score matching estimator: the Epanechnikov kernel case
	A.3.3 Score matching estimator: the Cauchy kernel case
	A.3.4 Parametric Stein gradient estimator with the Cauchy kernel
	A.3.5 Experimental detals


	Appendix B Optional Materials
	B.1 Other divergences
	B.2 Sketching variational methods by constraint relaxations
	B.2.1 Further constraint relaxations by weighted averaging
	B.2.2 Distributed black-box alpha
	B.2.3 Nested variational methods

	B.3 VR-bound optimisation for discrete distributions
	B.4 Going beyond mean-field: further examples
	B.4.1 Invertible transformations and normalising flows
	B.4.2 Mixture and hierarchical densities for posterior approximations

	B.5 Inequalities and identities
	B.5.1 Jensen's inequality
	B.5.2 Hölder's inequality
	B.5.3 Stein's identity




