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Disclaimer

This monograph provides a high-level introduction on approximate in-
ference and goes a bit more in depth for a selected list of related topics
(with personal bias). The list here is non-exhaustive, even within each of
the topics I have omitted many related works. The reason is either I have
less expertise in the specific sub-area, or I have prioritised the explanation
of the basic concepts. Readers might observe a mix of formal and informal
writing styles, as most of the materials are adapted from my published pa-
pers, my reading notes, my PhD thesis, as well as the preparation materials
from my NeurIPS 2020 tutorial on approximate inference. I expect to keep
updating this list of topics to improve my explanations and include new
techniques.
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5.3.1 Variational Rényi bound/χ upper-bound . . . . . . . . . . . 53
5.3.2 Harmonic mean estimator . . . . . . . . . . . . . . . . . . . 55

5.4 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Message passing algorithms 57
6.1 The sum rule and the product rule . . . . . . . . . . . . . . . . . . 57

6.1.1 Factor graph . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.2 The sum-product algorithm . . . . . . . . . . . . . . . . . . 58

6.2 Expectation Propagation . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.1 A message passing view of EP . . . . . . . . . . . . . . . . . 62
6.2.2 Linking power EP and α-divergence . . . . . . . . . . . . . . 64

6.3 Bethe free-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.1 From variational free-energy to Bethe free-energy . . . . . . 66
6.3.2 Message passing: dual form optimisation of Bethe free-energy 69

2



Yingzhen Li Topics in Approximate Inference

6.4 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

II Approximate distribution design 72

7 Invertible transformations and normalising flows 72
7.1 Change of random variable under invertible transformations . . . . 72
7.2 Defining normalising flows . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.1 Some examples of normalising flow . . . . . . . . . . . . . . 74
7.3 Connecting normalising flows to MCMC methods . . . . . . . . . . 76
7.4 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Stochastic regularisation techniques 79
8.1 MC-dropout as variational inference . . . . . . . . . . . . . . . . . . 79
8.2 Gaussian dropout and the local reparameterisation trick . . . . . . 81
8.3 Revisiting variance reduction for Monte Carlo VI . . . . . . . . . . 82
8.4 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9 Implicit distributions 85
9.1 Revisiting tractability issues in approximate inference . . . . . . . . 85
9.2 Examples of implicit distributions . . . . . . . . . . . . . . . . . . . 86
9.3 Algorithmic options . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.3.1 Energy approximation . . . . . . . . . . . . . . . . . . . . . 89
9.3.2 Direct gradient approximation . . . . . . . . . . . . . . . . . 90
9.3.3 Alternative optimisation objectives . . . . . . . . . . . . . . 93
9.3.4 Amortising dynamics . . . . . . . . . . . . . . . . . . . . . . 93

9.4 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3



Yingzhen Li Topics in Approximate Inference

0 Front Matter

Approximate inference is key to modern probabilistic modelling, and since the start
of my PhD there has been considerable progress on this subject. The literature
becomes very diverse so that a new comer to the subject might find it difficult
to learn the key techniques and identify important papers. Therefore in this
document I share my reading and research notes on approximate inference, and I
hope this would help people understand the general idea of this subject.

0.1 How to use this document

I assume you (as the reader) know some basic concepts in probability and ma-
chine learning. If you are completely new to approximate inference, then I would
encourage you to start from § 0.3.

The notes are organised into the following categories:

• algorithms for fitting approximations;

• architecture designs of the approximation;

I should note that the topics included in the list are not “mutually independent”,
for example, a specific design of the approximate distribution might require special
care of the fitting algorithm. Also this document is far from complete – basically
inference computation is one of the most important research challenge in Bayesian
statistics and probabilistic modelling, and I am certain that I have missed a lot of
important work.

We will build from basics to advances for each topic in each category, so if you
find sections x.1 and x.2 very confusing then please contact me. At the end of each
topic section I will include a short list of (what I think are) “must read” papers,
and all the citations can be found in the reference list.1 If you want to suggest
papers you are also welcome to contact me. Comments and extra examples are
included as “remark” paragraphs: they often contain advanced stuff so they can
be skipped if appropriate.

0.2 Math preparation

In this section we establish the mathematical notations and concepts that will be
repeatedly used in the rest of the note.

• Observation variables x, and in supervised learning case we also use y as
the labels.

• Latent variable z, it is unobserved and needs to be integrated out.

• Model parameter θ: for example it can be the set of neural network weights.
Bayesian methods also consider it as a random variable.

1I am not an expert of sampling-based methods so I usually cite review papers and books for
them, and I definitely have missed some important papers.
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• Variational parameter φ: the parameters associate to the approximation.

• Probability density function:
Denote the measurable space as (Θ,Σ), where Θ is the sample space of the
random variable θ of interest, and Σ is a pre-defined σ-algebra on Θ. A
probability distribution P is a measure defined on Σ such that P (Θ) = 1.
Also we assume there exists a dominating measure (also called reference
measure) µ on Σ such that, for any probability distribution P defined on Σ,
we can define its probability density function p by dP = pdµ.2 For simplicity
in the rest of the note we will work with the sample space Θ = RD, the
σ-algebra Σ = {S : S ⊂ RD}, and the dominating measure dµ = dθ.
Finally we write P the space of PDFs such that any probability distribution
P defined on Σ has its PDF p ∈ P.

• Divergence:
Given a set of probability density functions P for a random variable θ, a
divergence on P is defined as a function D[·||·] : P × P → R such that
D[p||q] ≥ 0 for all p, q ∈ P, and D[p||q] = 0 iff. p = q.

The definition of divergence is much weaker than that for a distance such as
the `2-norm, since it does not need to satisfy either symmetry in arguments
or the triangle inequality. There exist many available divergences to use,
where some of them are heavily used in approximate inference.

0.3 Inference, integration and optimisation

Probabilistic modelling starts by defining a distribution of data. For instance,
in discriminative supervised learning, one would define a conditional distribution
p(y|x,θ), which is also called the likelihood function of θ. A concrete example for
this would interpret p(y|x,θ) as outputting the probability of a configuration of
y (e.g. a label or a real value) by transforming the input x (an image, a sentence,
etc.) through a neural network parameterised by θ. Before observing any real-
world data, the parameters θ are unknown, but we have a prior belief p0(θ) about
what value they might take, e.g. they should have small `2 norm if using a Gaussian
prior centred at zero. Then we receive the observations D = {(xn,yn)}Nn=1, and
based on data we want to answer questions on the unknown parameters θ, for
example: given D, what is the most probable value of θ, and how likely is θ to
be set to a given value? Answering these questions is precisely the procedure of
inference: a procedure of deducing unknown properties (in our example the neural
network weights) given the observed, or known information.

0.3.1 Exact Bayesian inference as integration

Bayesian statisticians are particularly interested in answering the latter question,
by computing the posterior distribution, or the posterior belief of θ given D, using

2We can also define divergences without assuming a common reference measure, which is out
of the scope of this note. In this case one should work with equalities up to zero measure.
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Bayes’ rule [Bayes and Price, 1763; Laplace, 1820]:

p(θ|D) =
p(D|θ)p0(θ)

p(D)
, (1)

with p(D|θ) =
∏

n p(yn|xn,θ) following the i.i.d. assumption. The elegance of
Bayes’ rule is that it separates inference from modelling. The model – the prior
distribution and the likelihood – completely determines the posterior distribution,
and the only thing left is to compute the inference.

A closer look at Bayes’ rule reveals that the core computation of Bayesian
inference is integration. Using the sum rule of probability distributions we have
the marginal distribution computed as3

p(D) =

∫
p(D|θ)p0(θ)dθ,

and if this integral is tractable, then the posterior distribution can be easily com-
puted by (1). Moreover, to predict the label y∗ on unseen datum x∗ a Bayesian
would compute the predictive distribution

p(y∗|x∗,D) =

∫
p(y∗|x∗,θ)p(θ|D)dθ, (2)

which again requires solving an integration problem. Even more, since it is hard
to visualise the posterior distribution in high dimensions, one would instead look
at the statistics of the posterior, for example

posterior mean µ =

∫
θp(θ|D)dθ,

posterior variance Σ =

∫
(θ − µ)(θ − µ)Tp(θ|D)dθ,

both are integration tasks as well. In summary, many tasks in Bayesian compu-
tation can be framed as computing an integral of some function F (θ) against the
posterior distribution: ∫

F (θ)p(θ|D)dθ. (3)

The goal of this document is to discuss how to perform this integration pragmat-
ically and efficiently.

Remark (Inference in a more general sense). More generally speaking, infer-
ence can be viewed as computing unknown quantities that is dependant on a
given distribution π(θ): ∫

F (θ)π(θ)dθ, (4)

where in the Bayesian inference example π(θ) = p(θ|D). Other examples of

3In discrete variable case the integral is calculated w.r.t. discrete measure, i.e. summation,
which will also be referred as integration in the rest of the manuscript.
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π(θ) include implicit distributions [Diggle and Gratton, 1984; Mohamed and
Lakshminarayanan, 2016] which are defined by data simulation processes (e.g.
physics simulator, neural network transform, etc.). In this document we focus
on studying the following type of distribution π(θ) = π∗(θ)/Z with tractable
unnormalised density π∗(θ), for example, we assume the joint model distribu-
tion p(θ,D) is tractable, so the exact posterior p(θ|D) is tractable up to a
constant p(D).

0.3.2 Approximate Bayesian inference as optimisation

Having an integration task at hand, the first action I would take is to check my
college calculus book with the hope of finding an analytical solution. Unfortu-
nately, for a vast number of integrands and distributions, the integral (3) does
not exhibit an analytical form (or at least people have yet to discover it). This is
particularly the case for neural networks: except for some limited special cases,4

in general the marginal probability is intractable, let alone the posterior and the
predictive distribution.

Instead of finding tractable forms of the integral, many mathematicians have
their research careers dedicated to an alternative method: numerical integration.
Because in a continuous space one could never compute F (θ)p(θ|D) at all loca-
tions then sum them up, instead methods such as discretisation and Monte Carlo
are employed. The Monte Carlo idea is particularly interesting in our context:
since the integral is computed against a probability distribution, a naive approach
would first sample from the posterior θk ∼ p(θk|D) then calculate the integral as∫

F (θ)p(θ|D) ≈ 1

K

K∑
k=1

F (θk). (5)

However this simple Monte Carlo approach assumes that the posterior distribution
is easy to draw samples from, which is again intractable in most scenarios. Statis-
ticians have applied advanced sampling schemes to (approximately) draw samples
from the posterior, including importance sampling, rejection sampling and Markov
chain Monte Carlo [Gelman et al., 2014]. Unfortunately, in high dimensions these
methods require a considerable number of samples, and the simulation time for
MCMC can be prohibitively long.

Now comes the brilliant idea of (optimisation-based, or indirect) approxi-
mate inference: can we find another distribution q(θ) that makes the integral∫
F (θ)q(θ)dθ comparably easier, and at the same time has minimal approxima-

tion error to the exact integral we want? Concretely, using the knowledge of the
functional form F one can come up with a class of candidate distributions Q, in
which integrating F w.r.t. any q ∈ Q has analytical form or can be evaluated
quickly with numerical methods. Then the only task here is to obtain the optimal
q distribution in Q such that the q integral is the most accurate approximation to

4e.g. the prior is Gaussian and the neural network only has one hidden layer with ReLU
activation.
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the exact one. So in short, approximate inference converts the integration prob-
lem of (Bayesian) inference into an optimisation task. For example, an indirect5

approach for fitting the q distribution would minimise a distance/divergence/dis-
crepancy measure from the approximation to the exact posterior

q∗(θ) = arg min
q∈Q

D[q(θ)||p(θ|D)]. (6)

Note here the measure D[·||·] might not be symmetric. A popular choice for the
divergence measure is the Kullback-Leibler divergence [Kullback and Leibler, 1951;
Kullback, 1959] which leads to the widely used variational inference algorithm
[Jordan et al., 1999; Beal, 2003]. In general an optimisation objective function F

is designed to allow an accurate approximation to be obtained:

q∗(θ) = arg min
q∈Q

F(q(θ); p(θ|D)), (7)

which might not reflect a specific choice of divergence/discrepancy. Often this ob-
jective function F is crafted such that at the optimum, F∗ can serve as an accurate
approximation to the (log) marginal distribution, or model evidence log p(D) as
well. A prevalent approach in this category considers the Bethe free energy [Bethe,
1935] that was first studied in statistical physics, which has also been shown as
the underlying objective of another popular approach called belief propagation
[Pearl, 1982]. All these methods are thoroughly discussed in later sections, and
once q is obtained, at prediction time the Bayesian predictive distribution (2) is
approximated by

p(y∗|x∗,D) ≈
∫
p(y∗|x∗,θ)q(θ)dθ. (8)

Remark (a comparison to Sampling methods). Many Bayesian statisticians
prefer sampling methods – and in fact it is the emergence of sampling meth-
ods such as importance sampling (IS), sequential Monte Carlo (SMC) [Doucet
et al., 2001] and Markov chain Monte Carlo (MCMC) that contributes to the
rapid development of Bayesian statistics. They have very nice theoretical guar-
antees, for example, IS and SMC provide unbiased estimates of the integral
and are asymptotically exact when the number of samples K → +∞. MCMC
has similar asymptotic exactness guarantee but it also requires the number of
transitions T → +∞. However, I view all these sampling methods as approx-
imate inference algorithms, simply due to the fact that in practice one can
never obtain an infinite number of samples, nor simulating the MCMC dy-
namics for an infinite amount of time. The “effective q distribution” in use
is q(θ) = 1

K

∑K
k=1 δ(θ = θk) in MC(MC) and q(θ) =

∑K
k=1 ŵkδ(θ = θk) in

(re-sampled) IS/SMC. These methods are very carefully designed to achieve
guarantees of unbiasedness and consistency.

5a direct method would consider minimising error(Eq[F ],Ep[F ]), however that involves the
exact integral and is mostly intractable.
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Remark (a comparison to Bayesian quadrature). Another important technique
for approximating integrals is Bayesian quadrature [O’Hagan, 1991; Kennedy
and O’Hagan, 1996; Ghahramani and Rasmussen, 2003], which has attracted
a lot of attention as well and has been expanded to form part of an emerg-
ing research field called probabilistic numerics.a Here we note that, Bayesian
quadrature and the approximate inference methods discussed above, address
different intractability issues in integration tasks. Typically, Bayesian quadra-
ture assumes the analytical form of the function F is unknown or very expensive
to evaluate, and builds a probabilistic model (e.g. Gaussian process) for F given
samples from the target distribution p. Approximate inference, on the other
hand, constructs approximate distributions to the intractable distribution p,
and considers tractable functions F instead. In short, both approaches can
be categorised as model-based approximate integration, with the only difference
that they fit approximations to different components of the integrand. Readers
are also referred to e.g. approximate Bayesian computation [Beaumont et al.,
2002] for those integrands without tractable F and p, and in this document
we only discuss approximate inference methods and assume F is analytic and
cheap to compute for a given configuration.

ahttp://www.probabilistic-numerics.org/
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Part I

Algorithms for fitting
approximate distributions

1 Variational inference

Many approximate inference algorithms measure the approximation quality by
considering the “closeness” between the target and the approximation. Then an
approximate distribution can be obtained by minimising the selected “closeness”
measure, and for variational inference (VI) this concept of “closeness” is estab-
lished as the Kullback-Leibler divergence.

1.1 Kullback-Leibler (KL) divergence

Kullback-Leibler divergence [Kullback and Leibler, 1951; Kullback, 1959], or KL
divergence, is arguably one of the most widely used divergence measures, not only
in approximate inference but also in machine learning, statistics, and information
theory.

Definition 1. (Kullback-Leibler Divergence) The Kullback-Leibler (KL) diver-
gence on P is defined as a function KL[·||·] : P × P → R with the following
form

KL[p||q] =

∫
p(θ) log

p(θ)

q(θ)
dθ, p, q ∈ P, (9)

where log is the natural logarithm (to base e).

One can easily check that indeed the above definition is a valid divergence. By
Jensen’s inequality6 we have (9) always non-negative, and it reaches zero iff. p = q.
Also it is clear that the KL divergence is asymmetric, i.e. KL[p||q] 6= KL[q||p].
Historically, especially when used in approximate inference context, these two
cases have been referred as the inclusive KL divergence for KL[p||q], and the
exclusive KL divergence for KL[q||p]. These names originate from the observation
that fitting q to p by minimising these two KL divergences returns results of
different behaviour, detailed as follows:

• Fitting q to p by minimising KL[q||p]:
This KL divergence would emphasise assignment of low probability mass
of q to the location where p is very small, thus the name “exclusive” KL.
Consider a region S ∈ Θ that has q(θ) > 0 but p(θ) = 0 for θ ∈ S, then this
would make the integrand in (9) infinity, thus the KL divergence assigns an
extremely high cost to q here. On the other hand, if p(θ) > 0 but q(θ) = 0,
then the integrand restricted to the subset S is zero, meaning that the cost

6Jensen’s inequality: for any convex function f and distribution p, Ep[f(x)] ≥ f(Ep[x]).
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for missing a region with positive p mass is much lower. We also refer this
property as “zero-forcing”, or “mode-seeking” when q is restricted to be
uni-modal.

• Fitting q to p by minimising KL[p||q]:
Conversely, this KL divergence would emphasise assignment of high proba-
bility mass of q to the location where p has positive mass, thus the name
“inclusive” KL. Consider the case that q(θ) > 0 but p(θ) = 0, then this
would make the integrand in (9) zero. In contrast, if p(θ) > 0 but q(θ) = 0,
then the integrand is infinity, meaning that the cost for missing a region
with positive p mass is extremely high. We also refer this property as “mass-
covering”.

Remark (maximum likelihood estimation and KL divergences). We will show
that maximum likelihood estimation (MLE) is equivalent to minimising a KL
divergence. For a given dataset D = {x1, ...,xN}, define the empirical distribu-
tion as p̂D(x) = 1

N

∑N
n=1 δ(x−xn) where δ(·) denotes the Dirac delta function.

Then we want to fit the data with a parametric probabilistic model p(x|θ) using
MLE:

θ̂ML = arg max
θ∈Θ

1

N

N∑
n=1

log p(xn|θ). (10)

Simple calculation reveals that maximising the log-likelihood of θ is equivalent
to minimising the KL divergence

θ̂ML = arg min
θ∈Θ

KL[p̂D(x)||p(x|θ)] = arg min
θ∈Θ

− 1

N

N∑
n=1

log p(xn|θ) + const.

MLE is widely used in all types of machine learning tasks, e.g. learning gener-
ative models. We will come back to this topic in later sections.

1.2 Variational free-energy

Unfortunately, direct divergence minimisation is still intractable, since that in-
volves evaluating the target distribution itself. For example, consider minimising
the exclusive KL divergence KL[q(θ)||p(θ|D)] to obtain the approximate posterior.
But we still need to compute p(θ|D), and in particular the marginal likelihood
p(D) which is intractable. In this section we discuss variational inference (VI) – a
widely used approximate inference algorithm – which incorporates divergence min-
imisation in a smart way. To emphasise that the algorithm is applicable to more
general cases beyond posterior approximation, we now write the target distribution
as

π(θ) =
1

Z
π∗(θ),

where π∗(θ) is the unnormalised target distribution and Z =
∫
π∗(θ)dθ is the

normalising constant or partition function. In the posterior approximation context

11
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π∗(θ) = p(θ,D) and Z = p(D).
As already discussed, the exclusive KL divergence minimisation problem is

intractable. Fortunately the minimiser of the exclusive KL can also be obtained
by an equivalent minimisation problem of the so called variational free-energy
(VFE):

min
q

FVFE(q; p) := min
q

KL[q(θ)||π(θ)]− logZ

= min
q

∫
q(θ) log

q(θ)

π∗(θ)
dθ.

(11)

This is because the normalising constant Z is independent with the approxima-
tion q, thus can be dropped in the exclusive KL. Historically the negative of the
variational free-energy is also frequently discussed, which is named variational
lower-bound or evidence lower-bound (ELBO) in the context of posterior approx-
imation

LVI(q; p) := −FVFE(q; p) =

∫
q(θ) log

π∗(θ)

q(θ)
dθ. (12)

The lower-bound property comes from the fact that logZ ≥ LVI(q; p), because
of the non-negativity of KL divergence. Equivalently, this property can also be
derived as follows:

logZ = log

∫
π∗(θ)dθ

= log

∫
q(θ)

π∗(θ)

q(θ)
dθ

≥
∫
q(θ) log

π∗(θ)

q(θ)
dθ. # Jensen’s inequality

Here Jensen’s inequality is applied to the logarithm which is concave. When pos-
terior approximation is considered we also denote the two quantities as FVFE(q;D)
and LVI(q;D), respectively. In summary, variational inference finds an approxima-
tion to the posterior through an optimisation process, which is drastically different
from sampling approaches that construct empirical point mass distributions to de-
scribe the posterior.

1.2.1 A brief history of variational inference

Variational inference can be viewed as an application of variational methods that
mathematicians and physicists have studied for centuries. Historically, physicists
mainly focused on mean-field theories for complex systems [Parisi, 1988], whereas
Dempster et al. [1977] as statisticians proposed the famous expectation maximi-
sation (EM) algorithm that also has a VI interpretation [Neal and Hinton, 1998].
Interestingly the pioneers of deep learning had also applied variational inference
(though under other names) for Bayesian neural networks [Peterson and Ander-
son, 1987; Hinton and Van Camp, 1993] that will be surveyed later. Especially
since the development of [Peterson and Anderson, 1987], mean-field approxima-
tions started to be an attractive alternative to sampling methods for probabilistic
inference in graphical models [Ghahramani, 1995].

12
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However it was until Saul et al. [1996] which introduced the generic form of
the variational lower-bound to explain the mean-field approximation. The first
papers that I can find which coined the term “variational inference” are Lawrence
et al. [1998] and Jordan et al. [1999], where Jordan et al. [1999] provided a de-
tailed summary of the previous work coming from the same group. Later on,
researchers started to extend the variational principle to cases beyond graphi-
cal models, e.g. the variational Bayes (VB) algorithm [Attias, 1999, 2000; Sato,
2001; Beal, 2003] that is used to perform posterior approximations of the model
parameters and even model selection.

1.3 A mean-field approximation example

As an example for the variational inference algorithm, here we present the varia-
tional mean-field approximation [Parisi, 1988] for Bayesian linear regression. Read-
ers are also refer to [Bishop, 2006] for more details and here we would briefly cover
the derivations presented there. Mean-field approximation, also known as the
factorised approximation, assumes the approximate posterior to be the form of

q(θ) :=
D∏
i=1

qi(θi). (13)

In general one can partition the elements of θ = (θ1, θ2, ..., θD) into disjoint groups
and apply factorisations over groups. This general case is usually called structured
mean-field approximation [Saul and Jordan, 1996], and for simplicity in the fol-
lowing example we only consider the fully factorised case (13). Also we emphasise
that there’s no further assumption/restriction that is made on the functional form
of qi(θi). As we shall see, the variational free-energy is still convex in qi(θi) and
thus the solution provided by the following is the global optimum.

To derive the best approximation in the mean-field distribution family, we first
substitute (13) into (11) (and use θ6=j to denote all the θi variables except θj):

FVFE(q; p) =

∫ ∏
i

qi(θi)

(∑
i

log qi(θi)− log π∗(θ)

)
dθ

=

∫
qj log qj(θj)dθj −

∫
qj(θj)

(∫ ∏
i 6=j

qi(θi) log π∗(θ)dθ 6=j

)
dθj + const

:=

∫
qj(θj) log qj(θj)dθj −

∫
qj(θj) log p̃(θj)dθj + const,

where p̃(θj) denote the “marginal” distribution satisfying

log p̃(θj) =

∫ ∏
i 6=j

qi(θi) log π∗(θ)dθ6=j + const.

This means, by fixing the functional form of qi for all i 6= j, VFE is reduced
to the KL-divergence KL[qj(θj)||p̃(θj)] plus a constant that is independent to qj.
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Thus the free-energy is still convex in qj, in which the unique global optimum is
obtained by setting qj(θj) = p̃(θj). To be precise, we explicitly write down the
optimal mean-field approximation as

q(θj) =
exp

[∫ ∏
i 6=j qi(θi) log π∗(θ)dθ6=j

]
∫

exp
[∫ ∏

i 6=j qi(θi) log π∗(θ)dθ6=j

]
dθj

. (14)

Now as an example consider Bayesian linear regression with 2-D inputs x and 1-D
output y:

θ ∼ N(θ;µ0,Λ
−1
0 ), y|x ∼ N(y;θTx, σ2).

Given the observations D = {(xn, yn)}Nn=1, the posterior distribution of θ can
be computed analytically as p(θ|D) = N(θ;µ,Λ−1) with Λ = Λ0 + 1

σ2

∑
n xnx

T
n

and Λµ = Λ0µ0 + 1
σ2

∑
n ynxn. To see how the mean-field approach works, we

explicitly write down the elements of the posterior parameters

µ =

(
µ1

µ2

)
, Λ =

(
Λ11 Λ12

Λ21 Λ22

)
, Λ12 = Λ21,

Then by explicitly expanding the mean-field solution (14):

log q1(θ1) =

∫
q2(θ2) log p(θ,D)dθ2 + const

= Eq2
[
−1

2
(θ1 − µ1)2Λ11 − (θ1 − µ1)Λ12(θ2 − µ2)

]
+ const

= −1

2
θ2

1Λ11 + θ1µ1Λ11 − θ1Λ12(Eq2 [θ2]− µ2) + const

:= logN(θ1;m1, λ
−1) + const

(15)

where the new mean m1 and the precision λ1 satisfies

m1 = µ1 − Λ−1
11 Λ12(Eq2 [θ2]− µ2), λ1 = Λ11.

It is important to note here that we do not assume the approximation to be a
Gaussian distribution in order to obtain the last equation in (15). Rather the
Gaussian distribution solution came out from the derivation of the global opti-
mum (14) and the completion of the square form. One can derive the terms
m2 = µ2 − Λ−1

22 Λ21(Eq1 [θ1] − µ1) and λ2 = Λ22 for q2 in the same way, and show
that m = µ is the only stable fixed point of this iterative update. So we have
q1 = N(θ1;µ1,Λ

−1
11 ), and similarly q2 = N(θ1;µ2,Λ

−1
22 ) as the unique global opti-

mum of variational mean-field approximation. A visualisation of the mean-field
approximation is provided in Figure 1. Note here the variance parameter of q(θ1)
also correspond to the variance of the conditional distribution p(θ1|θ2,D), which
is smaller than the variance of the marginal distribution p(θ1|D), and therefore
mean-field VI under-estimates the posterior uncertainty in this case.7

7We also have H[p] = − 1
2 log |Λ11Λ22 − Λ12Λ21|+ const ≥ H[q] = − 1

2 log |Λ11Λ22|+ const.
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Figure 1: Mean-field approximation to the exact posterior distribution in the
Bayesian linear regression example (with one-sigma contours). The exact posterior
contour is shown in black and the variational approximation is in purple.

Remark (Does VI always fit to a local mode of the target distribution?). VI
is usually referred as a “mode seeking” method in that when a single-mode
q distribution (such as Gaussian) is fitted to a multi-mode distribution, the
optimal q solution often captures one of the modes. For example, consider the
target distribution p(θ) = 1

2
p1(θ) + 1

2
p2(θ) where supp(p1) ∩ supp(p2) = ∅.

Due to the zero-forcing property of the exclusive KL-divergence (see § 1.1) q is
forced to fit one of the modes of p. However, if the mixture component p1 and
p2 has a significant amount of overlapping density mass, then q might not fit
to one mode of p only. For example, Figure 2 from Turner and Sahani [2011]
showed that, the optimal variational approximation q can even over-estimate
the entropy of the target distribution p. Therefore it is a nice counter-example
on the claim that variational inference approximation “always under-estimates
the uncertainty”.

1.4 Further reading

Jordan et al. [1999] presents VI in probabilistic graphical model context.
Wainwright and Jordan [2008]: a book-length paper that teaches both VI and

message passing (and more!) in the context of probabilistic graphical models. I
recommend reading chapters 2, 3 and 6 at this point, as they provide explanations
on how variational methods relate to convex optimisation.

Beal [2003] is a highly-cited thesis mainly for variational inference. I recom-
mend reading chapter 2 to start with, it shows how the EM algorithm relates to
variational inference, and it also sketches variational EM as a fast variant.
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Figure 2: Variational approximation to the target distribution which is a mixture
of two Gaussians: π(θ) = 1

2
N(θ;µ1, σ

2
1) + 1

2
N(θ;µ2, σ

2
2). The difference between

means ∆µ = µ1 − µ2 increases from 0 for the left column panels to 10 for the
right column panels. The ratio between variances σ2

1/σ
2
2 (with fixed σ2

2 = 1) also
increases from 0 for the bottom row panels to 10 for the top row panels. Figure
reproduced from Turner and Sahani [2011].
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2 Monte Carlo variational inference

In the mean-field VI example we have discussed variational inference algorithms
for linear regression. But real world problems are much more complicated. Often,
the “reconstruction error” term Eq[log π∗(θ)] in the variational free energy lacks an
analytical form. A prevalent example of such cases is variational inference for large-
scale data: here the unnormalised distribution π∗(θ) := p(θ,D) is proportional
to the product of many likelihood functions, and evaluating Eq[log π∗(θ)] requires
a pass of the whole dataset, which can be very expensive. On the other hand,
insisting on having an analytical form of the entropy term H[q] (or KL[q||p0])
would restrict the selection of q distributions to simple distributions like Gaussians.
Usually the exact posterior is very complicated, and these simple distributions
are expected to be poor approximations to the target distribution. Hence a key
challenge here is, can we design a variational algorithm that applies to complex
models, and scales to big data?

One solution to the above request is to develop further approximation tech-
niques specific to the chosen variational approximation. Indeed in the early days
researchers attempted to do so, e.g. see Jaakkola and Jordan [1998]. However
these solutions are applicable only to a handful of special cases, making them
impractical in many other interesting scenarios. Instead in this section we will
review another approach which can be quickly applied to many cases with little
effort. It has also been referred as a “black-box”8 approach [Ranganath et al.,
2014] due to this feature, but in the rest of the thesis we will refer it as Monte
Carlo VI (MC-VI or MCVI) [Paisley et al., 2012; Wingate and Weber, 2013].

2.1 Monte Carlo estimation of the variational lower-bound

To see how MCVI works, consider approximating the exact posterior distribu-
tion p(θ|D) ∝

∏
n p(xn|θ)p0(θ) by some simpler distribution q(θ). Rewriting the

variational lower-bound:

LVI(q; p) =
N∑
n=1

Eq[log p(xn|θ)] + Eq[log p0(θ)− log q(θ)], (16)

we see that it is the analytical tractability requirement of computing the expec-
tations that restrict the q (and possibly the model p) distribution to be of simple
form. This constraint can be removed by considering Monte Carlo (MC) approx-
imation to the expectation, which estimates the expectation by, for example

Eq[log p(xn|θ)] ≈ 1

K

K∑
k=1

log p(xn|θk), θk ∼ q(θ). (17)

This forms an unbiased estimation, and under mild assumptions, the RHS term
in (17) converges to the exact expectation value as K → +∞. The KL-divergence

8Here “black-box” means that the method can be applied to inference problems of many
probabilistic models without specific modifications of the optimisation algorithm. It does not
imply the model p or the q distribution is a black-box (detailed in later topics).
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term in the variational lower-bound can also be estimated with Monte Carlo in a
similar manner.

Also stochastic optimisation techniques can be extended here for scalability.
Notice that we have made the i.i.d. assumption on data, so that any statistics
on the dataset can be estimated by mini-batch sampling in an unbiased way.
Specifically, we have:

N∑
n=1

Eq[log p(xn|θ)] = ES∼D|S|

[
N

|S|
∑
n∈S

Eq[log p(xn|θ)]

]
, (18)

where S ∼ D|S| means sampling a mini-batch of datapoints from D with replace-
ment. This approach is widely used in stochastic optimisation in general, due to
the fact that

∇φ
N∑
n=1

Eq[log p(xn|θ)] =
N∑
n=1

∇φEq[log p(xn|θ)]

= ES∼D|S|

[
N

|S|
∑
n∈S

∇φEq[log p(xn|θ)]

]

= ∇φES∼D|S|

[
N

|S|
∑
n∈S

Eq[log p(xn|θ)]

]
,

(19)

which means we can directly differentiate the mini-batch estimate of the “re-
construction accuracy” part of the variational lower-bound in order to obtain a
stochastic estimate of the full gradient.

In summary, with the “black-box” approach of Monte Carlo integration and
the stochastic optimisation approach of mini-batch sampling, one can approximate
the variational lower-bound as

LMC
VI (q; p) =

N

|S|
∑
n∈S

1

K

∑
k

log p(xn|θk)+
1

K

∑
k

[log p0(θk)−log q(θk)], θk ∼ q(θ),

(20)
and compute stochastic gradient descent on the MC approximation (20) with
mini-batch S ∼ D|S|.

Remark (MC samples for different observations). In the MC approximation
(20) we assumed using the same set of samples {θk} to estimate all the ex-
pectation terms. In general we can use different sets of samples to do so, for
example, for every datapoint xn ∈ S, we can sample different sets of θk to es-
timate the associated reconstruction term Eq[log p(xn|θ)]. Prevalent examples
of this approach include stochastic regularisation techniques (SRTs) such as
dropout [Srivastava et al., 2014; Kingma et al., 2015; Gal, 2016].

2.2 Computing the MCVI gradients

Practitioners care a lot more about the stochastic optimisation process of the
MCVI algorithm compared to computing the MCVI bound. As the training of
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machine learning models relies on gradient descent based optimisation methods
mainly, in this section we will detail some tricks of computing the gradient of the
variational lower-bound using MC approximations.

2.2.1 LOTUS/reparameterisation trick and path gradients

We start by assuming θ a continuous variable, and the discrete case will be dis-
cussed later. Here we introduce a neat trick called the law of the unconscious
statistician (LOTUS). It has been extended to the reparameterisation trick in
variational inference context [Salimans and Knowles, 2013; Kingma and Welling,
2014; Rezende et al., 2014]. This trick, along with MC approximation, makes the
variational lower-bound easy to handle. It comes from a very simple observation:
given a distribution p(θ), if sampling θ ∼ p(θ) is equivalent to first sampling a
“noise” variable ε ∼ π(ε) and then computing a mapping θ = f(ε), then the
expectation of some function F (θ) under distribution p(θ) can be rewritten as

Ep(θ)[F (θ)] = Eπ(ε)[F (f(ε))].

This derives from the change of variable in PDFs. LOTUS applies to any transfor-
mation, but the reparamterisation trick specifically asks the transformation fφ(ε)
to be differentiable w.r.t. its parameters φ. In variational inference context, the
sampling procedure is required to be

θ ∼ qφ(θ)⇔ ε ∼ π(ε), θ = fφ(ε).

Then using the LOTUS rule, the variational lower-bound is computed as (we
ignore the entropy term for a moment):

LVI(qφ; p) = Eπ(ε)[log p(D, fφ(ε))] + H[qφ], (21)

and the gradient w.r.t. φ is the following:

∇φLVI(qφ; p) = ∇φEπ(ε)[log p(D, fφ(ε))] +∇φH[qφ]

= Eπ(ε)[∇φ log p(D, fφ(ε))] +∇φH[qφ] # π(ε) independent to φ

= Eπ(ε)[∇f log p(D, fφ(ε))∇φfφ(ε)] +∇φH[qφ]. # chain rule
(22)

The gradient derived by the chain rule is also called the path gradient, and it relies
on the assumption that fφ is differentiable w.r.t. φ. With MC approximation, the
gradient of the “error” term in (22) is further approximated as

1

K

K∑
k=1

∇f log p(D, fφ(εk))∇φfφ(εk), εk ∼ π(ε). (23)

Let us consider a simple but prevalent example, where the q distribution is designed
to be Gaussian, i.e. qφ(θ) = N(θ;µ,Σ). In practice the covariance matrix Σ is
often parameterised using its Cholesky decomposition Σ = LLT, in this case
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φ = {µ,L}, and the transformation is written as fφ(ε) = µ + Lε, ε ∼ N(0, I).
This means the MC gradient of the error term is

∇µ =
1

K

K∑
k=1

∇µ log p(D,µ+ Lεk),

∇L =
1

K

K∑
k=1

∇µ log p(D,µ+ Lεk)εk, εk ∼ N(0, I).

(24)

In practice, the above gradient expressions are not directly implemented. In-
stead, using the assumption that fφ is differentiable w.r.t. φ, we can rewrite the
MC approximation of the gradient as

1

K

K∑
k=1

∇f log p(D, fφ(εk))∇φfφ(εk) =
1

K

K∑
k=1

∇φ log p(D, fφ(εk))

= ∇φ
1

K

K∑
k=1

log p(D, fφ(εk))

≈ ∇φEπ(ε)[log p(D, fφ(ε))].

(25)

This means with the path gradient approach, we can directly differentiate the MC
+ LOTUS estimate of 1

K

∑K
k=1 log p(D, fφ(εk)) ≈ Eqφ(θ)[log p(D,θ)] to get the

gradient of the “reconstruction error” part of the variational lower-bound. The
usages of MC estimates, LOTUS and path gradient are the central ideas of the
reparameterisation trick.

Choosing the number of MC samples K in use requires a trade-off between
speed and accuracy. In general, using small K (even K = 1 in many cases) leads
to high variance of the MC gradient. Using large K, on the other hand, can
significantly slow down the training process in wall-clock time.

2.2.2 Path gradient of the entropy term

The derivation of the path gradient for the entropy term is slightly involved. This
is because, apart from the transformation fφ(ε), the PDF qφ(θ) also depends on
the variational parameters φ. Going back to the Gaussian example, we have the
(log) PDF as

log qφ(θ) = −1

2
log |Σ| − 1

2
(θ − µ)TΣ−1(θ − µ) + const,

in which the (log) normalising constant (or partition function) 1
2

log |Σ| + const
depends on φ as well. Therefore, in general the gradient of the entropy term
w.r.t.φ is

∇φH[qφ] = −∇φEπ(ε)[log qφ(fφ(ε))]

= −Eπ(ε)[∇φ log qφ(fφ(ε))]

= −Eπ(ε)[∇φ log qφ(θ)|θ=fφ(ε) +∇f log qφ(fφ(ε))∇φfφ(ε)]

= −Eqφ(θ)[∇φ log qφ(θ)]− Eπ(ε)[∇f log qφ(fφ(ε))∇φfφ(ε)].

(26)
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We see that due to the dependance of the PDF to φ we have the gradient splitting
into two terms. Interestingly, we can show that the first term (non-path gradient,
which is also the expectation of the score function) in (26) eventually vanishes:

Eqφ(θ)[∇φ log qφ(θ)] =

∫
qφ(θ)∇φ log qφ(θ)dθ

=

∫
qφ(θ)qφ(θ)−1∇φqφ(θ)dθ # chain rule of log gradient

=

∫
∇φqφ(θ)dθ

= ∇φ
∫
qφ(θ)dθ = 0. # qφ always integrates to one

(27)
This means using the reparameterisation trick, the gradient of the entropy term
w.r.t. the variational parameter φ can also be derived as a path derivative:

∇φH[qφ] ≈ − 1

K

K∑
k=1

∇f log qφ(fφ(εk))∇φfφ(εk), εk ∼ π(ε). (28)

Notice that if you implement the entropy term in a naive way like H[qφ] ≈
− 1
K

∑K
k=1 log qφ(fφ(εk)), and ask automatic differentiation to handle the gradi-

ent, the software will still include the (MC estimate of the) non-path gradient
without knowing that it is actually zero in expectation. Roeder et al. [2017] em-
pirically demonstrate that this can lead to high variance, and instead they suggest
implement the MC approximated entropy in the following way:

H[qφ] ≈ − 1

K

K∑
k=1

log qφ′(fφ(εk)), φ′ = stop gradient(φ).

2.2.3 Log derivative trick and REINFORCE

The reparameterisation trick only works when there exists a differentiable trans-
formation fφ and the input noise variable ε is independent to the variational
parameter φ. This does not apply to discrete variables, although recent work has
tried continuous relaxation techniques to enable path gradients [Maddison et al.,
2017b; Jang et al., 2017]. So without any assumption on the random variable θ,
the gradient of the variational lower-bound w.r.t. φ reads

∇φLVI(qφ; p) =

∫
∇φ
(
qφ(θ) log

p(D,θ)

qφ(θ)

)
dθ

=

∫
log

p(D,θ)

qφ(θ)
∇φqφ(θ)dθ +

∫
qφ(θ)∇φ log

p(D,θ)

qφ(θ)
dθ

=

∫
log

p(D,θ)

qφ(θ)
∇φqφ(θ)dθ. # the second term is zero, see (27)

(29)
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Now we apply the log derivative trick which is also named as the REINFORCE
trick in reinforcement learning literature [Williams, 1992]. This trick is also closely
related to the likelihood ratio method in statistics literature, e.g. see Glynn [1990].
It states that for any function F ,∫

F (θ)∇φqφ(θ)dθ

=

∫
F (θ)

∇φqφ(θ)

qφ(θ)
qφ(θ)dθ

=

∫
qφ(θ)F (θ)∇φ log qφ(θ)dθ.

Therefore applying the log derivative trick to (29), we can see the MC approxi-
mated gradient is

∇φLVI(qφ; p) ≈ 1

K

K∑
k=1

log
p(D,θk)

qφ(θk)
∇φ log qφ(θk), (30)

which is an unbiased, but high variance estimator of the exact gradient.

2.3 Variance reduction for MCVI gradients

It is now clear that in practice the optimisation problem of variational inference is
often solved using MC approximated gradients. Therefore, the variance of the MC
gradients is key to the performance, since if the variance is too high, then the MC
gradient can point to wrong directions and thus slow down the convergence. In
fact, variance reduction has become a major research topic not only in approximate
inference but also in reinforcement learning and optimisation.9 In this section we
will briefly cover some important techniques for variance reduction in the context
of variational inference.

2.3.1 Rao-Blackwellization

Let us start from a very simple example. We assume for now θ = {θ1,θ2} and
we would like to estimate Eq(θ1,θ2)[F (θ1,θ2)] with Monte Carlo. Then the Rao-
Blackwell theorem [Rao et al., 1973; Blackwell, 1947; Kolmogorov, 1950] states
that, the variance of the estimates can be reduced by conditioning on either θ1 or
θ2. Mathematically, if we write F2(θ2) = Eq(θ1|θ2)[F (θ1,θ2)], then the variance is

Vq(θ1,θ2)[F (θ1,θ2)] =Eq(θ1,θ2)[(F (θ1,θ2)− Eq(θ1,θ2)[F (θ1,θ2)])2]

=Eq(θ2)Eq(θ1|θ2)[(F (θ1,θ2)− F2(θ2) + F2(θ2)− Eq(θ1,θ2)[F (θ1,θ2)])2]

=Eq(θ2)[(F2(θ2)− Eq(θ2)[F2(θ2)])2] + Eq(θ1,θ2)[(F (θ1,θ2)− F2(θ2))2]

=Vq(θ2)[F2(θ2)] + Eq(θ2)[Vq(θ1|θ2)[F (θ1,θ2)]]

≥Vq(θ2)[F2(θ2)].
(31)

9In NeurIPS 2016 three tutorials on these topics had spent considerate amount of time dis-
cussing variance reduction techniques.
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How does Rao-Blackwellization apply to variance reduction for MCVI gradi-
ents? If we assume the approximate posterior factorises as qφ(θ) = qφ1(θ1)qφ2(θ2),
then the MCVI gradient for φ1 (and similarly for φ2) reads

∇φ1LVI(qφ; p) = Eqφ(θ)

[
log

p(D,θ)

qφ(θ)
∇φ1 log qφ1(θ1)

]
= Eqφ1

(θ1)

[
Eqφ2

(θ2)

[
log

p(D,θ)

qφ(θ)

]
∇φ1 log qφ1(θ1)

]
= Eqφ1

(θ1)

[[
Eqφ2

(θ2)[log p(D,θ)]− log qφ1(θ1) + H[qφ2(θ2)]
]
∇φ1 log qφ1(θ1)

]
= Eqφ1

(θ1)

[[
Eqφ2

(θ2)[log p(D,θ)]− log qφ1(θ1)
]
∇φ1 log qφ1(θ1)

]
,

(32)
where in the last line derivation we used the fact that H[qφ2(θ2)] is a constant
w.r.t. qφ1(θ1) and the same trick as in (27). This means, if we can compute
Eqφ2

(θ2)[log p(D,θ)] (or at least approximate it with many samples in a fast way),
then the following MCVI gradient

∇φ1LVI(qφ; p) ≈ 1

K

K∑
k=1

[
Eqφ2

(θ2)[log p(D,θk1 ,θ2)]− log qφ1(θ
k
1)
]
∇φ log qφ1(θ

k
1)

(33)
with θk1 ∼ qφ1(θ1) will have smaller variance than the original version (30).

Remark (Local expectation gradient as Rao-blackwellization). What if q(θ)
represents some structured approximation to the exact posterior? In this case
q is specified by a directed graphical model

qφ(θ) =
∏
i

qφi(θi|pai),

and pai denotes the parents of node θi. We also use θ−i to collect all the other
entries θj, j 6= i. Then, going through similar derivations as (32), we have

∇φiLVI(qφ; p) = Eqφ(θ−i)

[
Eqφi (θi|mbi)

[
log

p(D,θ)

qφ(θ)

]
∇φi log qφi(θi|pai)

]
,

in which mbi denotes the Markov blanket of random variable θi. Then the local
expectation gradient method [Titsias and Lázaro-Gredilla, 2015] developed for
discrete variables applies similar Rao-blackwellization trick as in above: given
a sample θ−i ∼ qφ(θ−i), the MCVI gradient can be computed as

∇φiLVI(qφ; p) ≈
∑
θi

qφi(θi|mbi)

[
log

p(D, θi,θ−i)

qφ(θi,θ−i)

]
∇φi log qφi(θi|pai). (34)

Notice here that the log-derivative trick is non-applicable because we never
simulate samples from qφi(θi|mbi).
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Figure 3: Visualising the idea of control variates. With G(θ) strongly and pos-
tively correlated with F (θ), the variance of F̂ (θ) is significantly reduced.

2.3.2 Control variate: general idea

Another important idea for variance reduction is control variate [Hammersley and
Handscomb, 1966; Boyle, 1977]. Again we describe it for the general case, and
the specific application of it to MCVI gradients is discussed in the next section.
Assume we are interested in estimating Eq(θ)[F (θ)] with Monte Carlo. Then one
can easily show that for any function G(θ) that has finite mean Eq(θ)[G(θ)], we
have

Eq(θ)[F (θ)] = Eq(θ)[F (θ)−G(θ) + Eq(θ)[G(θ)]]. (35)

Denote F̂ (θ) = F (θ)−G(θ) + Eq(θ)[G(θ)] and assume Vq(θ)[G(θ)] < +∞. Then

the variance of F̂ under q is

Vq(θ)[F̂ (θ)] = Vq(θ)[F (θ)] + Vq(θ)[G(θ)]− 2Covq(θ)[F (θ), G(θ)]. (36)

This means, a clever choice of the G function would make

Vq(θ)[G(θ)]− 2Covq(θ)[F (θ), G(θ)] < 0,

and therefore it leads to a lower-variance estimator of Eq(θ)[F (θ)] ≈ F̂ (θ),θ ∼ q(θ)
(see Figure 3). Such choice of the G function is called a control variate of F .

2.3.3 Some notable control variate methods for MCVI gradients

Now let us consider some notable examples of control variate that researchers has
developed for MCVI. In this case the target function we consider is

F (θ) = log
p(D,θ)

qφ(θ)
∇φ log qφ(θ).

In some papers f(θ) = log p(D,θ)
qφ(θ)

is also referred as the learning signal for the vari-

ational parameters φ [Mnih and Gregor, 2014]. Many of the techniques described
in below also applies to variance reduction for policy gradient in reinforcement
learning.

• Optimal scaling for score functions:
If we further define G(θ) = λg(θ), then by (36), the reduction of variance is

Vq(θ)[F (θ)]− Vq(θ)[F̂ (θ)] = 2λCovq(θ)[F (θ), g(θ)]− λ2Vq(θ)[g(θ)].
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Figure 4: The baseline approach for control variates, with ∆(θ) = f(θ)− b. Here
θ1,θ2 ∼ q(θ) are the MC samples from the approximate posterior q(θ).

Therefore, the optimal scaling λ can be derived by maximising the variance
reduction, which gives

λ∗ =
Covq(θ)[F (θ), g(θ)]

Vq(θ)[g(θ)]
.

Ranganath et al. [2014] considers using the score function as a control variate,
i.e. g(θ) = ∇φ log qφ(θ), where from (27) we have Eq(θ)[G(θ)] = 0.10 This
implies

F̂opt(θ) = [f(θ)− λ∗]∇φ log qφ(θ).

However in practice it is impossible to compute the exact optimal scaling
λ∗, and instead we typically form an (MC) estimate λ̂ ≈ λ∗, which also
introduces extra variances. Still empirically, Ranganath et al. [2014] shows
that this control variate works well in some practical cases.

• Neural variational inference and learning (NVIL):
Mnih and Gregor [2014] also considers G(θ) = λ∇φ log qφ(θ). However,
instead of estimating the optimal scaling, the authors notice that λ can
be any function that is independent to θ. Therefore, they parameterise
λ = Cψ(D)− c where Cψ(D) is a neural network with parameters ψ,11 and
train the neural network by minimising the `2 error

min
ψ

Eqφ
[
(f(θ)− Cψ(D)− c)2] .

Therefore Cψ(D) + c is also called “data dependent baselines”. Although
the optimal solution in this case does not correspond to the optimal scaling,
Mnih and Gregor [2014] argued that this alternative objective is much easier
to minimise, and empirically, the resulting control variate performed quite
well in their experiments. Another way to interpret this idea is visualised in
Figure 4 with the baseline b = Cψ(D)+c. Essentially, the gradient estimator
would encourage allocating more probability mass to the regions where the
reward f(θ) is improved over a baseline b, i.e. ∆(θ) = f(θ)−b > 0. Similarly
it would avoid decreasing the reward to be below the baseline, by allocating
less probability mass to those regions.

10Interestingly as we have mentioned, Roeder et al. [2017] has shown that in path gradient
settings including the score function term can lead to high variance. However the authors didn’t
consider optimal scaling for the control variate.

11In the applications that Mnih and Gregor [2014] considered, θ corresponds to the latent
variables and D = x.
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To further reduce variance in the scaling, NVIL also normalises the difference
term with an estimate of its standard deviation (unless when φ is close to a
local optimum), making the final gradient as

F̂NVIL(θ) =
f(θ)− Cψ(D)− c
σ̂[f(θ)− Cψ(D)]

∇φ log qφ(θ).

I would doubt whether this normalisation step is necessary, if scale-invariant
gradient descent methods like Adagrad [Duchi et al., 2011], RMSprop [Tiele-
man and Hinton, 2012] and Adam [Kingma and Ba, 2015] is in use. In their
experiments Mnih and Gregor [2014] applied stochastic gradient descent,
and in that case the normalisation technique can be of great help. In fact
they estimated the standard-deviation using exponential moving average,
which makes the resulting algorithm closely related to RMSprop [Tieleman
and Hinton, 2012].

• Taylor expansion for the learning signal:
The control variate for MCVI is not limited to the score function up to
constant scaling. Indeed, if we define G(θ) = [h(θ) + b]∇φ log qφ(θ), then
(35) expands to

Eq(θ)[F (θ)] = Eq(θ)[(f(θ)− b−h(θ))∇φ log qφ(θ)] +Eq(θ)[h(θ)∇φ log qφ(θ)].

Now we assume f(θ) is differentiable w.r.t. θ which is often true for the
density ratio in the VI case. Then we can use Taylor expansion at some
location θ0 that is independent to θ to define the control variate, for example
b + h(θ) = f(θ0) + ∇θ0f(θ0)(θ − θ0). By rearranging terms and applying
the identity (27), we have

Eq(θ)[F (θ)] = Eq(θ)[εf (θ,θ0)∇φ log qφ(θ)] + Eq(θ)[∇θ0f(θ0)θ∇φ log qφ(θ)],

with εf (θ,θ0) = f(θ)−f(θ0)−∇θ0f(θ0)(θ−θ0) as the Taylor expansion er-
ror. One can further use the log derivative trick to show that the second term
reduces to Eq(θ)[∇θ0f(θ0)θ∇φ log qφ(θ)] = ∇θ0f(θ0)∇φEq(θ)[θ]. Higher or-
der Taylor expansion has also been explored, see Paisley et al. [2012]; Gu
et al. [2016].

2.4 Further reading

Ranganath et al. [2014] described the black-box VI (BBVI) algorithm that is
referred as MCVI in this note. Paisley et al. [2012]; Wingate and Weber [2013]
also described very similar approaches, however Ranganath et al. [2014] has further
detailed discussions on variance reduction techniques.

Should definitely read [Kingma and Welling, 2014] for the reparameterisation
trick. Around the same time the trick was also described in Salimans and Knowles
[2013]; Rezende et al. [2014], which unfortunately get less citations. I will also
suggest a come-back reading on these papers when we discuss applications of
approximate inference to generative models.

26



Yingzhen Li Topics in Approximate Inference

Opper and Archambeau [2009] describes another gradient estimator for the
variational parameters of Gaussian approximations. The idea is less well-known
but still very interesting.

We can construct “reparameterisations” for discrete variables as well if we can
compute the inverse CDF. For general invertible transforms, Ruiz et al. [2016]
constructed a generalised reparameterisation gradient that contains both path
gradient terms and REINFORCE like terms. Similar ideas have also been explored
in e.g. Tucker et al. [2017].

In general, gradient estimation is a hot topic of research in approximate infer-
ence and reinforcement learning. For the progress up to late 2019, see Mohamed
et al. [2019] for a review.

In practice many of these MCVI methods are implemented using automatic
differentiation, therefore it might be useful to understand how automatic differen-
tiation works. For example see Baydin et al. [2015] for a survey.

I briefly discussed control variate methods applied to MCVI (and policy gra-
dients). If you are interested in variance reduction methods for stochastic/dis-
tributed optimisation, then I would suggest reading papers for the following al-
gorithms to start with: SAG [Le Roux et al., 2012; Schmidt et al., 2013], SVRG
[Johnson and Zhang, 2013], and SAGA [Defazio et al., 2014].
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3 Amortised inference

So far we have demonstrated how to apply VI to approximate the posterior distri-
bution. However it can still be very slow for running VI on a probabilistic model
with lots of unobserved variables. For example, a well-known probabilistic model
for text data – latent Dirichlet allocation (LDA) [Blei et al., 2003], could involve
millions of latent variables when applied to a large corpus. Thus it brings in pro-
hibitive computational burden since each latent variable must have its approximate
posterior iteratively refined. Furthermore, for models whose hyper-parameters are
updated constantly, the inference procedure is also repeatedly required as a sub-
routine. These issues had restricted the extensions of VI to many interesting cases,
until the introduction of amortised inference that is detailed in below.

3.1 Inference dependencies on observations

Let us start from the mean-field approximation example we had in section 1.3 but
with a slightly different set-up. In this case we are interested in learning a latent
variable model

zn ∼ N(z;µ,Λ−1), yn|xn ∼ N(y; zTnxn, σ
2).

which is closely related to factor analysis [Harman, 1976]. In this case the model
parameters θ = {µ,Λ, σ} are to be learned by approximate maximum likelihood
or variational EM, where the variational lower-bound is used as the surrogate loss.
In this case we assume for each latent variable zn ∈ RD we compute a mean-field
approximate posterior qn(zn) =

∏D
i=1 qn(zni), in which we define each factorisation

as qn(zni) = N(zni;mni, λ
−1
ni ).

One strategy to learn these q distributions is to do gradient descent w.r.t. all
the variational parameters {mni, λni} until reaching a local optimum. However
this approach is inefficient for large-scale data. First, variational parameters must
then be maintained for every pair of observations (xn, yn), meaning a space com-
plexity of O(ND) if N is the total number of observations. Furthermore, when
the model parameters are updated, the previously optimal variational parameters
are no longer optimal thus requiring loops of gradient descent again. Depending
on the changes of the model parameters, the previous optimal solution for the
variational parameters might not always be a good initialisation for the current
round’s optimisation.

Fortunately, observe that in § 1.3 we have the optimal solutions satisfying

λni = Λii +
1

σ2
x2
ni, mn = (Λ +

1

σ2
xnx

T
n )−1(Λµ+

1

σ2
ynxn),

meaning that these optimal variational parameters are functions of the observa-
tions xn and yn. Hence if we explicitly define the variational parameters as a
function of the observations, e.g. by parameterising λni = aix

2
ni + bi, and optimise

the parameters of these mappings (in our example ai and bi), then we can drasti-
cally reduce the memory cost to O(D) which is scalable to big data. Furthermore
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the previous round’s solution of ai, bi is more likely to be a good initialiser for the
current round’s optimisation, as the “local structure” of q (in our example the
quadratic term x2

ni) is already encoded in the mapping. In general we will explic-
itly define the approximate posterior as q(zn|xn, yn) to emphasise the dependency
on the observations, and only parameterise the “global structure” that is shared
across all q distributions.

The above method is termed as amortised inference for VI [Salimans and
Knowles, 2013; Kingma and Welling, 2014; Rezende et al., 2014], which is:

• memory efficient, as we only learn the shared information across the approx-
imate posterior distributions for different (xn, yn, zn) tuples;

• faster for training, as the previous round’s solution is more likely to initialise
the current step well;

• a good initialisation of q for unseen data, which will then be refined.12

Obviously it also has disadvantages: as the “global structure” is typically unknown
to the user, a careless design of such amortisation would return distributions with
restrictive representation power. One might suggest using neural networks in a
way that leads to very flexible q distributions, however the computation of the (MC
approximation of the) variational lower-bound requires log q(θ) to be tractable,
which is again a very restrictive constraint. Indeed currently neural networks
are mostly used to parameterise simple distributions (for example the mean and
variance of a Gaussian q distribution), or distributions that are carefully designed
using invertible transform [Rezende and Mohamed, 2015; Kingma et al., 2016]. It
is also possible to use implicit distributions as the approximate posterior, which
is further discussed in § 9.

3.2 A popular approach: variational auto-encoder

Generating realistic images, sound and text has always been one of the main theme
in AI research. One approach towards this goal that is very popular now is build-
ing a deep generative model to transform some random noise to generate desired
objects. Similar to the latent variable model we discussed in § 3.1, the model
starts from a latent variable z sampled from a prior distribution p0(z), and then
samples the observations x from a conditional distribution pθ(x|z) parameterised
by θ.13 Unlike the linear case discussed before, here deep neural networks are
applied to form the the likelihood pθ(x|z), usually by determining the parameters
of the distribution by neural networks taking z as their input.14 As a concrete
example, let us consider the following model:

zn ∼ N(z; 0, I), xn ∼ N(x;µθ(zn), diag(σ2
θ(zn))),

12See later discussions in § 3.4.
13It is possible to have a hierarchy of latent variable models, but here we will stick to the

simplest case.
14As a comparison, in many GAN approaches, p(x|z) is implicitly defined by neural network

transforms.
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where µθ and σθ are defined by deep neural network transforms of z. With the
observed dataset D = {xn}Nn=1 in hand, we are interested in finding the most likely
configuration of the neural network parameters θ by maximum likelihood:

max
θ

N∑
n=1

log pθ(xn), (37)

which involves integrating out all the latent variables zn and which is thus ana-
lytically intractable. Traditionally, the expectation maximisation (EM) algorithm
[Dempster et al., 1977] is used here to train the parameters θ. More specifically, in
variational EM [Beal and Ghahramani, 2003], variational inference is deployed in
the E-step, which corresponds to maximising the variational distributions {qn(zn)}
using the following objective:

max
θ,qn

N∑
n=1

LVI(qn,θ;xn), LVI(qn,θ;xn) = Eqn(zn)

[
log

pθ(xn, zn)

qn(zn)

]
. (38)

A common choice of the qn distributions is factorised Gaussian distribution qn(zn) =
N(zn;µn, diag(σ2

n)), which, as argued in § 3.1, costs O(ND) memory thus ineffi-
cient.

The idea of the popular variational auto-encoder approach [Kingma and Welling,
2014; Rezende et al., 2014] is two fold. First VAE applies the amortised inference
idea to VI: instead of having qn attached to each latent variable zn, the authors
constructed a data-dependent posterior approximation qφ(z|x) with variational
parameters φ. Therefore the corresponding variational lower-bound is:

max
θ,φ

N∑
n=1

LVI(φ,θ;xn), LVI(φ,θ;x) = Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]
. (39)

In factorised Gaussian case, the qφ distribution is

qφ(z|x) = N(z;µφ(x), diag(σ2
φ(x))),

and again µφ and σφ can be mappings parameterised by deep neural networks
with parameter φ. In this context the q distribution is also called the recognition
model or the inference network.

The second idea is the deployment of MC-VI with the reparameterisation trick,
which is detailed in § 2. One can easily notice that, drawing samples from the
above qφ(z|x) distribution is done by the following procedure

z ∼ qφ(z|x)⇔ ε ∼ π(ε) = N(ε; 0, I), z = µφ(x) + σφ(x)� ε, (40)

and essentially this performs a change-of-variable operation. Following the LOTUS
rule, the variational lower-bound can be rewritten as

LVI(φ,θ;x) = Eπ(ε)

[
log

pθ(x,µφ(x) + σφ(x)� ε)
qφ(µφ(x) + σφ(x)� ε|x)

]
, (41)
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x

zφ θ

N

Figure 5: The graphical model of VAE, showing the generative model and the
inference network. Dash arrows imply dependencies in the q distribution. Repro-
duced from Kingma and Welling [2014].

and it can be further approximated using simple Monte Carlo (MC):

LMC
VI (φ,θ;x) =

1

K

K∑
k=1

log
pθ(x,µφ(x) + σφ(x)� εk)
qφ(µφ(x) + σφ(x)� εk|x)

, εk ∼ q(ε). (42)

In practice the MC estimate is computed with very few samples, and in the case
of drawing only one sample (K = 1), the resulting algorithm is very similar to
training a standard auto-encoder with a (learnable) noise-injected encoding opera-
tion, thus the name variational auto-encoder [Kingma and Welling, 2014; Rezende
et al., 2014]. Its graphical model is also visualised In Figure 5.

3.3 More examples beyond applications to VI

Amortised inference is sometimes misunderstood as being equivalent to the vari-
ational auto-encoder approach due to the huge popularity of the latter. In fact
the general idea goes far beyond: amortisation can be applied to any inference
technique as long as the optimal solution for it can be described by a mapping
from the observed data.

Historically, amortised inference was first developed for non-Bayesian inference
schemes. Hinton et al. [1995] developed the wake-sleep algorithm to train the
Helmholtz machine [Dayan et al., 1995], where the sleep step trains the q(z|x)
distribution using samples from the model, i.e. z,x ∼ p(z,x). Morris [2001]
further applied the sleep step update to learn an approximation to the conditional
distributions of a directed graphical model. In Gaussian process (GP) literature,
amortised inference has been applied to GP latent variable models (GPLVM) to
infer the latent variables with amortised MLE, under the name “back constraints”
[Lawrence and Quiñonero-Candela, 2006].

Recent progress on amortising (approximate) Bayesian inference includes ap-
plications to MAP inference [Sonderby et al., 2017], importance sampling [Burda
et al., 2016], sequential Monte Carlo [Le et al., 2017; Maddison et al., 2017a; Naes-
seth et al., 2017] and MCMC [Li et al., 2017]. In the rest of this section I will
briefly discuss some of these approaches, and for MCMC readers are referred to
§ 9.3.4.
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3.3.1 Wake-sleep algorithm

Deep learning community also refers the q(z|x) distribution as recognition mod-
el/network or inference network. The name “recognition model” is at least dated
back to the development of Helmholtz machine [Dayan et al., 1995] which is trained
using the wake-sleep algorithm [Hinton et al., 1995]:

• Wake-step: train the generative model pφ(x) by VI-approximated MLE
(with MC approximation):

min
θ

EpD(x)[LVI(qφ; pθ)].

This is called “wake step” since the latent variables are inferred using obser-
vations from data (like what you will see when you’re awake). Usually we
only perform 1-step gradient update in this step.

• Sleep-step: train the recognition network qφ(z|x) by minimising inclusive
KL (with MC approximation):

min
φ

Epθ(x)[KL[pθ(z|x)||qφ(z|x)]].

This is called “sleep step” because q is trained using “dreamed” samples
from pθ(x). Again usually we only perform 1-step gradient update in this
step.

Interestingly, the wake-sleep method uses exactly the MC-VI objective (42)
to learn the generative model, but optimises the “recognition weights” φ using
another KL. We note that the inference network never observes real-world data
in the sleep step, rather, it is trained using samples x ∼ pθ(x). The rational
is, if supp(pD) ⊂ supp(pθ) for any model parameter setting θ and the inference
network qφ(z|x) is flexible enough, then in the sleep-step, qφ(z|x) will approach to
the conditional distribution15 pθ(z|x) for any x ∈ supp(pθ), and thus for any x ∈
supp(pD). This will also makes the variational lower-bound objective in the wake-
step approach to the exact marginal likelihood. However, since the KL divergence
is asymmetric, it is difficult to translate a bound on Epθ(x)[KL[pθ(z|x)||qφ(z|x)]]
to the tightness result of the wake-step objective, and it is also hard to describe the
approximation quality of q when evaluated on x ∼ D (unless pθ = p̂D). Therefore
it has no theoretical guarantee to return a good approximation to pθ(z|x) for
x ∼ D. Nevertheless the wake-sleep algorithm performs well in practice, and it
has been revisited by researchers recently. Recent work on improving the wake-
sleep algorithm [Bornschein and Bengio, 2015] proposed an adjusted sleep-step in
order to incorporate the observations x ∼ D. In short, this proposal replaces the
objective function for φ to

min
φ

EpD(x)[KL[pθ(z|x)||qφ(z|x)]],

15Notice that here I do not use the terminology “posterior”.
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and the gradient of the KL inside the expectation of pD(x) this objective is ap-
proximated by self-normalised importance sampling:

∇φKL[pθ(z|x)||qφ(z|x)] = −Epθ(z|x)[∇φ log qφ(z|x)]

≈ −Ez1,...,zK∼qφ(z|x)

[
K∑
k=1

ŵk∇φ log qφ(zk|x)

]
,

wk = log
pθ(x, z

k)

qφ(zk|x)
, ŵk =

wk∑K
k′=1wk′

.

(43)

This makes the improved algorithm closely related to the importance weighted
auto-encoder (IWAE) algorithm [Burda et al., 2016] that will be detailed in the
following.

3.3.2 Importance weighted auto-encoder

Importance sampling (IS) is a simple but popular inference technique for estimat-
ing expectations. Notice that for any distribution q(z|x) satisfying supp(p) ⊂
supp(q):

Ep(z|x)[F (z)] = Eq(z|x)

[
F (z)

p(z|x)

q(z|x)

]
≈ 1

K

K∑
k=1

F (zk)
p(zk|x)

q(zk|x)
, zk ∼ q.

It is easy to show that the IS estimate is consistent, with almost surely conver-
gence if F (z) > 0. Burda et al. [2016] constructed a lower-bound of the marginal
likelihood using the IS estimate and Jensen’s inequality:

log p(x) = logEz1,...,zK∼q

[
1

K

K∑
k=1

p(x, zk)

q(zk|x)

]

≥ Ez1,...,zK∼q log

[
1

K

K∑
k=1

p(x, zk)

q(zk|x)

]
:= LK .

(44)

Using Jensen’s inequality, the authors also proved that the lower-bound LK is
non-decreasing in K, with L1 = LVI. The lower-bound LK is optimised jointly
w.r.t. both p and q. One can obtain the gradient by automatic differentiation, but
if the reparameterisation trick is applicable, simple derivation shows that

∇φLK = Eε1,...,εK∼π(ε)[ŵk∇φ logwk], wk = log
pθ(x, fφ(x, εk))

qφ(fφ(x, εk)|x)
, ŵk =

wk∑K
k′=1wk′

.

(45)
Therefore the approach is named importance weighted auto-encoder (IWAE), and
it is straightforward to see that the above gradient reduces to the VI case when
K = 1. Also when compared to the adjusted sleep-step update (43), we see that
the learning of φ also takes the gradient information of log p(x, z) into account.16

16For discrete variables, ∇φLK adds an extra term to the adjusted sleep-step gradient (43),

and that term is Ez1,...,zK∼qφ(z|x)

[
(log 1

K

∑K
k=1 wk)(

∑K
k=1∇φ log qφ(zk|x))

]
.
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IWAE often returns better performance in terms of test-LL when compared
to VAE, since the lower-bound is tighter, so that less bias is introduced to the
optimisation of p. But as K → +∞ the lower-bound becomes exact regardless
of the choice of the q distribution (as long as supp(p) ⊂ supp(q)). This means
LK with large K is less informative to learning q, and indeed Rainforth et al.
[2018]; Nowozin [2018] provided some theoretical analyses, showing that tighter
lower-bounds are not necessarily better for posterior approximation. But this is
not a problem for wake-sleep, and indeed increasing the number of samples K
helps reducing both the bias and variance of the gradient (43) [Le et al., 2018].

3.3.3 Amortising proposal distributions for sequential Monte Carlo

Sequential Monte Carlo (SMC) is a class of sampling algorithms that are appealing
for simulating posterior samples for sequential models. For a good introduction I
recommend reading Doucet et al. [2001]; Doucet and Johansen [2009], and here I
will very briefly cover a simple example. In this case the probabilistic model is a
hidden Markov model (HMM):

p(x1:T , z1:T ) =
T∏
t=1

p(zt|z<t)p(xt|zt), p(z1|z<1) = p(z1). (46)

The goal is to compute the expectation Ep(z1:T |x1:T )[F (z1:T )], which can be done
by importance sampling:

Ep(z1:T |x1:T )[F (z1:T )] = Eq(z1:T )

[
F (z1:T )

p(z1:T ,x1:T )

q(z1:T )p(x1:T )

]
. (47)

Furthermore we know p(x1:T ) = Eq(z1:T )

[
p(z1:T ,x1:T )
q(z1:T )

]
when supp(p) ⊂ supp(q).

Therefore one can use Monte Carlo samples zk1:T ∼ q(z1:T ), k = 1, ..., K to estimate
the expectations, and have the following approximation:

Ep(z1:T |x1:T )[F (z1:T )]
K∑
k=1

ŵkTF (zk1:T ), ŵkT =
wkT∑K
j=1w

j
T

, wkT =
p(zk1:T ,x1:T )

q(zk1:T )
. (48)

Now it remains to define the proposal distribution q(z1:T ). Notice that if we define
the proposal as follows:

q(z1:T |x1:T ) =
T∏
t=1

q(zt|z<t,x1:t), q(z1|z<1,x1) = p(z1|x1), (49)

then the importance weight is computed as

wkT =
T∏
t=1

p(zkt |zk<t)p(xt|zkt )

q(zkt |zk<t,x1:t)
= wkT−1

p(zkT |zk<T )p(xT |zkT )

q(zkT |zk<T ,x1:T )
, wk0 = 1, (50)

and similarly

ŵkT ∝ ŵkT−1

p(zkT |zk<T )p(xT |zkT )

q(zkT |zk<T ,x1:T )
, ŵk0 =

1

K
. (51)
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It is important to adapt the proposal q(z1:T |x1:T ) to data, and again in amor-
tised inference set-up, the proposal is parameterised as q(z1:T |x1:T ) = qφ(z1:T |x1:T ),
where the variational parameters φ is optimised using some objective. Since naive
SMC is just importance sampling applied to HMMs, the IWAE objective also
applies here:

LK(q) = Ez11:T ,...,zK1:T∼q

[
log

1

K

K∑
k=1

wkT

]
. (52)

However, since the unnormalised importance weight wkT is computed recursively,
as T increases the lower-bound (52) will be dominated by maxk logwkT which is
undesirable. To address this, a re-sampling scheme can be introduced at some
time τ :

ik ∼ Categorical(ŵ1
τ , ..., ŵ

K
τ ), (zk1:τ , w

k
τ , ŵ

k
τ )← (zik1:τ , 1,

1

K
), k = 1, ..., K. (53)

Therefore, if we denote the lower-bound in (52) as Lk(q, 1 : T ) and select re-
sampling time τ = {τ0, ..., τM}, 1 = τ0 < τ1 < ... < τM ≤ T , then the new
variational lower-bound induced by this resampling importance estimate is

LK,τ (q) =
M∑
m=1

Lk(q, τm−1 : τm). (54)

This idea has been proposed concurrently by Le et al. [2017]; Maddison et al.
[2017a]; Naesseth et al. [2017], with different focuses on applications in generative
modelling.

3.4 Adding refinements to amortised inference

As discussed in § 3.1 the design of the distribution qφ(z|x) is crucial for the
performance of amortised inference. While interested readers can check out later
sections in part II for some popular choices, in general there still exists non-
negligible approximation error due to the flexibility of the distributions in Q and/or
sub-optimality issues of stochastic optimisation.

For instance, consider Q as the set of mean-field Gaussian distributions on z,
and qφ(z|x) = N(z;µφ(x), diag(σ2

φ(x))). For each input x, we find the opti-
mal approximation of p(z|x) in Q by running variational inference, which returns
q∗(z|x) = N(z;µ∗(x), diag(σ2

∗(x))). However, if the neural network used to com-
pute µφ(x), diag(σ2

φ(x)) is not flexible enough, then the optimal amortised infer-
ence solution also exhibits some approximation error to the optimal mean-field VI
solution q∗(z|x) ∈ Q. As a results, in general log p(x) ≥ LVI(q

∗) ≥ LVI(qφ∗) when
QΦ = {qφ|φ ∈ Φ} ⊂ Q. Therefore the optimal amortised variational lower-bound
LVI has higher bias compared to the optimal variational lower-bound (as depicted
in Figure 6), which can be harmful for maximum likelihood training. See Cremer
et al. [2018] for a quantitative analysis of this amortisation gap.

Some recent techniques aim to reduce the amortisation gap, by refining the
amortised posterior distribution with extra optimisation steps:
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• Given an input x, initialise the approximate posterior with the amortised
distribution q0(z|x) = qφ(z|x);

• Refine the approximate posterior by e.g. running T -step optimisation start-
ing from q0(z|x) using some objective function. This returns an improved
approximate posterior qT (z|x);

• Optimise p using an objective that is dependent on qT , e.g. Ex∼DEqT [log p(x, z)],
and optimise qφ(z|x) according to some criteria.

Table 1 presents the detailed choices of algorithms in recent papers, and they all
used EDEqT [log p(x, z)] as the objective to train p.17 We see that in general the
refinement algorithm does not necessarily need to be the same as the algorithm
to train qφ. In more detail, Marino et al. [2018]; Kim et al. [2018] fix the Q family
as exponential family distributions in order to obtain tractable VI gradient steps
as well as (a Monte Carlo estimate of) LVI(qT ). For MCMC refinement qT (z|x)
is typically intractable, and the proposal by Hoffman [2017] does not take into
account the convergence of MCMC. The algorithm by Li et al. [2017] encourages
fast convergence of MCMC by finding better initialisations, which also pushes
qφ(z|x) towards the exact posterior. Unfortunately for many divergence measure
D[qφ(z|x)||qT (z|x)] is intractable, thus it requires further approximations. Still
these refinement approaches have been shown to be beneficial, e.g. better sharpness
of the generated images, and faster mixing of a pseudo Gibbs-sampling for missing
data imputation.

Remark (Bias of VAE training). It is fairly straight-forward to show that VAE
training is equivalent to minimising the following objective:

min
θ,φ

KL[p̂D(x)qφ(z|x)||pθ(x, z)]. (55)

This means for a fixed variational distribution qφ(z|x), the learning of p will bias
the exact posterior pφ(z|x) towards qφ(z|x). This shows that over-simplified
variational approximation can be harmful as it also biases p towards simpler
models.
While in the main text we argued that refinement is beneficial for preventing
under-fitting, Shu et al. [2018] argued that it is also possible to use this bias to
introduce regularisations for approximate maximum likelihood training. This
“implicit regularisation” touches the philosophical question that whether the
approximate posterior should also be treated as part of the model (as then q is
not selected purely for approximating the exact posterior), and I prefer not to
discuss it in this remark. But indeed by utilising the bias introduced by q, we
can implant some nice property, e.g. smoothness, to the learned model, which
might be beneficial for generalisation.

17It is straight-forward to extend the amortised SVGD approach [Wang and Liu, 2016; Feng
et al., 2017] to refine amortised inference.
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approximation
gap

amortisation
gap

refinement

Figure 6: Decomposition of approximation error for amortised variational infer-
ence. In general the gap is not equal at every possible p, which introduces extra
bias for approximate maximum likelihood training. The amortisation gap can be
reduced by refinement techniques that is discussed in the main text.

Table 1: Recent approaches on refining amortised inference.

method refinement alg. qφ objective

Hoffman [2017] T -step MCMC EDLVI(qφ)

Li et al. [2017] T -step MCMC
ED[D[qφ(z|x)||qT (z|x)]]

(D[·||·] is a valid divergence)

Marino et al. [2018]

Kim et al. [2018]
T -gradient-step of VI EDLVI(qT )
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3.5 Further reading

Kingma and Welling [2014] is a nice paper, well-known for its introduction of
amortisation to variational inference. So I would suggest Kingma and Welling
[2014] as a must-read, but also note that concurrently the idea was also discussed
in Rezende et al. [2014]; Salimans and Knowles [2013]. It is quite unfortunate that
these two papers have got much less citations than Kingma and Welling [2014],
let alone other papers that also discuss similar ideas [Stuhlmüller et al., 2013]. A
tutorial on VAEs can also be found in Kingma et al. [2019].

The usage of neural networks in the amortised distribution dates back to the
Helmholtz machine [Dayan et al., 1995], which is trained by the wake-sleep algo-
rithm [Hinton et al., 1995] as discussed in previous sections. Kingma and Welling
[2014] demonstrated that the VAE algorithm works better than wake-sleep in
terms of training continuous latent variable models. However, recently researchers
start to revisit wake-sleep, and they have shown some good results in terms of
learning discrete latent variable models [Bornschein and Bengio, 2015; Le et al.,
2018].

We have yet to discuss the choice of the amortised posterior distribution
qφ(z|x), which will be detailed in the second part of this topic list. But to sum-
marise, the development has been focused on making the distribution family Q

richer towards the goal that pφ(z|x) ∈ Q for x ∼ D.
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4 Alternative divergence objectives

One of the most important tasks in approximate Bayesian inference is to ap-
proximate the intractable posterior p(θ|D). Specifically, we wish to construct an
approximation q(θ) ≈ p(θ|D) such that the “approximation error” is minimised.
This “approximation error” is measured by a divergence D[·||·] : P× P→ R such
that D[p||q] ≥ 0 for all distributions p, q ∈ P, and D[p||q] = 0 iff. p = q. In other
words, the best approximate posterior can be obtained by first selecting a suitable
divergence, then minimising this divergence to obtain a (local) optimum:

q∗(θ) = arg min
q∈Q

D[p(θ|D)||q(θ)]. (56)

In many cases directly minimising this divergence is intractable. However, there
might exist an equivalent objective, such that minimising/maximising this ob-
jective is also equivalent to minimising the selected divergence. Consider vari-
ational inference (VI) as a simple example: VI optimises the variational lower-
bound as the actual objective, which is equivalent to minimising the KL-divergence
KL[q(θ)||p(θ|D)].

In practice, due to the zero-forcing property of KL[q||p] (see § 1.1), the resulting
approximation to the exact posterior is often over-confident (although not always
the case). This might be sub-optimal to tasks that require conservative uncer-
tainty estimates, therefore alternative divergence objectives have been proposed
for fitting the approximate posterior distribution. In this section we discuss some
representative approaches in this paradigm, where we present the divergence defi-
nition first, then introduce the algorithm for minimising this divergence, perhaps
via optimising an equivalent objective.

4.1 Alpha-divergences

4.1.1 Alpha-divergence definitions

There exist multiple different definitions of α-divergences, listed as follows.

• Rényi’s α-divergence [Rényi, 1961] (defined on α 6= 1, α > 0):

DR
α [p||q] =

1

α− 1
log

∫
p(θ)αq(θ)1−αdθ. (57)

By continuity in α we can show that limα→1 DR
α [p||q] = KL[p||q]. Van Erven

and Harremoës [2014] further extends Rényi’s alpha divergence to negative
α values, and we will further discuss this aspect in later sections.

• Tsallis’s α-divergence [Tsallis, 1988] (defined on α 6= 1):

DT
α [p||q] =

1

α− 1

(∫
p(θ)αq(θ)1−αdθ − 1

)
.

Again by continuity in α we can show that limα→1 DT
α [p||q] = KL[p||q].
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Figure 7: Visualising the mass-covering/mode-seeking property of α-divergence as
an objective to fit a Gaussian q to a mixture of Gaussian distribution p. Note here
the unnormalised density for q is shown. Figure reproduced from Minka [2005].

Table 2: Special cases in the Rényi divergence family. Table taken from Li and
Turner [2016].

α Definition Notes

α→ 1
∫
p(θ) log p(θ)

q(θ)
dθ

Kullback-Leibler (KL) divergence,
used in VI (KL[q||p]) and EP (KL[p||q])

α = 0.5 −2 log(1− Hel2[p||q]) function of the square Hellinger distance

α→ 0 − log
∫
p(θ)>0

q(θ)dθ
zero when supp(q) ⊆ supp(p)
(not a divergence)

α = 2 − log(1− χ2[p||q]) proportional to the χ2-divergence

α→ +∞ log maxθ∈Θ
p(θ)
q(θ)

worst-case regret in minimum description
length principle [Grünwald, 2007]

• Amari’s α-divergence [Amari, 1982, 1985] (defined on α 6= ±1):

DA
α [p||q] =

4

1− α2

(
1−

∫
p(θ)

1+α
2 q(θ)

1−α
2 dθ

)
.

By continuity in α, we can show that limα→1 DA
α [p||q] = KL[p||q], and

limα→−1 DA
α [p||q] = KL[q||p].

We see that KL divergences (in both directions) can be viewed as special cases in
the α-divergence family. Indeed this is a rich divergence family, with a few more
special cases presented in Table 2. Recall that minimising KL[q||p] w.r.t. q tends
to have the zero-forcing behaviour, while for KL[p||q] the resulting q tends to be
mass-covering. Therefore it is reasonable to conjecture that choosing different α
values for α-divergence minimisation would return q distributions that balances
mode-seeking and mass-covering behaviours. This is further visualised in Figure 7
as reproduced from Minka [2005], where the α-divergence in that figure is from Zhu
and Rohwer [1995] which is equivalent to Amari’s α-divergence but with different
α scales. This form of α-divergence will be further discussed in § 6.2.2.

The different formulations of α-divergence are equivalent in their discrimina-
tive powers, since they all contain the integral

∫
p(θ)αq(θ)1−αdθ. But notice that

evaluating the α-divergence DR
α [q(θ)||p(θ|D)] requires computing the exact poste-

rior p(θ|D) which is intractable (and similarly for DT
α and DA

α ). In the following
we describe the alternative objectives for minimising α-divergences.
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Remark (History of α-divergences). Readers might have noticed that all the
different definitions of α-divergences are equivalent, since they all include the
term that is called Chernoff α-coefficient∫

p(θ)αq(θ)1−αdθ, α ∈ (0, 1).

Just after a year of the proposal of the KL-divergence, statistician Herman
Chernoff introduced a test statistic for the likelihood-ratio test [Chernoff, 1952],
and at the end of the paper, he linked the proposed technique to a divergence
measure that is computed by the infimum of the above Chernoff α-coefficient
w.r.t. q(θ).
In 1961, mathematician Alfréd Rényi argued that, by removing the additivity
requirement, Shannon entropy can be further generalised to many interesting
cases [Rényi, 1961]. He proposed one of such entropy definitions, and then
characterised the induced mutual information and relative entropy measures
using his version of α-divergence.a These two quantities are now referred to
Rényi entropy and Rényi divergence, respectively. Perhaps surprisingly, Rényi’s
definition of α-divergence also contains the Chernoff α-coefficient, although
these two developments are rather independent.
In the 70s-80s of the 20th century, differential geometry was introduced to
statistics, e.g. see Efron [1975, 1978]; Amari [1985], which studies the geometric
properties of the manifold obtained by mapping P to the parameter space Θ. In
particular, researchers were interested in the geometrical properties of exponen-
tial family distributions (introduced later) and the corresponding divergences
that reflect these features. In this context, mathematician Shun-ichi Amari
introduced his version of α-divergence [Amari, 1982, 1985], by generalising the
application of Chernoff α-coefficient to α ∈ R.

aThe KL divergence characterises the corresponding mutual information and relative en-
tropy measures for Shannon entropy.

4.1.2 Rényi divergence variational inference (RDVI)

Now consider approximating the exact posterior p(θ|D) by minimizing Rényi’s
α-divergence DR

α [q(θ)||p(θ|D)] for some selected α > 0. We can formulate an
equivalent optimisation problem

max
q∈Q

log p(D)−DR
α [q(θ)||p(θ|D)],

when α 6= 1, the objective can be rewritten as

Lα(q;D) := log p(D)−DR
α [q(θ)||p(θ|D)]

= log p(D)− 1

α− 1
logEq

[(
q(θ)p(D)

p(θ,D)

)α−1
]

=
1

1− α
logEq

[(
p(θ,D)

q(θ)

)1−α
]
.

(58)
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This equivalent objective is named variational Rényi bound (VR-bound) in Li and
Turner [2016]. In particular, with Monte Carlo approximation techniques, we can
formulate the following consistent but biased estimator of the VR-bound:

1

1− α
logEq

[(
p(θ,D)

q(θ)

)1−α
]
≈ 1

1− α
log

1

K

K∑
k=1

(
p(θk,D)

q(θ)

)1−α

, θk ∼ q(θ).

(59)
Since in many cases we can assume the joint distribution p(θ,D) can be evaluated,
this MC estimate of the VR-bound is tractable. Li and Turner [2016] further
discussed the reparameterisation trick for gradient estimates of the VR-bound,
while for discrete variables, the gradient estimator (with variance reduction) of
the VR-bound is discussed in Webb and Teh [2016].

The above VR-bound objective can also be used as an equivalent objective for
DR
α [p(θ|D)||q(θ)], due to the skew-symmetry property [Van Erven and Harremoës,

2014].

Proposition 1. (Skew symmetry) For α 6∈ {0, 1}, DR
α [p||q] = α

1−αDR
1−α[q||p]. This

implies DR
α [p||q] ≤ 0 for α < 0. For the limiting case DR

−∞[p||q] = −DR
+∞[q||p].

Therefore we have for α < 0,

Lα(q;D) = log p(D) +
α

1− α
DR
α [p(θ|D)||q(θ)],

which means minimising the VR-bound for α < 0 is equivalent to minimis-
ing DR

α [p(θ|D)||q(θ)]. In practice, with MC estimation techniques, optimising
Lα(q;D) with α < 0 is much more involved, see Li and Turner [2016] for further
discussions.

Let us revisit the mean-field approximation example, where the goal is to ap-
proximate the target distribution – the exact posterior distribution of a Bayesian
linear regression model – with a fully factorised Gaussian distribution. The an-
alytic solution of the optimal q∗ obtained by minimising the Rényi divergence is
visualised in Figure 8. We see that by choosing α ∈ (−∞,+∞), the resulting ap-
proximation interpolates between “mass-covering” and “zero-forcing” behaviour,
and in particular, for α = +∞ the resulting approximation (in cyan) still captures
uncertainty in the posterior (although over-confidently so) rather than returning
a point-estimate such as MAP.

Remark (Local minimisation of α-divergences). The RDVI approach discussed
in this section is a global divergence minimisation approach towards approax-
imate inference, in the sense that the approximate posterior is obtained by
minimising (an equivalent objective to) a divergence between the exact and
the approximate posterior. However, historically α-divergences are first em-
ployed in approximate inference methods based on local divergence minimisa-
tions [Minka, 2001b, 2004, 2005]. Readers are referred to discussions in message
passing methods (§ 6) for further details; the high-level idea is to decompose
the exact posterior into product of factors, then approximating the complicated
factors (especially those contributing to the intractability of the exact posterior)
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exact

Figure 8: Mean-field approximation to the target distribution (in black) using
different α-divergences.

with simpler ones. Importantly, these simpler factors are obtained by minimis-
ing a set of KL/alpha-divergences defined for each of them. Therefore this
approach performs “local approximations” in the sense that each divergence
minimisation focuses on modifying a single factor in the approximate poste-
rior. Each step of local divergence minimisation does not necessarily guarantee
an improved approximate posterior when compared with the exact posterior.
But in practice message passing approaches converge faster than gradient-based
variational inference, and they are preferred choices of approximate inference
methods on a handful of probabilistic models [Yedidia et al., 2005; Kuss and
Rasmussen, 2005].

4.2 f-divergences

The previously discussed α-divergence allows the resulting approximate posterior
to interpolate between zero-forcing and mass-covering behaviour (at least in theory
when global optimum is obtained). As an even broader family of divergences, the
f -divergences were introduce by Csiszár [1963], Morimoto [1963] and Ali and Silvey
[1966], and are sometimes referred as Csiszár’s f -divergences, Csiszár-Morimoto
divergences or Ali-Silvey distances. This family of divergences is defined as follows.

Definition 2. (f -divergence) Given a convex function f : R+ → R satisfying
f(1) = 0, the corresponding f -divergence on P is defined as a function Df [·||·] :
P× P→ R with the following form

Df [p||q] =

∫
q(θ)f

(
p(θ)

q(θ)

)
dθ, p, q ∈ P. (60)

By taking f(x) = − log x and f(x) = x log x, in which both are convex in x, we
recover the two KL divergence KL[q||p] and KL[p||q], respectively. The convexity
of function f is required by Jensen’s inequality in order to prove the conditions of
a valid divergence.

Amari’s α-divergence is a special instance of f -divergence, by taking f(x) =
4

1−α2 (1 − x
1+α
2 ) − 2

1−α(x − 1). Since different forms of α-divergences are more
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or less equivalent, we can see that f -divergences are indeed more general. But
more interestingly, if f is smooth, then one can show with Taylor expansion that
the corresponding f -divergence can be represented by a series of chi-divergences,
which are essentially special cases of α-divergences (up to scaling constant) with
integer α values.

Direct minimisation of f -divergence Df [p(θ|D)||q(θ)] in approximate Bayesian
inference context is more involved. Specifically, the trick of subtracting the f -
divergence from the model evidence log p(D) does not lead to a tractable objective,
i.e. we do not know how to compute log p(D)−Df [p(θ|D)||q(θ)] without evaluating
the exact posterior p(θ|D). On the other hand, the Jensen’s inequality trick might
still be applied in a way as

f(p(D)) = f

(
Eq
[
p(θ,D)

q(θ)

])
≤ Eq

[
f

(
p(θ,D)

q(θ)

)]
= Eq

[
f

(
p(θ|D)

q(θ)
p(D)

)]
.

(61)
However, the resulting objective on the RHS of the above equation does not di-
rectly correspond to an equivalent objective of an f -divergence. The KL-divergence
KL[q||p] with f(x) = − log x is an exception, since log p(θ|D)

q(θ)
p(D) = log p(θ|D)

q(θ)
+

log p(D) so that log p(D) can be ignored as a constant in optimisation. Still pre-
vious tricks in variational inference with KL-divergence and α-divergences do not
directly translate to the application of f -divergence minimisation.

4.3 Integral probability metrics

Is f -divergence the ultimate form for flexible distance/divergence/discrepancy be-
tween distributions? The answer is negative: there is another class of distance/di-
vergence/discrepancy called integral probability metrics (IPMs) which are typically
not in the form of f -divergence. They are widely used in statistics and machine
learning such as two-sample tests [Gretton et al., 2012; Gorham and Mackey, 2015;
Liu et al., 2016; Chwialkowski et al., 2016] and generative model learning [Arjovsky
et al., 2017; Gulrajani et al., 2017]. Recent research has also employed IPMs in
approximate inference context, e.g. see Liu and Wang [2016]; Ranganath et al.
[2016a]; Ambrogioni et al. [2018]. Before diving into the details for a particular
example, let us formally define an integral probability metric.

Definition 3. (Integral probability metric (IPM)) Given a set of test functions F,
consider the following quantity:

D[p, q] = sup
f∈F
|Ep[f(θ)]− Eq[f(θ)]|, (62)

where | · | denotes a norm in the output space of f . If F is sufficiently large such
that D[p, q] = 0 iff. p = q, then D[p, q] is said to be an integral probability metric
defined by the test functions in F.

The interpretation of IPMs might be unclear to the readers at first sight. To
provide an intuition, consider a strategy of comparing distributions by comparing
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Figure 9: A visualisation of the optimal test function in an IPM. The dots are
samples from the two distributions, and for visualisation ease the q distribution
density is shown in upside down.

their moments, e.g. mean, variance, kurtosis, etc. Loosely speaking, if two dis-
tributions p and q have the same moments for all orders then p and q should be
identical.18 Therefore, to check whether p and q are identical or not, one can find
the best moment, or in a broader sense the best test function f that can distin-
guish p from q the most, and if such optimal test function still fails to distinguish
between p and q, then the two distributions p and q are identical.19 This intuition
is further visualised in Figure 9.20 We see from the visualisation that the optimal
test function f ∗ takes positive values in the region where p(θ) > q(θ) and vise
versa. In other words, the optimal test function tells us more than whether p = q
or not; it also provides information on how p and q differ from each other. This is
a useful property for IPMs for applications in adversarial learning: as f ∗ describes
in detail the difference between p and q, we can optimise the q distribution in a
guided way towards approximating the target distribution p.

Examples of IPMs include:

• (Kernelised) Maximum mean discrepancy (MMD): given a reproducing ker-
nel Hilbert space (RKHS) H equipped with a generating kernel K(·, ·),the
test function set is defined as F = {f ∈ H, ||f ||H ≤ 1}. In this case the
supremum problem in Definition 3 has a closed-form solution, resulting in
the following discrepancy [Gretton et al., 2012]:

MMD[p, q] = Eθ,θ′∼p[K(θ,θ′)] + Eθ,θ′∼q[K(θ,θ′)]− 2Eθ∼p,θ′∼q[K(θ,θ′)].
(63)

• Wasserstein distance: Wasserstein distance is a key concept developed in op-
timal transport which aims at finding the lowest cost approach to transform
a distribution to another [Villani, 2008]. It is an IPM since its dual form is
defined by taking the test functions from F = {f : ||f ||L ≤ 1}, the set of
1-Lipschitz functions:

W2[p, q] = sup
||f ||L≤1

|Ep[f(θ)]− Eq[f(θ)]| (64)

18This is subject to some conditions, e.g. the moment generating functions exist for p & q.
19Again under some assumptions of the form for p & q.
20Figure adapted from Dougal Sutherland’s slides: http://www.gatsby.ucl.ac.uk/

~dougals/slides/dali/#/38
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So far the definition of IPMs requires samples from both p and q which might
be intractable in the case of posterior inference, i.e. efficient ways of sampling
from the posterior p(θ|D) might be unavailable. In such case we wish to define
a set of test functions where for the target distribution p we have Ep[f(θ)] = 0
for all f ∈ F, so that we can write the IPM as D[p, q] = supf∈F |Eq[f(θ)]| which
only requires samples from the q distribution. Stein’s method [Stein, 1972, 1981]
provides a solution to this problem. Roughly speaking, given a distribution p(θ)
whose density vanishes sufficiently fast at the boundary of the support, we have
the following Stein’s identity :

Ep(θ)[∇θ log p(θ)g(θ) +∇θg(θ)] = 0. (65)

This identity can be shown using integration-by-parts for functions in Gp = {g :
p(θ)g(θ)|∂Θ = 0}. Therefore we can use the test functions in the form of f(θ) =
∇θ log p(θ)g(θ)+∇θg(θ), which leads to the following Stein discrepancy [Gorham
and Mackey, 2015; Liu et al., 2016; Chwialkowski et al., 2016]:

S[p, q] = sup
g∈Gp
|Eq(θ)[∇θ log p(θ)g(θ) +∇θg(θ)]|. (66)

This IPM only requires samples from q and the score function of p(θ), which is
particularly suited for approximate inference. For example, the posterior density
is intractable, however, the score function of the exact posterior can be evaluated
as ∇θ log p(θ|D) = ∇θ log p(θ,D). Assuming a tractable joint distribution, this
means one can minimise the Stein discrepancy S[p, q] w.r.t. q to obtain the ap-
proximate posterior. There are several notable applications of Stein discrepancy
to approximate inference:

• Ranganath et al. [2016a] proposed the operator variational inference (OVI)
approach based on Stein discrepancy. OVI defines the set of g functions
with neural networks: Gp = {gη(θ) = NNη(θ)}. Therefore the optimisation
procedure of OVI includes optimising the varatiaonal parameters attached
to the q distribution as well as the neural network parameters η for the test
function gη(θ). This approach is later revisited in a recent attempt in the
context of learning energy-based models [Grathwohl et al., 2020].

• One might want to avoid using optimisation-based approach to find the best
g(θ) function. In this case we can use the kernel trick again and define
Gp = {g ∈ H : ||g||H ≤ 1}. This makes the optimal g function analytic, and
we have the following kernelised Stein discrepancy (KSD):

S2[p, q] = Eθ,θ′∼q[sp(θ)>K(θ,θ′)sp(θ
′) + sp(θ)>∇θ′K(θ,θ′)

+ sp(θ
′)>∇θK(θ,θ′) + Tr(∇θ,θ′K(θ,θ′))].

(67)

Though one can directly minimise KSD to obtain an approximation to the
exact posterior, a better-known use of KSD in posterior inference context
is the Stein variational gradient descent (SVGD) algorithm [Liu and Wang,
2016].
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Figure 10: Comparing f -divergences and IPMs. The total variation (TV) distance
is a common special case

• Another way to use Stein’s identity and KSD in approximate inference is
to approximate the gradient of the variational parameters for variational
inference with implicit posterior approximations [Li and Turner, 2018]. This
will be further discussed in § 9.

4.4 Connections between f-divergences and IPMs

As two major classes of divergences/discrepancies, both f -divergences and IPMs
contain a rich set of divergences/discrepancies. By defining the convex f func-
tion for f -divergences and the test function family F in IPMs, both divergences
can focus on different aspects in terms of describing the differences between two
distributions. E.g. as discussed, choosing different α values in α-divergence min-
imisation results in different zero-forcing/mass-covering behaviour in approximate
inference. Therefore, choosing the f functions that is suited for the task at hand
is crucial for the success of approximate inference with f -divergences or IPMs.

f -divergence and IPMs, although largely different, have a common special case
– the total variation (TV) distance (see Figure 10):

TV[P,Q] = sup
A∈Σ
|P (A)−Q(A)|, (68)

where Σ is the sigma algebra of the sample space where the distribution p and q
are defined. Simplifying the sigma algebra to a Borel set on RD and assuming the
Lebesgue measure on RD as the common dominating measure of P and Q, we can
write the TV distance in an IPM form:

TV[p, q] = sup
f∈{δ(θ∈A):A⊂RD}

|Ep[f(θ)]− Eq[f(θ)]|. (69)

On the other hand, TV distance can be defined using f -divergence, by using
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f(t) = |t− 1|:

2TV[p, q] =

∫
q(θ)|p(θ)

q(θ)
− 1|dθ

=

∫
p(θ)>q(θ)

q(θ)

(
p(θ)

q(θ)
− 1

)
dθ +

∫
p(θ)≤q(θ)

q(θ)

(
1− p(θ)

q(θ)

)
dθ

=

∫
p(θ)>q(θ)

(p(θ)− q(θ))dθ +

∫
p(θ)≤q(θ)

(q(θ)− p(θ))dθ

= P (A∗)−Q(A∗) + [(1−Q(A∗))− (1− P (A∗))]

= 2|P (A∗)−Q(A∗)|.

(70)

where it can be shown that A∗ := {θ ∈ RD : p(θ) > q(θ)} is the optimal solution
of the supremum problem in (69).

Another interesting observation is that f -divergences can also be written in a
“supremum form” that is related to IPMs. This is because a convex function f
can also be defined using its dual form:

f(t) = sup
u∈dom(f∗)

ut− f ∗(u), (71)

where f ∗(u) is the convex dual of f(t). Observing this, Nguyen et al. [2010] writes
the f -divergence as

Df [p||q] =

∫
q(θ) sup

u∈dom(f∗)

{up(θ)

q(θ)
− f ∗(u)}dθ

≥ sup
u(θ)

Ep[u(θ)]− Eq[f ∗(u(θ))],
(72)

where u(θ) : Θ → R is an arbitrary function to be optimised, and the second
line of equation comes from Jensen’s inequality. This gives a variational lower-
bound to the f -divergence that has similar form as an IPM (though not exactly
in the form of comparing moments between distributions), but at the same time
it also shows that in general f -divergence is different from IPMs except for some
special cases (e.g. TV). A notable application of the variational form (72) is f -
GAN [Nowozin et al., 2016] which parameterises u(θ) with a neural network and
performed gradient ascent to solve the supremum optimisation problem.

4.5 Further reading

Minka [2005] is a good reference published in the 2000s for the applications of
α-divergence in approximate inference, although before reading it I would suggest
another read on the basic concepts of factor graph [Kschischang and Frey, 1998]
and the sum-product algorithm (e.g. see Bishop [2006]).

In general for an in-depth understanding of α-divergence I would recommend
Shun-ichi Amari’s papers on α-divergence, e.g. [Amari et al., 2001; Amari, 2009].
Amari has used α-divergences minimisation and related approaches substantially

48



Yingzhen Li Topics in Approximate Inference

in his research information geometry. Also Van Erven and Harremoës [2014] is a
good reference for properties of Rényi divergence.

As a side note, Rényi divergence has also been used in differential privacy as a
tool to describe the privacy guarantees. This line of research starts from Mironov
[2017], interested readers can also read papers citing this work.

Wang et al. [2018a] discussed the limitations of α-divergence especially in terms
of the high variance of their empirical estimators. Motivating by this observation,
they proposed a variational objective that corresponds to an adaptive f -divergence
to bring the benefit of α-divergence while reducing the variance in the empirical
estimates. Rainforth et al. [2018]’s analysis of the high variance issue in empirical
gradients also applies to RDVI, and a very recent analysis of gradient variance for
α-divergence minimisation is provided in Geffner and Domke [2020].

Stein’s method has recently attracted attention in the machine learning com-
munity, with the applications in goodness-of-fit tests, learning energy-based mod-
els, and approximate inference as mentioned before. A good start to understand
this line of research is to first read Stein [1972] to see the original derivation for
Gaussian distributions, then Ranganath et al. [2016a] for an introduction to its
application in approximate inference. Gorham and Mackey [2015] is also a good
read if readers are interested in the usage of Stein’s method in statistical testing.

Sriperumbudur et al. [2009] provided a discussion on the connections between
f -divergences and IPMs (the φ-divergence in that paper is the same as the f -
divergence). Also I would recommend watching (parts of) the following tutorials:

• Arthur Gretton, Dougal Sutherland and Wittawat Jitkrittum. NeurIPS tu-
torial on “Interpretable comparison of distributions and models”, part I:
http://www.gatsby.ucl.ac.uk/~gretton/papers/neurips19_1.pdf

• Sebastian Nowozin. MLSS Madrid 2018 tutorial on “Generative Adversarial
Networks”.
http://www.nowozin.net/sebastian/blog/mlss-2018-in-madrid.html
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5 Estimating the marginal likelihood

5.1 Why estimating the marginal likelihood

As described in § 0.3, the goal of approximate inference is to compute the expec-
tation of some function F (z) under the posterior distribution p(z|x). However
the posterior distribution is intractable, mainly due to the difficulty of computing
the denominator in Bayes’ rule:

p(z|x) =
p(x|z)p(z)

p(x)
, p(x) =

∫
p(x|z)p(z)dz. (73)

The denominator is also called the marginal likelihood, and in general, for a nor-
malised density π(z) = 1

Z
π∗(z), Z is also called the normalising constant or

the partition function. Usually this distribution has some hyper-parameters that
Z and/or π∗(x) are dependent on. Therefore estimating the partition function
is central to distribution fitting that determines the best value of these hyper-
parameters.

For example, consider fitting to the observations D = {xn}Nn=1 an energy-
based model (EBM) p(x) = 1

Zθ
exp[−E(x;θ)] using maximum likelihood estima-

tion (MLE). In this case the partition function Zθ =
∫

exp[−E(x;θ)]dx is also a
function of the parameters θ, therefore gradient-based optimisation of MLE also
requires computing ∇θ logZθ. In this case if we have an approximation to the
partition function logZθ ≈ log Z̃θ, then we can replace Zθ with Z̃θ in the MLE
objective, and perform gradient descent for training.

Another prevalent example is model selection. Consider the case that we
want to select the best neural network architecture for classification tasks. Given
N different neural network architectures M1, ...,MN , Bayesian model selection
methods pick the best architecture by maximising the model evidence M∗ =
arg maxn log p(D|Mn), and again p(D|Mn) is the marginal likelihood of the model
Mn as well as the partition function of the posterior distribution p(θ|D,Mn).

We see from the above two examples the importance of having an accurate
estimation/approximation to the partition function/marginal likelihood. In this
section we will discuss sampling-based, and variational inference approaches to es-
timate the marginal log-likelihood log p(x) = log

∫
p(x, z)dz (assuming tractable

p(x, z)), with a focus on importance sampling and its advanced variants. Other
methods, e.g. message passing, can also provide accurate estimation of the marginal
likelihood, and we also provide a brief introduction to them in later sections (§ 6).

5.2 Constructing stochastic lower-bounds through sampling

An attractive way to construct an estimation of the marginal log-likelihood is
sampling. In short, given a distribution q(h) to draw sample from, under some
mild conditions it is fairly simple to construct a function F (h,x) such that

p(x) = Eq(h)[F (h,x)].
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For example, assume h = z, p(x, z) is tractable for any given pair (x, z) and
consider q(z) as some arbitrary distribution with the same or larger support

supp(p(z|x)) ⊂ supp(q(z)). Then with the density ratio F (z,x) = p(x,z)
q(z)

as

the F function, F (z,x), z ∼ q(z) returns an unbiased estimator of the marginal
likelihood p(x). This is exactly the idea of importance sampling, and in principle
q(z) does not even need to be close to p(z|x) in order to compute an unbiased
estimate of p(x) (although it might result in high variance in practice).

Given a sampling algorithm to estimate p(x), it is straight-forward to obtain
a lower-bound on log p(x) using Jensen’s inequality:

log p(x) = logEq(h)[F (h,x)] ≥ Eq(h)[logF (h,x)]. (74)

This means logF (h,x),h ∼ q(h) also forms a stochastic lower-bound for log p(x).
The lower-bound of the importance weighted auto-encoder (IWAE) approach pre-
sented in § 3.3.2 can also be derived from the above approach by defining the
augmented random variable h = {z1, ...,zK}, q(h) =

∏K
k=1 q(z

k) and F (h,x) =
1
K

∑K
k=1

p(x,zk)
q(zk)

.
The quality of the stochastic lower-bound is highly dependent on the quality

of the proposal distribution q(h), for example importance sampling with q(z) =
p(z|x) will return an exact estimate with zero variance. Therefore, advanced
techniques to improve importance sampling has been proposed, such as annealed
importance sampling (AIS) [Neal, 2001] that will be introduced below.

Assume we have two distributions p0(z) = 1
Z0
p∗0(z) and pT (z) = 1

ZT
p∗(z),

where p0(z) is relatively simple, and pT (z) is some complicated target distribu-
tion that we aim to sample from. AIS constructs a “bridge” between these two
distributions so that by a series of transitions samples from p0(z) can be (stochas-
tically) transformed into samples from pT (z). Concretely, AIS constructs inter-
mediate distributions pt, t = 1, ..., T − 1 to “bridge” between two distributions p0

and pT :

pt(z) =
1

Zt
p∗0(z)1−βtp∗T (z)βt , 0 = β0 < β1 < ... < βT = 1.

Now assume Tt(z|z′) is an MCMC transition kernel that leaves pt(z) invariant.
Then we consider an augmented state space h = {z0, ...,zT} and define the
“model” and proposal distribution as

p̃(h) = pT (zT )
T∏
t=1

T̃t(zt−1|zt), T̃t(z|z′) =
Tt(z

′|z)pt(z)

pt(z′)
,

q(h) = p0(z0)
T∏
t=1

Tt(zt|zt−1).

(75)
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This returns the density ratio as

p̃(h)

q(h)
=
pT (zT )

p0(z0)

T∏
t=1

T̃t(zt−1|zt)
Tt(zt|zt−1)

=
Z0

ZT

p∗T (zT )

p∗0(z0)

T∏
t=1

p∗t (zt−1)

p∗t (zt)

=
Z0

ZT

T∏
t=1

p∗t (zt−1)

p∗t−1(zt−1)
:=

Z0

ZT

T∏
t=1

wt(zt−1), wt(z) :=
p∗t (z)

p∗t−1(z)
.

(76)

Since Eq(h)[p̃(h)/q(h)] = 1, this means Z0Eq(h)[
∏T

t=1 wt(zt−1)] = ZT . Therefore

F (h,x) = Z0

∏T
t=1 wt(zt−1),h ∼ q(h) is an unbiased estimator of ZT , which then

equals to log p(x) if we set pT (z) = p(z|x). Thus by further assuming p0(z) = p(z)
it is straight-forward to show that pt(z) = 1

Zt
p(z)p(x|z)βt , Z0 = 1, ZT = p(x),

and

log p(x) ≥ Eq

[
T∑
t=1

logwt(zt−1)

]
= Eq

[
T∑
t=1

log p(x|zt−1)βt−βt−1

]
. (77)

AIS is a special case of sequential importance sampling that augmentes the
state-space and constructes a sequence of importance sampling procedure. In
general the proposal Tt(z|z′) does not necessarily need to be an MCMC transition
kernel, and the “reverse model” T̃t can be relaxed to arbitrary distribution rt(z

′|z).
In this case, with notations Tt(z|z′) = qt(z|z′), p0(z) = q(z) the density ratio is

p̃(h)

q(h)
=

p∗T (zT )

ZT q(z0)

T∏
t=1

rt(zt−1|zt)
qt(zt|zt−1)

, (78)

therefore using similar reasoning we see that F (h,x) = p(x,zT )
q(z0)

∏T
t=1

rt(zt−1|zt)
qt(zt|zt−1)

,h ∼
q(h) is also an unbiased estimator of p(x) when pT (z) = p(z|x). The correspond-
ing lower-bound Eq[logF (h,x)] coincides with the auxiliary variational inference
objective presented in Agakov and Barber [2004]; Salimans et al. [2015]; Ranganath
et al. [2016b], and the lower-bounds presented in Maaløe et al. [2016]; Tran et al.
[2016] correspond to the special cast that T = 1. All these papers suggested fitting
both qt and rt by maximising this lower-bound in order to improve the quality of
the proposal distribution q(h).

Remark (IWAE as VAE in an augmented space). Notably Cremer et al.
[2017] and Domke and Sheldon [2018] proposed re-interpretations of IWAE
so that with a specific design of h variables (and the corresponding q(h)),

the corresponding F function can be formulated as F (h,x) = p̃(x,h)
q(h)

for

some “model” p̃(x,h). Therefore IWAE can also be viewed as performing
KL-divergence based variational inference just like VAE (but with a differ-
ent model in an augmented space). Readers are refer to the two papers
for details, and here we briefly present a third approach which considers
h = {z1, ...,zK , i} with i ∈ {1, ..., K}. Define q(h) =

∏K
k=1 q(z

k)q(i|z1:K)
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and p̃(x,h) =
∏
p̃(x|i, z1:K)

∏K
k=1 p̃(z

k|i)p̃(i), with q(zk) the sampling pro-
posal that has a shared density form across k, and

q(i|z1:K) =
p(x, zi)/q(zi)∑K
k=1 p(x, z

k)/q(zk)
// resampling,

p̃(i) =
1

K
// uniform distribution,

p̃(zk|i) = 1(k = i)p(zk) + 1(k 6= i)q(zk), p̃(x|i, z1:K) = p(x|zi),

readers can verify that using the above definition we have p(x) = Eq(h)[F (h,x)],
and at the same time,

log p̃(x) = log p(x) = Eq
[
log

p̃(x, z1:K , i)

q(z1:K , i)

]
+ KL[q(z1:K , i)||p̃(z1:K , i|x)].

Therefore we clearly see that IWAE is a VAE-style inference method for the
augmented model p̃(x, z1:K , i). Although not rigorously proved, I believe this
type of understanding can also be applied to other advanced inference methods
such as variational SMC [Maddison et al., 2017a; Le et al., 2017; Naesseth et al.,
2017]. This reasoning of variational inference in an augmented space is further
expanded by Domke and Sheldon [2019] to the lower-bound of the form in (74).

5.3 Stochastic upper-bounds of the marginal log-likelihood

We have briefly discussed how to construct stochastic lower-bounds via sampling.
However, as lower-bounds only give conservative estimates of the marginal log-
likelihood, they might not reflect the true model evidence in model selection, and
thus bias the selection procedure towards less powerful models. In this section I
will briefly present existing upper-bounds for the marginal log-likelihood, which,
combined with the lower-bounds, provides more reliable estimates of logZ for
downstream tasks.

5.3.1 Variational Rényi bound/χ upper-bound

Recall the introduction of the variational Rényi bound VR-bound in § 4.1.2 where
the bound writes as (with α 6= 1)

Lα(q;x) :=
1

1− α
logEq

[(
p(z,x)

q(z)

)1−α
]
. (79)

Furthermore, we stated in § 4.1.2 becomes an upper-bound of log p(x) for α < 0
due to the skew symmetry property of Rényi divergence. Van Erven and Har-
remoës [2014] also observed the following monotonicity of Rényi divergence.

Proposition 2. (Monotonicity) Rényi’s α-divergence definition (57), extended to
negative α, is continuous and non-decreasing on α ∈ {α : −∞ < DR

α < +∞}.
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Figure 11: An intuition of the quality of MC estimates for the VR-bounds with
different α and K values. Reproduced from Li and Turner [2016].

This immediately leads to the following theorem regarding the VR-bound.

Theorem 1. The objective Lα(q;x) is continuous and non-increasing on
α ∈ {α : |Lα| < +∞}. Especially for all 0 < α+ < 1 and α− < 0,

LVI(q;x) = lim
α→1

Lα(q;x) ≤ Lα+(q;x) ≤ L0(q;x) ≤ Lα−(q;x)

Also L0(q;x) = log p(x) if and only if the support supp(p(z|x)) ⊆ supp(q(z)).

When α has negative integer values the bound is also referred as the χ upper
bound (CUBO) in Dieng et al. [2017].

Theorem 1 indicates that the VR bound can be useful for model selection by
sandwiching the marginal log-likelihood with bounds computed using positive and
negative α values. In particular L0 = log p(x) under the mild assumption that q
is supported where the exact posterior is supported. This assumption holds for
many commonly used distributions, e.g. Gaussians are supported on the entire
space.

Unfortunately the VR bound is usually just as intractable as the marginal
likelihood for many useful models when α 6= 1. Li and Turner [2016] further applies
MC approximation to (58), and IWAE is a special case of that MC approximation
method when α = 0. Therefore, MC-VR can be applied to precisely the same set
of models as MC-VI [Paisley et al., 2012; Salimans and Knowles, 2013; Ranganath
et al., 2014; Kucukelbir et al., 2015].

Regarding the estimation quality of the marginal log-likelihood, Li and Turner
[2016] also characterised the bias introduced by MC approximation in their The-
orem 2 and Corollary 1. The idea behind the theorems is visualised in Figure 11.
In short the observation is that for a given α < 0 and fixed proposal q(z) and
target p(z|x), we can select a sufficiently large number of samples K to obtain a
stochastic upper-bound of the marginal log-likelihood. Furthermore, this required
K number becomes smaller when α approaches to negative infinity. Unfortunately
there is no detailed guidance on selecting this K number for a given α, and in prac-
tice, depending on the quality of the q distribution (in terms of being used as an
importance sampling proposal), this K can be very large.
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5.3.2 Harmonic mean estimator

Newton and Raftery [1994] proposed the harmonic mean estimator which can
potentially be used to construct a stochastic upper-bound of the marginal log-
likelihood. It is based on the observation that

Ep(z|x)

[
p(z)

p(z,x)

]
=

∫
p(z,x)p(z)

p(x)p(z,x)
dz =

1

p(x)

∫
p(z)dz =

1

p(x)
. (80)

This means if one can get samples from the exact posterior p(z|x), then these
samples can be used to construct a stochastic upper-bound of the marginal log-
likelihood (again by Jensen’s inequality):

− Ep(z|x)

[
log

p(z)

p(z,x)

]
≥ − logEp(z|x)

[
p(z)

p(z,x)

]
= log p(x). (81)

Unfortunately the samples from the exact posterior are difficult to obtain; even
when we do have these samples, the above stochastic upper-bound can be very
loose. On the other hand, a native application of importance sampling does not
address the issue since (1) the importance weight is unavailable due to intractabil-
ity of p(z|x), and (2) self-normalised importance sampling does not maintain a
stochastic upper-bound.

Grosse et al. [2015] provides an interesting solution to the above issue by lever-
aging the AIS technique, but in the reverse direction. Recall in the derivation of
the AIS estimator where used the “augmented model” and the proposal distribu-
tion defined in (75). Similar to the derivation of (76), we can also write

q(h)

p̃(h)
=

p0(z0)

pT (zT )

T∏
t=1

Tt(zt|zt−1)

T̃t(zt−1|zt)
:=

ZT
Z0

T∏
t=1

w̃t(zt−1), w̃t(z) :=
p∗t−1(z)

p∗t (z)
. (82)

Since Ep̃(h)[
q(h)
p̃(h)

] = 1 this effectively says Ep̃(h)[
∏T

t=1 w̃t(zt−1)] = Z0

ZT
. Thus by

making similar assumptions as before (p0(z) = p(z), pt(z) = 1
Zt
p(z)p(x|z)βt ,

0 = β0 < ... < βT = 1), we have Z0 = 1, ZT = p(x), and the following stochastic
upper-bound

log p(x) ≤ −Ep̃

[
T∑
t=1

log w̃t(zt−1)

]
= Ep̃

[
T∑
t=1

log p(x|zt−1)βt−βt−1

]
. (83)

Comparing the bounds obtained in equations (77) and (83), we see that the es-
timators differs only in the sampling distribution, where the lower-bound (77) is
obtained by a “forward” AIS from p0(z) to pT (z), while the upper-bound (83) is
obtained by a “backward” AIS from pT (z) to p0(z). Since starting from sampling
p0(z) is considerably easier, Grosse et al. [2015] suggested a “bi-directional Monte
Carlo” procedure, by first running the forward AIS to compute the stochastic
lower-bound (77) and get samples from pT (z|x), then using these last-step samples
from the forward AIS to initialise the backward AIS, and running the backward
AIS to obtain the stochastic upper-bound (83). By doing so, one can obtain a
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“sandwiched estimate” of the marginal log-likelihood, which provides a more ro-
bust tool for model selection. Still the bias and variance in these AIS-based bounds
depends on the proposal distribution (e.g. the choice of p0(z) and the temperature
schedule) as well as the intermediate MCMC steps to (approximately) get samples
from pt(z).

5.4 Further reading

Hamiltonian annealed importance sampling (HAIS) is one of the state-of-the-art
approaches for estimating the marginal likelihood. This method is based on AIS
[Neal, 2001], and the samples from each of the intermediate distribution pt(z) are
obtained using Hamiltonian Monte Carlo (HMC) [Duane et al., 1987; Neal, 2011].
Wu et al. [2017] has shown that for evaluating the quality of deep generative models
in terms of their marginal log-likelihood, HAIS might provide better estimates
than naive importance sampling. The tempering path idea in AIS is also used in
Masrani et al. [2019] to construct lower-bounds and upper-bounds of the marginal
log likelihood.

Many sampling-based methods for marginal likelihood estimation have been
proposed, e.g. see Chib [1995]; Skilling et al. [2006]. Also recent studies have
also introduced multi-level Monte Carlo techniques [Giles, 2015] to marginal log-
likelihood estimation. The idea is to construct a better estimator of the target by
combining a series of MC estimators that require different number of MC samples
and have different precision. For an application in deep generative models, see
e.g. Nowozin [2018]; Luo et al. [2020].

For estimating the partition function of an EBM based on a graph (e.g. Ising
model and conditional random field), message passing based approaches have been
investigated for long, see § 6 for further discussions. On the sampling side, the
Swendsen-Wang algorithm [Swendsen and Wang, 1987] is a popular approach for
simulating samples from Ising models and Potts models. For an application to
computer vision tasks (graph cut and image segmentation), see e.g. Barbu and
Zhu [2005].

In general for model selection, I would recommend reading materials related to
Akaike information criterion (AIC) [Akaike, 1974], Bayesian information criterion
(BIC) [Schwarz, 1978] and minimum description length (MDL) [Grünwald, 2007]
principles. The connections of AIC/BIC to approximate posterior inference are
presented in e.g. Burnham and Anderson [2004]; Konishi and Kitagawa [2008],
and Hinton and Van Camp [1993] demonstrated the connections between VI and
MDL.
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6 Message passing algorithms

In § 1.2 the variational lower-bound is introduced as an lower-bound of logZ:

LVI(q) :=

∫
q(z) log

p∗(z)

q(z)
dz ≤ logZ. (84)

Variational lower-bound is a conservative estimate of the log marginal likelihood,
therefore it is “safe” to optimise it w.r.t. parameters of p(z). However it is also less
accurate if we are interested in an estimation of logZ only (even after optimising q
in a constrained set Q). In this section I will briefly describe another approximation
approach to the log marginal likelihood called Bethe free-energy, which has been
shown to be more accurate after optimising the q distribution. Note that the
derivation of the (constrained) Bethe free-energy optimisation problem is similar
to the derivation of the Expectation Propagation (EP) optimisation problem, thus
in this section we also refer the primal form of EP energy to Bethe free-energy.

6.1 The sum rule and the product rule

6.1.1 Factor graph

One way to represent a distribution is to draw a factor graph [Kschischang and
Frey, 1998; Kschischang et al., 2001]. A simple example would be a joint distribu-
tion P (z1, z2,x3) which can be factorised into P (z1, z2, z3) = f1(z1)f2(z2)f3(z3),
illustrated in Figure 12. To give a formal definition, a factor graph G = (V,F,E) is
a bipartite graph between variable nodes (circles) i ∈ V and factor nodes (squares)
f ∈ F, where a factor node f is connected to a variable node zi iff. zi belongs
to the function f ’s domain. A distribution may be represented by different factor
graphs, since we can merge factors to a single one. In particular to our example,
we may also write P (z1, z2, z3) = f ′1(z1)f ′2(z2, z3), where f ′1(z1) = f1(z1) and
f ′2(z2, z3) = f2(z2)f3(z3). In the rest of this section we use za to denote a subset
of random variables {zi} connected to a factor node fa. Therefore given a factor
graph G, the distribution of random variables is defined as (z = {z1, ...,zd})

p(z) =
1

Z

∏
fa∈F

fa(za). (85)

In the following we give two examples of such distributions:

• Undirected graphical model (UGM) with a bipartite graph: consider a UGM
with graph G(V,E) and distribution as

p(z) =
1

Z

∏
(i,j)∈E

ψij(zi, zj)
∏
i∈V

ψi(zi). (86)

In the literature ψij(zi, zj) and ψi(zi) are often referred to pairwise potentials
and singleton potentials, respectively. An alternative way to write down the

57



Yingzhen Li Topics in Approximate Inference

z1 z2 z3

f1 f2 f3

(a) P (z1, z2, z3) ∝
f1(z1)f2(z2)f3(z3)

z1 z2 z3

f ′2f ′1

(b) P (z1, z2, z3) ∝
f ′1(z1)f ′2(z2, z3)

Figure 12: Two different factor graph representations for the same probability
distribution, if defining f ′1 = f1, f ′2 = f2f3.

UGM distribution is as follows. Denote ni the number of neighbours of a
node i ∈ V. Then we define a set of factors as

F = {fij(zi, zj) = ψi(zi)ψj(zj)ψij(zi, zj) | (i, j) ∈ E}∪{fi(zi) = ψi(zi)
1−ni | i ∈ V},

and it is straightforward to show that p(z) = 1
Z

∏
fa∈F fa(za). In this case

za = zi for factor fi and za = (zi, zj) for factor fij.

• Bayesian posterior inference: for a given dataset D = {xn}Nn=1, consider the
following posterior distribution

p(z|D) =
1

Z
p0(z)

N∏
n=1

p(xn|z). (87)

Then we can define a set of factors as

F = {f0(z) = p0(z)} ∪ {fn(z) = p(xn|z) | n = 1, ..., N},

and it is straightforward to show that p(z|D) = 1
Z

∏
fa∈F fa(za). In this case

za = z for all the factors in F.

6.1.2 The sum-product algorithm

Many inference tasks require computing the marginal distribution on a subset of
variables in z. More generally speaking, computing the moments or statistics of a
given distribution represents many of the inference tasks in practice. For example,
consider computing the marginal distribution p(z1) for the following distribution:

p(z) = fa(z1)fb(z2)fc(z1, z2, z3)fd(z3, z4)fe(z3, z5). (88)

The factor graph representation of the above p(z) is shown in Figure 13. It is easy
to show that

p(z1) =

∫
fa(z1)fb(z2)fc(z1, z2, z3)fd(z3, z4)fe(z3, z5)dz2:5

= fa(z1)

∫
fb(z2)

(∫ [
fc(z1, z2, z3)

∫
fd(z3, z4)dz4

∫
fe(z3, z5)dz5

]
dz3

)
dz2,

(89)
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where the second line of the equation is obtained by grouping the factors according
to their inputs. This means we can define

p(z1) = mfa→z1(z1)mfc→z1(z1), mfa→z1(z1) := fa(z1)

mfc→z1(z1) :=

∫
fb(z2)

(∫ [
fc(z1, z2, z3)

∫
fd(z3, z4)dz4

∫
fe(z3, z5)dz5

]
dz3

)
dz2.

(90)
It remains to compute mfc→z1(z1) as a “message” from the factor fc to the variable
z1. As shown in the equation, the integration can be done in a local way. Define

mfb→z2(z2) := fb(z2),

mfe→z3(z3) :=

∫
fe(z3, z5)dz5, mfd→z3(z3) :=

∫
fd(z3, z4)dz4,

mz3→fc(z3) := mfe→z3(z3)mfd→z3(z3), mz2→fc(z2) := mfb→z2(z2)

(91)

then

mfc→z1(z1) =

∫
mfb→z2(z2)

(∫
fc(z1, z2, z3)mfd→z3(z3)mfe→z3(z3)dz3

)
dz2

=

∫
fc(z1, z2, z3)mz2→fb(z2)mz3→fc(z3)dz2:3

:=

∫
fc(z1, z2, z3)

∏
zi∈N(fc),i 6=1

mzi→fc(zi)dz2:3,

(92)
where N(fc) = {z1, z2, z3} denotes the variable that are connected to the factor
node in the factor graph in Figure 13. The above “message passing” procedure
provides us a convenient way to compute the marginal distribution given a joint
distribution with its associated factor graph. This algorithm is also called the
sum-product algorithm since the two type of messages – variable-to-factor message
and factor-to-variable message – are based on the sum rule and product rule of
probability distributions:

mfi→zj(zj) :=

∫
fi(zN(fi))

∏
zk∈N(fi),k 6=j

mzk→fi(zk)dzN(fi)\{i}, # sum-product

(93)

mzj→fi(zj) :=
∏

fk∈N(zj),k 6=i

mfk→zj(zj), # product (94)

p(zj) =
∏

fi∈N(zj)

mfi→zj(zj). # product (95)

The message passing procedure is also visualised in Figure 13.

6.2 Expectation Propagation

Now we consider a distribution π(z) ∝
∏

a f̃a(za), where f̃a are the factors in
the corresponding factor graph with associated variables za. As mentioned above
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Figure 13: The message passing algorithm (i.e. the sum-product algorithm) to
compute the marginal distribution p(z1).

the exact posterior is a good example here, where π(z) ∝ p0(z)
∏

n p(xn|z), f̃a
represents either the prior distribution p0(z) or the likelihood function p(xn|z)
associated with a datum. In this section we introduce the Expectation Propagation
(EP) [Minka, 2001b] algorithm which approximates π(z) by another factor graph
with a collection of simpler functions q(z) ∝

∏
a fa(za).

To summarise the algorithm, we first define the “leave-one-out”, or cavity dis-
tribution21

q−a(z) ∝
∏
b6=a

fb(zb) ∝ q(z)/fa(za), (96)

which is computed by multiplying all the other factors except the selected one.
The second step is to compute the tilted distribution by inserting back the true
factor f̃a that fa approximates:

p̃a(z) ∝ q−a(z)f̃a(za), (97)

and update the selected factor fa by minimising the KL divergence from p̃a to the
approximation q (with fa included), with the restriction that the new q belongs
to the same family of previous approximation. For example, this can be done by
minimising the following KL divergence:

fa(z)← arg min
fa

KL[p̃a(z)||q(z)], q(z) ∝ q−a(z)fa(za). (98)

It is important to note that the above optimisation task is solved by optimising
fa(za) only, and the other factors in q−a(z) are all fixed. Therefore EP is regarded

21The name “cavity” comes from the cavity method that is used to study Ising models [Mézard
et al., 1987], showing the deep connections between EP and belief propagation.
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as a “local” approximation algorithm since at each step the update is performed
locally on a selected factor.

For exponential family approximations, we solve the optimisation problem (98)
by zeroing the gradients of the KL w.r.t. the natural parameters of q. This is equiv-
alent to matching the moments of the arguments between the two distributions.
More precisely, assume the factors fa belong to the same exponential family with
feature function Φ(z) = (Φ1(z), ...,Φd(z)), i.e. za = z and fa(z) = exp(λT

aΦ(z)).
Then we write the q distribution as

q(z) ∝ exp(λTΦ(z)), λ =
∑
a

λa. (99)

Zeroing the gradient of KL[p̃a||q] wrt. λa returns

Eq [Φ(z)] = Ep̃a [Φ(z)] , (100)

which gives the name of moment matching [Seeger, 2005]. We denote this optimi-
sation computation with proj operator

proj[p] = arg min
q

KL[p||q], (101)

which returns the minimiser of the KL-divergence KL[p̃a||q] by passing the mo-
ments of p̃a. This operator is also called M-projection [Cover and Thomas, 1991].
After the computation of q∗ = proj[p̃a] we recover the update of fa by

fa(za)← q∗(z)/q−a(z), (102)

which returns in the exponential family case

λ← λ∗ − λ−a, λ−a = λ− λa, q∗(z) ∝ exp(λT
∗Φ(z)) (103)

In summary, EP updates the approximating factors f̃a iteratively through the
“exclusion, moment matching, inclusion” procedure, which is detailed in Algo-
rithm 1. To improve convergence damping updates can be applied to step 4 in
Algorithm 1 as

fa(za)← fa(za)
1−εf ∗a (za)

ε, f ∗a (za) = proj[p̃a]/q−a(z), (104)

where ε denotes the step-size. The last step, corresponded to the inclusion step in
Algorithm 1, is to incorporate the updated factor back to the approximation:

q(z)← q−a(z)fa(za). (105)

The reader may find that in Algorithm 1 the updated distribution q equals to q∗

in the moment matching step, while this yields EP without damping only.

Remark (misconceptions about EP). A misleading interpretation states that
EP is the counterpart algorithm of VI which minimises the inclusive KL. The
correct answer is more than “yes or no” and it strongly depends on the factor
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Algorithm 1 Expectation Propagation (without damping)

1: while not converged do
2: choose a factor fa(za) to refine (according to a schedule):
3: exclusion: q−a(z) ∝ q(z)/fa(za)
4: moment matching: fa(za)← proj[q−a(z)f̃a(za)]/q−a(z)
5: inclusion: q(z)← q−a(z)fa(za)
6: end while

graph structure. If the factor graph only contains a single factor node, then EP
is minimising the inclusive KL globally. However, computing moments on this
factor graph often requires further approximations, thus it is rarely considered
in EP literature. Otherwise, EP does not minimise the inclusive KL divergence
to the target distribution. Again we refer EP as a local approximation algo-
rithm since it works with the components of the target distribution directly.
Conversely, VI does minimise the exclusive KL divergence globally, regardless
of the factor graph structure [Winn and Bishop, 2005].

6.2.1 A message passing view of EP

In this section we explain the EP update steps as message passing with projections.
As an illustrative example, for now we assume the target distribution π(z) as

π(z) ∝ f̃a(z1, z2)f̃b(z2, z3)f̃c(z1), (106)

which means z = (z1, z2, z3) and za = (z1, z2). Our goal is to approximate π(z)
with q(z) ∝ fa(z1, z2)fb(z2, z3)fc(z1) with simple factors fa, fb, fc so that q(z)
becomes tractable. To simplify the intuition, we further assume the q distribution
to follow an exponential form:

q(z) =
1

Z
exp

 ∑
i∈{a,b,c}

λT
i Φi(zN(fi))

 , (107)

in other words zN(fa) = za, fa = exp(λT
aΦi(za)). The factor graph of q(z) is

visualised in Figure 14 (left). Now consider the EP steps for updating fa(za).
Note that we can also consider messages from a factor to multiple variable nodes,
i.e. we can define the factor-to-node messages on the group level:

mfi→zN(fi)
(zN(fi)) := fi(zN(fi)). (108)

Compared with (93), we see that there is no integration computation here since
the variables zN(fi) in consideration contains all the variable nodes that the factor
fi is connected to. Then we have the cavity distribution as

q−a(z) ∝ fb(z2, z3)fc(z1) =
∏
i 6=a

mfi→zN(fi)
(zN(fi)). (109)
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Figure 14: Visualising the message passing interpretation of EP, by merging
(z1, z2) as a “supernode” za. Note here the message from fa to za is highlighted
with a dash line since approximation might make the message inexact.

Now we need to compute the message from za to fa. In the moment matching
step, this is done by solving the optimisation problem (98). Zeroing the gradient of
the KL divergence w.r.t. λa (with p̃a(z) treated as a constant) returns the updated
q distribution q → q∗ such that

Eq∗ [Φi(za)] = Ep̃a [Φi(za)] (110)

This means the updated factor fa(za) → f ∗a (za) (i.e. mfa→za(za) → m∗fa→za(za)
needs to satisfy:

Moments-of-za
(
q(z) ∝ m∗fa→za(za)q−a(z)

)
=Moments-of-za

(
p̃a(z) ∝ f̃a(za)q−a(z)

)
.

(111)

Since we only match the moments of za, this means we can first integrate out the
variables z−a = z\za. Since z−a only appears in q−a(z), this means z−a can be
marginalised out already in the cavity distribution computation step: q−a(za) =∫
q−a(z)dz−a. Compare the cavity marginal q−a(za) to eq. (94), we see that the

cavity distribution can be interpreted as a variable-to-factor message:

q−a(za) ∝ mza→fa(za) :=

∫ ∏
i 6=a

mfi→zN(fi)
(zN(fi))dz−a =

∏
i 6=a

mfi→zN(a,i)
(zN(a,i)),

(112)
with zN(a,i) = zN(fi) ∩ za denotes the variables in za that is also connected to
factor fi. Therefore the moment matching constraint becomes

Moments-of-za
(
q(za) ∝ m∗fa→za(za)mza→fa(za)

)
=Moments-of-za

(
p̃a(za) ∝ f̃a(za)mza→fa(za)

)
.

(113)

In other words, the update rule of the new factor (or the new factor-to-variable
message) is

fa(za) := mfa→za(za), mfa→za(za)←
1

Z ′mza→fa(za)
proj[f̃a(za)mza→fa(za)],

(114)
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Algorithm 2 Power EP with fraction α

1: while not converged do
2: choose a factor fa(za) to refine:
3: exclusion: q−a(z) = q(z)/fa(za)

α

4: moment matching: fa(za)
α ← proj[q−a(z)f̃a(za)

α]/q−a(z)
5: inclusion: q(z)← q(z)fa(za)/fa(za)

old

6: end while

with proj[·] the M-projection as discussed before (w.r.t. the moments of za) and
Z ′ a scaling constant.22 This essentially means the two major steps in EP (see
Algorithm 1 and Figure 14 (right)) can be summarised as

• Choose a factor fa to refine;

• Exclusion step: compute the variable-to-factor message mza→fa(za);

• Moment Matching: compute/update the factor-to-variable messagemfa→za(za).

One can see that if fa and f̃a belongs to the same family (in our example f̃a will
also have an exponential family form), then the moment-matching update will
immediately set fa(za) ← f̃a(za), the M-projection in (114) becomes an identity
mapping, and the variable-to-factor message mza→fa(za) in both the numerator
and denominator of (114) are cancelled out. This makes the newly updated mes-
sage consistent with the definition of factor-to-multiple-variable message in (108).
From this view we can see EP as a generalised sum-product algorithm where ad-
ditional approximation steps are added to the summation steps of message com-
putations.

6.2.2 Linking power EP and α-divergence

An extension of EP is power EP [Minka, 2004], which excludes a fraction of the
approximation (i.e. fa(z)α) and includes the same fraction of the true factor for
updates (see Algorithm 2). Since we exclude/include only a fraction of the factors,
damping should be applied to the natural parameters of fa(z)α directly before
recovering the update for fa(z).

Power EP with fraction α corresponds to minimising the α-divergence from
p̃a(z) ∝ q(z)f̃a(z)/fa(z) to q(z). To see this, we first adapt Amari’s definition
[Amari, 1985] of α-divergence DA

α to the following form [Zhu and Rohwer, 1995;
Minka, 2005], which we refer to as Minka’s α-divergence:

DM
α [p||q] =

1

α(1− α)

(
1−

∫
p(z)αq(z)1−αdz

)
(115)

which is equivalent to the original definition by setting α′ = 2α−1 in Amari’s nota-
tion DA

α′ = DM
α . So similarly the exclusive KL divergence KL[q||p] = limα→0 DM

α [p||q]
22In practical implementations the messages (from both directions) need not to be normalised,

the normalisation constant comes in only when a density evaluation is required.
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Figure 15: Two equivalent factor graphs for the same distribution, with the RHS
factor graph used in power EP (with damping).

and the inclusive one KL[p||q] = limα→1 DM
α [p||q] can be recovered. Now we in-

vestigate the case which replaces the moment matching step in the EP algorithm
(Algorithm 1) by q∗ = arg minDM

α [p̃a||q], which is also called α-projection [Amari
and Nagaoka, 2000]. Similarly we assume q has an exponential family form (99),
and we fix p̃a(z) as the target (so it is treated as a constant). Then when α 6= 0, 1,

∇λDM
α [p̃a||q] =

1

α

(
Eq[Φ(z)]− E

p̃
(α)
a

[Φ(z)]
)
,

p̃(α)
a ∝ p̃αaq

1−α.

In this case the solution of ∇λDM
α [p̃a||q] is non-trivial since now p̃

(α)
a contains

contributions from q. Instead power EP proposes a fixed point iterative update
procedure, by initialising q with last iteration’s solution (which makes p̃

(α)
a ∝

qf̃αa /f
α
a , see the moment matching step in Algorithm 2), fixing p̃

(α)
a as the target,

and computing the next update for the natural parameter λ such that the moments
of q and p̃

(α)
a are matched. Again there is no guarantee for convergence here,

but if power EP does converge, this means the fixed point iterative updates are
also converged, thus the final solution q does minimises Minka’s α-divergence (or
Amari’s α-divergence but with a different α value) locally. Minka [2004] also
sketched an algorithm called α-EP which assumes the α-projection is tractable.

As discussed in § 4.1, different α-divergences show different characteristics.
Often the exclusive KL-divergence KL[q||p] is prefered if a mode-seeking solution
is preferred. Furthermore, the exclusive KL-divergence has an unique advantage
in that local optimisation can return optima of global approximation [Winn and
Bishop, 2005]. On the other hand, standard EP with the inclusive KL-divergence
KL[p||q] is preferred if the inference task require computing some sufficient statis-
tics locally at za.

We can also view power EP with power α and a specific damping rate as
running EP on an equivalent factor graph of the target distribution. We can write
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the target distribution as

π(z) ∝
∏
i 6=a

f̃i(zN(fi))f̃
1
a (za)f̃

2
a (za), f̃ 1

a (za) := f̃a(za)
α, f̃ 2

a (za) := f̃a(za)
1−α.

(116)
Similarly we also split the fa(za) factor in q(z) as fa(za) = f 1

a (za)f
2
a (za), f

1
a (za) :=

fa(za)
α, f 2

a (za) := fa(za)
1−α. Now we can run the EP procedure to update f 1

a (za),

one can show that p̃
(α)
a ∝ qf̃ 1

a/f
1
a and the new update becomes

f 1
a (za)← proj[p̃(α)

a ]/q−a1(z), q−a1(z) := q−a(z) ∝ q(z)/f 1
a (za), (117)

which corresponds to the moment matching step in Algorithm 2 (if we treat the
update of fαa (za) as the update of f 1

a (za)). Now instead of directly running the
inclusion step in 2, we can also follow similar damping strategy as (104) to define
the update for fa(za):

fa(za)← f 1,new
a (za)f

2
a (za)⇔ fa(za)← fa(za)

1−αproj[p̃(α)
a ]/q−a1(z). (118)

Compare with the moment matching and inclusive steps in Algorithm 2 we see
that power EP with power α and damping rate ε = α can be viewed as running
EP on an alternative factor graph (Figure 15).

6.3 Bethe free-energy

6.3.1 From variational free-energy to Bethe free-energy

This section derives the constrained Bethe free-energy optimisation problem by a
relaxation of variational inference. In this case, we write the target distribution
as π(z) ∝

∏
fa∈F fa(za), and define the variational free-energy as

FVFE(q) :=

∫
q(z) log

q(z)

π∗(z)
dz = −H[q]−

∑
fa∈F

Eq[log fa(za)], (119)

with H[q] the entropy of q. First we make use of the additivity of logarithm to
rewrite an equivalent energy function using some auxiliary functions {ga(za)}:

FVFE(q) = −H[q] +
∑
fa∈F

Eq
[
log

ga(za)

fa(za)
+ log ga(za)

]
=
∑
fa∈F

Eq
[
log

ga(za)

fa(za)

]
−H[q]−

∑
fa∈F

Eq [log ga(za)] .

(120)

For different factor graphs one would choose different auxiliary functions. We
provide two examples here for the UGM and posterior distribution defined in
§ 6.1.1.
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Bethe free-energy: the UGM case We consider mean-field approximation
in this case, i.e. q(z) =

∏
i∈V q(zi). Then we define

gij(zi, zj) = q(zi)q(zj), gi(zi) = q(zi)
1−ni .

It can be shown that eq. (120) reduces to

FVFE(q) =
∑

(i,j)∈E

Eq(zi)q(zj)
[
log

q(zi)q(zj)

fij(zi, zj)

]
+
∑
i∈V

(1−ni)Eq(zi)
[
log

q(zi)

fi(zi)

]
. (121)

This means mean-field variational inference on a UGM is equivalent to minimise
the energy (120) w.r.t. q(z) =

∏
i∈V q(zi). Now consider the following equivalent

minimisation problem:

arg min
{bi},{bij}

∑
(i,j)∈E

Ebij(zi,zj)
[
log

bij(zi, zj)

fij(zi, zj)

]
+
∑
i∈V

(1− ni)Ebi(zi)
[
log

bi(zi)

fi(zi)

]
,

subject to bi(zi) = q(zi), ∀i ∈ V, bij(zi, zj) = bi(zi)bj(zj),∀(i, j) ∈ E,

(122)

which has the same solution as the variational inference problem (121). Relaxing
the constraints to marginal matching returns the constrained Bethe free-energy
problem [Bethe, 1935; Yedidia et al., 2001]:

arg min
{bi},{bij}

FBethe({bi}, {bij})

subject to

∫
bi(zi)dzi = 1,∀i ∈ V,

∫
bij(zi, zj)dzj = bi(zi),∫

bij(zi, zj)dzi = bj(zj),∀(i, j) ∈ E,

FBethe({bi}, {bij}) :=
∑

(i,j)∈E

Ebij(zi,zj)
[
log

bij(zi, zj)

fij(zi, zj)

]
+
∑
i∈V

(1− ni)Ebi(zi)
[
log

bi(zi)

fi(zi)

]
.

(123)

Bethe free-energy: posterior approximation case Recall that f0(z) =
p0(z) and fn(z) = p(xn|z), also we assume the prior p0(z) is of simple form
so that p0(z) ∈ Q. Consider the following auxiliary functions

g0(z) = 1, gn(z) =
q(z)

p0(z)
, n = 1, ..., N.

It can be shown that eq. (120) reduces to

FVFE(q) = (1−N)KL[q||p0] +
N∑
n=1

Eq(z)

[
q(z)

p(z)fn(z)

]
(124)

Similarly we then consider the following equivalent minimisation problem:

min
q,{p̃n}

(1−N)KL[q||p0] +
N∑
n=1

Ep̃n(z)

[
p̃n(z)

p(z)fn(z)

]
,

subject to p̃n(z) = q(z), n = 1, ..., N.

(125)
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The constraints can be relaxed to matching all the moments Ep̃n [zk] = Eq[zk] for
k ∈ N,23 and a further crude relaxation suggests moment matching just for the
first K moments24 Ep̃n [zk] = Eq[zk], k = 1, 2, ..., K. In the following we use a
vectorial function Φ(z) to summarise these constraints as Ep̃n [Φ] = Eq[Φ], where
as an example for Gaussian EP: Φ(z) = [z, zzT ]. In general Φ can contain any
polynomial terms or other basis functions. This relaxation returns the following
constrained Bethe free-energy (or EP energy) optimisation problem:

min
q,{p̃n}

FBethe(q, {p̃n}) subject to Eq(z)[Φ(z)] = Ep̃n(z)[Φ(z)]

FBethe(q, {p̃n}) := (1−N)KL[q||p0] +
N∑
n=1

Ep̃n(z)

[
p̃n(z)

p(z)fn(z)

]
.

(126)

Remark (Another way to derive the constrained Bethe free-energy optimisa-
tion for UGMs). The variational lower-bound (119) assumes q(z) is in the
marginal polytope:

M(G) = {{qi(zi), qij(zi, zj)}| ∃q(z) s.t. qi(zi) =

∫
q(z)dz−i,∀i ∈ V,

qij(zi, zj) =

∫
q(z)dz−ij,∀(i, j) ∈ E}.

Essentially this means the marginal distributions qi(zi) and the pairwise joint
distributions qij(zi, zj) is globally consistent, in the sense that there exists a
joint distribution q(z) with its marginals as qi and qij.
We make two approximations/relaxations to derive the constrained Bethe free-
energy optimisation problem. First since the entropy is computed on the whole
graph which can be intractable, the first approximation applies to the entropy
term and break it down into entropies on marginal distributions:

H[q(z)] ≈ HBethe[{qi, qij}] =
∑
i∈V

H[qi(zi)]−
∑

(i,j)∈E

I[qij(zi, zj)],

where I[q(zi, zj)] denotes the mutual information between zi and zj under dis-
tribution q(zi, zj). Intuitively this approximation replaces the joint entropy by
a sum of marginal entropy, and it counters for the correlations between variables
by subtracting mutual information between neighbouring nodes. The second
step is to relax the candidate set from marginal polytope to local polytope:

L(G) = {{qi(zi), qij(zi, zj)}|
∫
qi(zi)dzi = 1,∀i ∈ V,∫

qij(zi, zj)dzi = qi(zi),

∫
qij(zi, zj)dzi = qi(zi),∀(i, j) ∈ E}.

23Having the same moments for p and q does not imply having the same moment generating
function.

24The zeroth moment matching constraint is replaced by the constraint that p̃n integrates to
1.
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This means instead of enforcing global consistency, here it only requires local
consistency in the sense that the pairwise and singleton marginals are consis-
tent. Also it is straightforward to see M(G) ⊂ L(G) as global consistency natu-
rally implies local consistency. Combining the two approximations together we
obtain the constrained Bethe free-energy optimisation problem as

min
{bi,bij}∈L(G)

−HBethe[{bi, bij}]−
∑

(i,j)∈E

Ebij(zi,zj) [log fij(zi, zj)]

−
∑
i∈V

(1− ni)Ebi(zi) [log fi(zi)] ,

and readers can verify that it is the same optimisation problem as (123). It
can be shown that M(G) = L(G) when G is a tree, and the optimum of this
constrained Bethe free-energy optimisation problem is exactly the log partition
function logZ [Wainwright and Jordan, 2008; Yedidia et al., 2001].

6.3.2 Message passing: dual form optimisation of Bethe free-energy

In this section we briefly show that the constrained Bethe free-energy optimisation
problem can be solved by a message passing algorithm. In below I only include
a derivation for the posterior approximation case, which leads to the expectation
propagation (EP) [Minka, 2001b] algorithm. Similar derivations for the UGM case
result in belief propagation (BP).

We provide a derivation in a similar way as Heskes [2002], starting from a note
on the KL duality25

−KL[q||p0] = min
λq(z)
−Eq[λq(z)] + logEp0 [exp[λq(z)]] , (127)

with λq(z) a function to be specified later on. This duality is in the same spirit as
deriving convex conjugate function for the log partition function for an exponential
family [see e.g. Wainwright and Jordan, 2008], if viewing p0(z) as the base measure.
The equality is achieved by q(z) ∝ p0(z) exp[λq(z)]. Substitution into (126) then
yields a transformed energy that we denoted as FBethe(q, {p̃n}, λq(z)).

FBethe(q, {p̃n}, λq(z)) = (1−N)Eq[λq(z)] + (N − 1) logEp0 [exp[λq(z)]]

−
∑
n

Ep̃n
[
log

p0(z)fn(z)

p̃n(z)

]
.

(128)

Denote λ−n as the Lagrange multiplier for moment matching and ν, νn for the
normalisation constraints of q and p̃n, respectively. This returns the following
Lagrangian

min
q,{p̃n},λq(z)

max
{λ−n,νn,ν}

FBethe({p̃n}, q, λq(z)) +
∑
n

λT
−n(Eq[Φ]− Ep̃n [Φ])

+
∑
n

νn

(∫
p̃n(z)dz − 1

)
+ ν

(∫
q(z)dz − 1

)
.

(129)

25We include this step in order to connect to the EP energy with optimisation arguments all
in the dual space.
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Solving the fixed points for p̃n and νn returns

p̃n(z) =
1

Zn
p0(z)fn(z) exp

[
λT
−nΦ(z)

]
,

where the normalising constant is

Zn =

∫
p0(z)fn(z) exp

[
λT
−nΦ(z)

]
dz.

Also it is straight-forward to evaluate the fixed point condition for q:

(N − 1)λq(z) =
∑
n

λT
−nΦ(z) + ν.

We explicitly specify λq(z) = λT
q Φ(z) + ν w.l.o.g., also the constant ν can be

dropped since exponential family distributions are translation invariant to con-
stants. Importantly, substituting p̃n back to (129) and enforcing the fixed point
condition for q yields the EP energy [Minka, 2001a]:

min
λq

max
{λ−n}

FEP(λq, {λ−n}) = (N − 1) logEp0
[
exp[λT

q Φ(z)]
]
−
∑
n

logZn,

subject to (N − 1)λq =
∑
n

λ−n.
(130)

Notice now the optimisation problem over q is dropped since (130) does not depend
on it. To obtain the approximate posterior back, we make use of the tightness of
the KL duality, and define

q(z) =
1

Zq
p0(z) exp

[
λT
q Φ(z)

]
, logZq = logEp0

[
exp[λT

q Φ(z)]
]
.

The expectation consistent approximate inference (EC) algorithm [Opper and
Winther, 2005] is a special case with p0(z) ∝ 1 and N = 2.

EP [Minka, 2001b] proposes parametrising the (natural parameters of) local
approximating factors to remove the constraints in problem (130). To be concrete,
EP defines

λn = λq − λ−n, ⇒
∑
n

λn = Nλq −
∑
n

λ−n = λq. (131)

Then EP runs a fixed point iteration algorithm to find the stationary points of
the following objective for {λn}Nn=1:

FEP({λn}) = (N−1) logEp0
[
exp[λT

q Φ(z)]
]
−
∑
n

logEp0
[
exp[(λq − λn)TΦ(z)]fn(z)

]
.

(132)
Simple calculus shows that the gradient of (132) w.r.t. the local parameter λn is

∇λnFEP = (N − 1)Eq[Φ(z)]−
∑
m 6=n

Ep̃m [Φ(z)]. (133)

Zeroing the above gradient for all λn results in the fixed point condition

Eq[Φ(z)] = Ep̃n [Φ(z)], ∀n,

which gives the moment matching update in EP.
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6.4 Further reading

Wainwright and Jordan [2008] is a comprehensive tutorial-style monograph that
covers the basics and advances in message passing. Apart from the BP algorithm
which corresponds to finding fixed points of the Bethe free energy, other approaches
such as the tree-based approximations [Wainwright et al., 2002, 2005] and the
junction tree algorithm (CITATION). Jin et al. [2018] applied the junction tree
algorithm to perform inference on a graph-based VAE, with the end application
aiming at molecule graph generation.

The EP algorithm [Minka, 2001b] minimises the KL divergence between the q
distribution and the tilted distribution locally. Other divergences can be employed
here, e.g. α-divergences [Minka, 2004]. Similar idea has been studied in BP con-
text, e.g. see [Wiegerinck and Heskes, 2003]. I would recommend Minka [2005] for
disucssion on divergences, connections between EP and BP, and generalisations of
message passing.

Although EP is often more accurate, one wrinkle that hindered its wide ap-
plication in large-scale machine learning is the O(N) memory requirement if the
factor graph contains N factors, since it needs to store every approximating fac-
tor. This issue is particularly severe for large-scale data since with i.i.d. data
assumption, having observed N datapoints means a datapoint level factor graph
construction of the exact posterior contains at least N factors. There are two
lines of solutions available in the literature. First one can group the datapoints
into clusters and construct the factor graph on the cluster level (rather than on
datapoint level), and the moment matching steps are approximated by MCMC
[Gelman et al., 2014; Barthelmé and Chopin, 2014; Hasenclever et al., 2017]. The
stochastic EP algorithm [Li et al., 2015; Dehaene and Barthelmé, 2015; Dehaene
and Barthelmé, 2018], as a representative of the second line of solutions, addressed
the memory challenge by sharing the approximating factor, by doing so the mem-
ory requirement reduced to O(1) which is independent with the number of factors
in the factor graph. The black-box alpha approach [Hernández-Lobato et al.,
2016] uses the similar idea of factor sharing, but instead directly optimise the
corresponding energy function with gradient-based approaches, which is different
from stochastic EP that is based on fixed-point iterative algorithms.

Since 2016, graph neural networks has become a hot topic of research, with
many applications such as molecule design, social network analysis and program
synthesis. See e.g. Zhou et al. [2018] for a survey. The message passing algorithm
applied to GNNs is deeply connected to the message passing algorithms in prob-
abilistic models. In fact, for probabilistic graphical models, earlier work [Song
et al., 2011; Dai et al., 2016b] has explored message passing algorithms that are
performed on the embedding space of the local beliefs. The convergence properties
of GNNs are largely unknown, so perhaps the theoretical analysis of BP on the
probabilistic graphical model side (e.g. see Ihler et al. [2005] and related papers)
can provide potential inspirations on better understandings of GNNs.
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Part II

Approximate distribution design

7 Invertible transformations and normalising flows

Gaussian distributions might not be flexible enough to form an accurate approxi-
mation to the target distribution. Here we introduce the idea of normalising flows
which uses invertible transformations to transform a simple distribution (like a
Gaussian) to a flexible one.

7.1 Change of random variable under invertible transfor-
mations

Now consider adding the invertibility constraint to the non-linear mapping f which
acts on the latent variables z ∈ Rd. This means:

f : Rd → Rd, ∃g : Rd → Rd s.t. g ◦ f(z) = f ◦ g(z) = z.

In the following we also write f−1 = g, and assume the mapping is smooth,
i.e. ∇zf(z) exists everywhere. Therefore, given a distribution q(z) and by tem-
porarily denoting y = f(z), we have

q(y) = q(z)|det(∇zf(z))|−1. (134)

Then when density evaluation is required on a given y, one would first compute
the inverse mapping z = f−1(y), compute the density value q(z), and obtain the
determinant of the Jacobian det(∇zf(z)).

Why? Recall that the probability density function q(z) is defined given the
probability measure Qz(z) and a reference measure dµ(dz). Usually we use the
Lebesgue measure µ(dz) = λ(dz) as the reference measure,26 and the following
proposition can be found in any measure theory book:

Proposition 3. If a linear mapping f : Rd → Rd is one-to-one, then

λ(dy) = λ(f(dz)) = |det(∇zf(z))|λ(dz).

The idea of this proposition is visualised in Figure 16. The idea of the de-
terminant term is to represent volume changes, by comparing the best hypercube
approximation of the twisted region in y space to the original dz region. This
proposition can be extended to invertible mappings in general. Now for a measur-
able set A ⊂ Rd, an invertible mapping does not change the probability measure:

Qz(A) = Qy(f(A)).

Recall the definition of the probability density function. This means

q(y)λ(dy) = Qy(dy) = Qy(f(dz)) = Qz(dz) = q(z)λ(dz).

Combined with the proposition, we have the density q(y) defined as in (134).

26Usually we also write the Lebesgue measure as dz := λ(dz).
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Figure 16: Visualising the idea of the change-of-variable rule.

7.2 Defining normalising flows

We can further construct a highly non-linear invertible mapping by composing
invertible transforms, i.e.

zT = fT ◦ fT−1 ◦ · · · ◦ f1(z0),

which induces a random variable zT that is deterministic given z0:

q(zT ) = q(z0)
T∏
t=1

|det(∇zt−1ft(zt−1))|−1. (135)

This type of distributions is named normalising flow distributions, and in principle
one can construct arbitrarily complex distributions by increasing T or having
expressive mappings ft. However, in practice the representation power of these
distributions is largely restrictive due to the constraints introduced by algorithms
to fit them. We provide two application scenarios to explain why.

• Maximum likelihood training for generative models.
Consider a generative model defined as the following:

z0 ∼ p(z0) = N(z; 0, I), x = zT = fT ◦ fT−1 ◦ · · · ◦ f1(z0),

in which the parameters of the mappings ft are collected into θ. Then given
a dataset D = {xn}Nn=1 a maximum likelihood estimate of θ requires solving
the following optimisation problem:

θML = arg max
θ

N∑
n=1

{log p(zn0 )−
T∑
t=1

log |det(∇znt−1
ft(z

n
t−1))|}|znT=xn . (136)

Although now the density log p(x) is tractable thanks to the invertible trans-
form rules, for high dimensional observations x the above optimisation task
can still be very challenging. First computing the determinant of the Jaco-
bian det(∇znt−1

ft(z
n
t−1)) normally requires O(d3) time if the Jacobian matrix

is dense, which can be very expensive for e.g. image data with hundreds
of dimensions. Second, one would typically expect to use more invertible
transformations when modelling high dimensional data, indicating that T
also increases with d.
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• Variational inference with normalising flows.
One can also use a normalising flow to construct the approximate posterior
distribution

z0 ∼ q(z0), zT = fT ◦ fT−1 ◦ · · · ◦ f1(z0),

and fit the variational parameters φ by maximising the variational lower-
bound:

LV I(q;x) = Eq(zT )[log p(x, zT )]− Eq(zT )[log q(zT )]. (137)

The reconstruction term can be easily calculated following the LOTUS rule:

Eq(zT )[log p(x, zT )] = Eq(z0)[log p(x, fT ◦ fT−1 ◦ · · · ◦ f1(z0))],

however, the second entropy term still involves evaluating the determinant
of the Jacobian matrices:

H[q(zT )] = Eq(z0)

[
− log q(zn0 ) +

T∑
t=1

log |det(∇znt−1
ft(z

n
t−1))|

]
,

which, for similar reasons as in the MLE example, can still be very expensive.

Importantly, in both examples, one needs to compute a sequence of Jacobian
matrices as a sub-routine of the optimisation procedure. So to make them practical
for real-world problems, researchers have designed a number of invertible mappings
f whose Jacobian is diagonal/low-rank/triangular. Then the induced normalising
flow distribution allows faster density evaluation that scales almost linearly to the
dimension d.

7.2.1 Some examples of normalising flow

As discussed, the design of normalising flow requires a balance between computa-
tional cost and representation power. In below I provide some existing examples
of normalising flow.

Element/group-wise mapping Denoting zt[i] as the ith element of the vector
zt. We can construct an element-wise invertible mapping

zT [i] = fT ◦ fT−1 ◦ · · · ◦ f1(z0[i]),

and obviously the Jacobian matrix is diagonal, and the determinant can be com-
puted in linear time. This idea can also be generalised to group-wise mappings,
which construct invertible transformations on a subset of the random variables.
The resulting Jacobian matrix is block-diagonal whose determinant can still be
evaluated in a fast way.
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Figure 17: A visualisation of the computation in a RealNVP layer.

Linear time invertible transform Rezende and Mohamed [2015] proposed a
linear time invertible mapping as the following

f(z) = z + uσ(wTz + b),

where the free parameters are u ∈ Rd, w ∈ Rd and b ∈ R, and σ(·) denotes a
smooth invertible non-linearity. Then one can evaluate the log-det of the Jacobian
in linear time as

log |det(∇zf(z))| = |1 + uTσ′(wTz + b)w|.

NICE and realNVP: introducing coupling mappings Dinh et al. [2014]
introduced an invertible mapping which is composed by transformations with auto-
regressive structure. The algorithm starts from splitting the variables into disjoint
sets z = [z1, z2], z1 ∈ Re, then define the transform:

y = [y1,y2] = f(z) ⇔ y1 = z1,y2 = g(z2;m(z1)),

where m : Re → Rc (no need to be invertible) and g : Rd−e+c → Rd−e is a
“conditional” invertible mapping, i.e. one can compute z2 given m(z1) and y2.
See Figure 17 for a visualisation of the computation graph. For this mapping the
Jacobian matrix and its determinant are

∇zf(z) =

[
I 0
∇z1g ∇z2g

]
, |det(∇zf(z))|y=f(z) = |det(∇z2g)|z2=g−1(y2;m(y1)).

The authors named this type of mappings as non-linear independent component
estimation (NICE). One can then stack the NICE mappings to construct a deep
non-linear transformation, and in particular to allow non-linear behaviour of the
output variables, define

x = [x1,x2] = f2(y) ⇔ x2 = y2,x1 = g2(y1;m2(y2)).

In their following work, Dinh et al. [2017] further extended NICE to real-valued
non-volume preserving flow (realNVP), by defining

g(z2,m(z1)) = z2 � exp(s(z1)) + t(z1), m(z1) = [s(z1), t(z1)],

and constructing the splitting z = [z1, z2] using check-board masks and channel
masks.
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Inverse auto-regressive flow Kingma et al. [2016] introduced the inverse auto-
regressive flow (IAF) which defines the invertible transform as

zt = sigmoid(st)�zt−1+(1−sigmoid(st))�mt, [st,mt] = Auto-regressiveNN[t](zt−1).

Here the Auto-regressiveNN[t](zt−1) is a network acting on the previous random
variable zt, such that the ith element of st (and mt) only depends on zt−1[1 :
(i − 1)]. Therefore, the Jacobian ∇zt−1st (and ∇zt−1mt) is a lower-triangular
matrix with zeros on the diagonal, so that the determinant of the Jacobian∇zt−1zt
is

det(∇zt−1zt) =
d∏
i=1

sigmoid(st)[i].

7.3 Connecting normalising flows to MCMC methods

As a side note, one can also construct continuous time normalising flow using
stochastic differential equations. Further, one can add auxiliary variables and
apply invertible mappings to the augmented space, and then use the marginal
distribution of z as the induced probability density. A prevalent example is the
Hamiltonian Monte Carlo (HMC) method [Duane et al., 1987; Neal, 2011], which
essentially deploys a deterministic dynamics in the augmented space of {z,p}.
Here p is often called momentum and is usually assumed to be Gaussian dis-
tributed. Therefore if defining the joint distribution π(z,p) = π(z)N(p; 0,M),
then sampling from π(z) can be done by simulating HMC with target distribution
q(z,p) and throw away the momentum samples.

To be more specific, the Hamiltonian dynamics is governed by the following
differential equation:

dz

dt
= M−1p,

dp

dt
= ∇z log π(z). (138)

Neal [2011] showed that this continuous-time flow is volume preserving, i.e. the
determinant of the Jacobian is 1. We refer to the original paper for proof details,
and here we briefly introduce the Leapfrog integration scheme [Neal, 2011] that
is often used in practice. The Leapfrog integrator simulates the dynamics as the
following: with discretisation step-size η

pt+ 1
2

= pt +
η

2
∇z log π(zt),

zt+1 = zt + ηM−1pt+ 1
2
,

pt+1 = pt+ 1
2

+
η

2
∇z log π(zt+1).

(139)

Importantly this Leapfrog transformation is volume-preserving. To see this, con-
sider three mappings F1(zt,pt) = (zt,pt+ 1

2
), F2(zt,pt+ 1

2
) = (zt+1,pt+ 1

2
) and

F3(zt+1,pt+1) = (zt+1,pt+1). Also denote Z = (z,p) Then we have Zt+1 =
F3 ◦F2 ◦F1(Zt), and the determinant of the Jacobian of the transformation is the

76



Yingzhen Li Topics in Approximate Inference

product det(∇ZtZt+1) = det(∇F3)det(∇F2)det(∇F1). Writing down the Jacobian
of F1 explicitly

∇ZF1(Z) =

(
I 0

η
2
∇2
z log π(z) I

)
, (140)

it is straight-forward to show det(∇ZF1(Z)) = 1. Similarly one can also show that
det(∇ZF2(Z)) = det(∇ZF3(Z)) = 1, indicating the volume preserving property
of this Leapfrog integrator.

This idea has also been investigated in Salimans et al. [2015] where the authors
discretised the HMC dynamics and learned the HMC parameters with VI. It selects
π(z) = p(z|x), q(p) = N(p; 0,M), and uses the idea that will be detailed in ??
to introduce an auxiliary lower-bound

L(q;x) = Eq(z|x)q(p)

[
log

p(x, z′)r(p′|x, z′)
q(z|x)q(p)

]
, (z′,p′) = T -step Leapfrog(z,p),

(141)
with an auxiliary distribution r(p′|x, z′) that will also be learned during training.

7.4 Further reading

Before reading on the latest research papers on this topic, readers should be com-
fortable with change-of-variable operation in calculus. For a reminder of how
invertible transformation is applied to approximate inference, I would recommend
Rezende and Mohamed [2015] to start with.

Papamakarios et al. [2019] is an excellent survey that summarises the status of
normalising flow related research up to mid 2019. To me, the milestone papers to
read in this field include NICE [Dinh et al., 2014], RealNVP [Dinh et al., 2017],
IAF [Kingma et al., 2016] and Glow [Kingma and Dhariwal, 2018]. Some other
ideas that I found interesting include Sylvester normalising flows that make use
of Sylvester’s determinant identity [van den Berg et al., 2018], neural spline flows
[Durkan et al., 2019] which define the invertible transformations as monotonic
spline functions, and Gaussianisation flows [Meng et al., 2020] based on the idea
of iterative Gaussianisation [Laparra et al., 2011].

So far we only discussed normalising flows for transforming continuous random
variables. For discrete variables, Tran et al. [2019] and Hoogeboom et al. [2019]
independently proposed invertible transformations for discrete variables, and the
gradients required by back-propagation are approximated by bias estimators such
as the straight-through estimator [Bengio et al., 2013] and the Gumbel-softmax
trick [Jang et al., 2017; Maddison et al., 2017b]. Note that unlike the continuous
case, invertible transforms on discrete variables do NOT change the entropy of
the distribution. This means one needs to be careful on the choice of the initial
distribution q(z0) in that the entropy of q(z0) should be close to the entropy of
the target distribution.

Another observation on normalising flows is that the invertible transformations
do NOT reduce the dimension of the support of the random variables. Since a
common practice is to set q(z0) to be Gaussian which has its support as Rdim(z0),
this means the target variable zT has the same dimensionality as z0, therefore
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no dimension reduction is performed. As dimension reduction is a widely-used
technique for representation learning, here is an interesting question: what is the
representation learned by normalising flow techniques? In the RealNVP paper
[Dinh et al., 2017] the z0 variables are split into chunks, with each chunk going
through different numbers of invertible transformations. This means z0 might
contain a multi-scaled representation of the target variable, but depending on
how the split is performed, the meaning of “local” and “global” representation
can be very different. Another line of work observes that the support of the
data distribution (or target distribution) often lies on a low-dimensional manifold.
Based on this observation, recent developments have extended normalising flows
to random variables defined on low-dimensional manifolds, e.g. see Gemici et al.
[2016]; Rezende et al. [2020].

We can also make the number of layers continuous like in the HMC case. This
results in continuous-time flows, although in practice they will be approximated
by numerical integration methods which go back to the discrete number of layers
scheme. For example, the HMC example in § 7.3) uses Leapfrog integration. This
is an active research field which aims to combine the best from normalising flow
and differential equations, to start on reading related work, see Grathwohl et al.
[2019] and the references therein.
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8 Stochastic regularisation techniques

As the neural networks in use become bigger and deeper, researchers start to think
about better regularisation techniques (beyond `2) to prevent overfitting. Since the
proposal of dropout [Srivastava et al., 2014], stochastic regularisation techniques
(SRTs) has become increasingly popular for this purpose. Roughly speaking, the
idea of SRTs is to randomly modify the inputs/hidden units/outputs and/or the
network architecture during training. After training the network’s parameters
will be fixed according to some correction rules, which is later used to produce
predictions in a deterministic way.

Unlike the above approach, Gal and Ghahramani [2016] argued that dropout
performs approximate Bayesian inference, therefore dropout is also a natural thing
to do in test time according to this Bayesian interpretation. From approximate ac-
curacy point of view, the flexibility of the induced approximate distribution from
SRTs might not be superb. But from computational complexity point of view,
SRTs improve space complexity (and potentially time complexity) substantially,
and they are by far one of the most successful approximate inference techniques
for Bayesian convolutional/recurrent neural networks. As SRTs are much easier to
implement comparing to other Bayesian neural network techniques, this Bayesian
interpretation has made quite a substantial impact to the deep learning commu-
nity.

8.1 MC-dropout as variational inference

Here we summarise the idea of SRTs as an approximate inference method, with
Bernoulli dropout as an example. In this case z = {Wl} are the network weight
matrices, and recall in Bayesian neural networks they are treated as latent vari-
ables. We assume the variational parameters φ = {Ml} where Ml have the same
shapes and dimensions as Wl (readers will soon realise why we define φ in such
way). Then in the forward pass, we will use {Ml} to parameterise the network,
and compute the output of each layer (with dropout) as

hl = σ(ε� (Mlhl−1)), ε ∼ Bern(ρ), ρ ∈ [0, 1]. (142)

In general σ(·) is an activation function and ε is a random noise variable applied
on pre-activations. Gal and Ghahramani [2016] showed that dropout is equivalent
to the following process:

hl = σ(Wlhl−1), Wl ∼ qφ(Wl) =
∏

rows i

ρN(Ml
i, ηI) + (1− ρ)N(0, ηI), η → 0,

(143)
meaning that dropout can be viewed as an implicit sampling technique to evaluate
the output of the neural network with an MC sample W ∼ qφ(W). See Figure 18
for a visual proof.

From this mixture of Gaussian view of Bernoulli dropout, the MC approxima-
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tion of the variational lower-bound is

LMC
VI (q) =

1

K

K∑
k=1

N∑
n=1

log p(yn|xn,Wn,k)−KL[q(W)|p(W)]. (144)

Notice that here we implicitly sample NK set of weights, {Wn,k}N,Kn=1,k=1 for N

data-points D = {(xn,yn)}Nn=1. It remains to compute the KL term, and here we
present a brief derivation for Gaussian prior case p(W) =

∏L
l=1 p(W

l), p(Wl) =
N(0, λ−1I):

−KL[q(W)|p(W)] =
L∑
l=1

−λ
2
Eq[||Wl||22] + H[q(Wl)] + const.

It is easy to show that the first term involves computing the second moment of q:

Eq[||Wl||22] =
1

λ
I + (1− ρ)||Ml||22.

It remains to approximate the entropy term. For a sample Wl ∼ N(0, ηI), the
`2 distance ||Wl −Ml||22 → +∞ as the dimensionality of Wl goes to infinity.
Therefore for this sample, q(Wl) ≈ ρN(Wl; 0, ηI) when the product of the layer’s
input and output dimensions is large, which is usually the case. Similarly, for
a sample Wl ∼ N(Ml, ηI), the density value q(Wl) is dominated by the term
(1− ρ)N(Wl; Ml, ηI). Therefore the entropy can be approximated as

H[q(Wl)] ≈ ρH[N(0, ηI)] + (1− ρ)H[N(0,MlI)] + H[ρ] = H[N(0, ηI)] + H[ρ].

Then the entropy term can be dropped if the dropout rate ρ is not optimised, as
now the entropy doesn’t depend on the variational parameters.27 Dropping other
constant terms, the resulting variational lower-bound is

LMC
VI (q) ≈ 1

K

K∑
k=1

N∑
n=1

log p(yn|xn,Wn,k)−
L∑
l=1

(1− ρ)λ

2
||Ml||22. (145)

In practice only K = 1 sample of W is used for each data-point. Also for many
loss functions `(·, ·) the log-likelihood terms can be defined as log p(y|x,W) =
`(y,NNW(x)). Therefore, training a deep neural network with dropout and an `2

regulariser is equivalent to training a Bayesian neural network using VI and an
unusual approximate posterior qφ(W) as a “mixture of delta mass functions”.

Remark (Some theoretical issues). Recall that in the derivations we dropped
the entropy term H[q(W)]. When η → 0 this is problematic since now one
cannot define the entropy using density values. In fact in this case traditional
variational inference is unlikely to be applicable. Since the Gaussian prior p(W)
has full support, with likelihood functions that are non-zero almost everywhere,

27There are some theoretical issues for this approach when limiting η → 0, see later remarks.
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dropout
units

dropout
rows

Figure 18: An illustration of Bernoulli dropout (with rate ρ of keeping a unit) as
an approximate inference procedure. See main text for more discussions.

the posterior will also have non-zero density almost everywhere. But when
limiting η → 0 one cannot define density q(W) as now the corresponding
probability measure Q(W) is not dominated by the Lebesgue measure. Also
one can show that Q is not dominated by the posterior as its support is a zero-
measure set under the posterior probability measure. Thus the KL between Q
and the posterior is always infinity and there is no way to reduce it as long as
this support mismatch exists!
We can think of several possible fixes of this issue. A naive approach is to
set η arbitrarily close to zero but not exactly zero, so that the KL term is
still well-defined, and the entropy term can be ignored during optimisation.
But since Bernoulli dropout always samples from the “mixture of delta mass”,
not the relaxed mixture of Gaussian version, technically speaking this makes
the objective function a biased estimate of the variational lower-bound. The
second solution is to “discretise” the distributions and work with very fine grids
in high dimensions. This approach prevents the pathological case when η → 0,
but the approximation error is very sensitive to the choice of the grid. A third
proposal is called Quasi-KL divergence [Hron et al., 2018] although no empirical
evaluation is available on Bayesian neural networks.

8.2 Gaussian dropout and the local reparameterisation trick

The predictive distribution of a Bayesian neural network with Gaussian approxi-
mate posterior can also be done in a similar fashion as MC-dropout.

Consider a row of the weight matrix w ∼ q(w) = N(µ,Σ). Then the cor-
responding pre-activation a = wTx is distributed as q(a|x) = N(µTx,xTΣx).
This means if we use mean-field approximations – meaning that Σ = diag(σ2) is
a diagonal matrix, then we have the following equivalence:

a = wTx,w ∼ q(w) ⇔ a ∼ N(µTx, (σ2)Tx2), (146)

with σ2 = (σ2
1, ..., σ

2
dim(x)) and x2 = (x2

1, ..., x
2
dim(x)). Applying the reparameteri-
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sation trick to the Gaussian distribution q(a|x), we have

a ∼ q(a|x) ⇔ ε ∼ N(0, 1), a = µTx+ ε(σ2)Tx2. (147)

This trick is named the local reparameterisation trick in Kingma et al. [2015].
Here we briefly show that Gaussian dropout also corresponds to approximate

Bayesian inference for neural networks. Following the discussions on Gaussian ap-
proximate posteriors, if we assume Σ = αµµT, then it is straight-forward to show
that q(a|x) = N(µTx;α(µTx)2), and the sampling process of a is equivalently

a ∼ q(a|x)⇔ ε ∼ N(1, α), a = εµTx,

which recovers Gaussian multiplicative dropout as presented in Srivastava et al.
[2014]; Wang and Manning [2013]. In summary, with Gaussian dropout, the effec-
tive approximate posterior distribution is

q(W) =
∏

q(Wl), q(Wl) =
∏

rows i

N(Ml
i;αMl

i ⊗Ml
i), (148)

and we can directly plug-in this definition to the variational lower-bound to define
the optimisation objective.

Noticing that the variance parameter of q(W) depends on M, Kingma et al.
[2015] proposed an improper prior p(Wl

ij) ∝ C
|Wl

ij |
in order to make KL[q(W)||p(W)]

independent with M. Hron et al. [2018] showed that this is problematic because
the improper prior is likely to make the posterior improper if the likelihood func-
tions do not decay fast enough around Wl

ij = 0. To avoid this pathology a trun-
cation of p(Wl

ij) into an interval [−eβ, eβ] might be preferred, however this means
p(Wl

ij) does not have full support (therefore same for the posterior), and fitting
a Gaussian approximate posterior with variational inference is less well justified.

8.3 Revisiting variance reduction for Monte Carlo VI

We have discussed some variance reduction techniques for MC-VI in § 2.3, and
in this section we revisit this topic again but in the context of Bayesian neural
networks, and from this discussion we will see one of the advantages of SRTs in
terms of space complexity.

Recall that the variational lower-bound for a Bayesian neural network is the
following:

LVI(q) = Eq(W)

[
N∑
n=1

log p(yn|xn,W)

]
−KL[q(W)||p(W)], (149)

and for simplicity we assume q(W) is Gaussian distributed with mean M. There-
fore the gradient of the first “error” term w.r.t. M is

∇MEq(W)

[
1

N

N∑
n=1

log p(yn|xn,W)

]
= Eq(W)E(x,y)∼D

[
N∑
n=1

∇W log p(y|x,W)

]
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Denote ∇W(x,y) = ∇W log p(y|x,W). In practice stochastic optimisation and
Monte Carlo approximation is applied, i.e. a mini-batch S = {(xm,ym)}Mm=1 ∼
DM is sampled from data, and the variational lower-bound is approximated with
MC samples W ∼ q(W). Often one MC sample W ∼ q(W) is used to evalu-
ate ∇W(x,y) for all (x,y) ∈ S, and the resulting stochastic gradient ∇̂W(S) =
1
M

∑
(x,y)∈S∇W(x,y) is an unbiased estimate of Eq(W)ED[∇W(x,y)] Therefore by

the decomposition rule of total variance,

V[∇̂W(S)] =ES∼DM [Vq(W)[∇̂W(S)]] + VS∼DM [Eq(W)[∇̂W(S)]],

ES∼DM [Vq(W)[∇̂W(S)]] =
1

M
ED[Vq(W)[∇W(x,y)]]

+
M − 1

M
E(x,y),(x′.y′)∼D[Covq(W)[∇W(x,y),∇W(x′,y′)]],

VS∼DM [Eq(W)[∇̂W(S)]] =
1

M
VD[Eq(W)[∇W(x,y)]]

+
M − 1

M
Cov(x,y),(x′.y′)∼D[Eq(W)[∇W(x,y)],Eq(W)[∇W(x′,y′)]]

=
1

M
VD[Eq(W)[∇W(x,y)]]. # i.i.d. assumption on data

(150)
We see that the covariance term M−1

M
E(x,y),(x′.y′)∼D[Covq(W)[∇W(x,y),∇W(x′,y′)]]

appears in the variance of the stochastic gradient, and it would be come dominant
as M increases. It means with this simple Monte Carlo estimate there is a certain
amount of variance that is irreducible, which can slow down the convergence of
stochastic gradient descent.

To remove the covariance term, a simple strategy would independently sam-
ple Wm ∼ q(W) for each (xm,ym) ∈ S, and estimate the gradient as ∇̃W(S) =
1
M

∑M
m=1∇Wm(xm,ym). However there is a wrinkle of this approach: explicit

sampling of M weight matrices requires O(Md) time for sequential computation
or O(Md) space for parallel computing, where d is the dimension of the neural net-
work parameters. As a deep neural network typically has millions (if not billions)
of parameters, this means d � 0 and the O(Md) cost becomes very expensive
even for a reasonable value of the mini-batch size M (say M = 64). So it would
be preferred if the sampling process can be done in an implicit way.

Now recall the Bernoulli/Gaussian dropout approaches discussed before. These
methods perform sampling in the (pre-)activation space, rather than directly sam-
pling M set of weights. Therefore there is no need to pay the extra O(Md) cost
either in time or space complexity. More importantly, as the random noises at-
tached to the (pre-)activations differ for different datapoint, this (pre-)activation
space sampling approach implicitly samples different Wm matrices for different
input (xm,ym).

8.4 Further reading

The MC-dropout technique applies to other dropout techniques as well, e.g. Drop-
Connect [Wan et al., 2013], SwapOut [Singh et al., 2016] and ZoneOut [Krueger
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et al., 2017]. The the Bayesian interpretation can also be used to guide the design
of new SRTs [Kingma et al., 2015; Louizos and Welling, 2017; Molchanov et al.,
2017]. E.g. Atanov et al. [2018] modified the batch normalisation method [Ioffe
and Szegedy, 2015] to enable uncertainty estimation.

One can also design better sampling approaches for a given q(W) distribu-
tion, such that the sampling is done efficiently (e.g. in the activation space), and
the variance of the gradient estimate is reduced. For example Wen et al. [2018]
observed that for Gaussian approximate posteriors one can perform antithetic sam-
pling to further reduce the variance of the gradient estimate, and they proposed
an efficient implementation which avoids direct sampling of the weight matrices.
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9 Implicit distributions

So far we have discussed a various of approximate distribution designs to enable
better approximations to the posterior. These distributions have one thing in com-
mon: they have tractable densities (or at least tractable densities in the joint form
for mixture distributions). This section will cover another type of distributions
that has been recently introduced to the approximate inference community: im-
plicit distributions [Diggle and Gratton, 1984; Mohamed and Lakshminarayanan,
2016].

9.1 Revisiting tractability issues in approximate inference

First we would like to explain why introducing implicit distributions to approxi-
mate inference may be a good idea. To do so, I would invite the readers to consider
the following question:

What does tractability mean for an approximate inference algorithm?

To answer the above question, we first start by revisiting the definition of ap-
proximate inference (see § 0.3), with Bayesian posterior inference as an illustrating
example. Assume a model with prior distribution p(z) and likelihood function
p(x|z). Then inference means computing the expectation of some function F (z)
under the exact posterior, which is Ep(z|x)[F (z)]. Examples of such F functions
include:

• F (z) = zk, i.e. computing the moments of p;

• F (z) = p(y∗|z,x∗) if in supervised learning and z represents the model
parameters;

• F (z) = δA if one wishes to evaluate p(z ∈ A|x) = Ep(z|x)[δA].

For simplicity in the rest of the discussion we assume the evaluation of F (z)
can be done using available computational resources, otherwise it needs more
approximations, see remarks in § 0.3.

The core idea of (optimisation based) approximate inference is to fit an ap-
proximate posterior distribution q(z|x) in a “tractable” distribution family Q to
the exact posterior p(z|x), such that Ep(z|x)[F (z)] can be well approximated by

Ep(z|x)[F (z)] ≈ Eq(z|x)[F (z)]. (151)

Critically, the primary tractability requirement here for the approximate posterior
is the fast computation of the approximate expectation Eq(z|x)[F (z)] given the
function F .

Historically, approximate distributions of simple forms, such as mean-field ap-
proximations and factorised Gaussians [Jordan et al., 1999], have been proposed
to obtain analytical solutions of the approximated expectation. These approaches
often require the probabilistic model to comprise conjugate exponential families,
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which excludes a broad range of powerful models, e.g. those who warp noise vari-
ables through non-linear mappings. Instead, modern approximate inference in-
troduces Monte Carlo (MC) estimation techniques to approximate the predictive
likelihood [Paisley et al., 2012; Ranganath et al., 2014] that we reviewed in § 2.
The MC method enables a wider class of models to be amendable to VI (the re-
quirement is that the log-joint can be computed point-wise), and is key to modern
training methods of generative models such as the VAE [Kingma and Welling,
2014; Rezende et al., 2014].

Precisely, at inference time, the MC approximation method samples {z1, ...,zK}
from the approximate posterior q, and estimates the required quantity by

Eq(z|x)[F (z)] ≈ 1

K

K∑
k=1

F (zk), zk ∼ q(z|x). (152)

Consequently, this converts the fast expectation computation requirement to fast
sampling from the approximate posterior, as the expectation is further approxi-
mated by the empirical average. Fast sampling is arguably a stronger condition
compared to fast expectation computation, as for the latter, one would normally
expect fast calculations for a given function F . The latter is typically the case for
traditional numerical integration methods since for different functions one would
select different quadrature rules. On the other hand, once we have obtained the
samples from the approximate posterior, we can use them to compute an empiri-
cal estimate of the expectation for any function. Hence methods that entail fast
sampling might be preferred for tasks that require estimating expectations of a
set of functions.

Unfortunately, the approximate inference algorithms that we have discussed so
far impose further constraints to the design of q. For example, recall the MC-VI
objective in § 2:

LMC
VI (q; p) =

1

K

K∑
k=1

log p(x, zk)− log q(zk|x), zk ∼ q(zk|x). (153)

Then it is clear that the training procedure requires fast density evaluation, or
at leat fast log-density gradient evaluation for q(z|x) given a configuration of z,
if only the optimisation process rather than the bound value itself is in concern.
Indeed, this requirement is only presented in the VI optimisation procedure to seek
for the best fit of q: once obtain a (local) optimum, MC inference only requires
evaluating the empirical expectation thus no need to compute the density of q
point-wise.

9.2 Examples of implicit distributions

The observations in § 9.1 raise an outstanding question: can we design efficient
approximate inference algorithms to train flexible approximate posterior distribu-
tions which are implicit, i.e. without access to an explicit density function? As
defined in Diggle and Gratton [1984], implicit distributions are those distributions
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where one can sample from it fairly easily, but cannot evaluate its density point-
wise. As presented in this section, implicit distributions cover a very wide range
of distributions that can potentially provide very accurate approximations to the
exact posterior. Therefore it is worth considering them as approximate posterior
distributions and design approximate inference algorithms to fit them.

• Neural network transform with noise inputs.
For a 1-dimensional random variable, the sampling process can be described
by deterministically transforming a uniform noise variable with the inverse
cumulative density function (CDF) or quantile function:

z ∼ p(z) ⇔ u ∼ Uniform(0, 1), z = CDF−1
p (u). (154)

For multivariate distributions, a similar process would return a set of possible
configurations CDF−1

p (u) = {inf z : CDFp(z) ≥ u}, and one could then uni-
formly sample from it. However, computing the (inverse) CDF can be even
harder than evaluating the density p(z) at a given configuration. Therefore
normally one would not use inverse CDF mappings to define approximate
posteriors.

Still the observation above inspires us to define the q distribution by trans-
forming a random noise variable ε through a deterministic mapping fφ:

z ∼ qφ(z|x) ⇔ ε ∼ π(ε), z = fφ(ε,x), (155)

with π(ε) a simple distribution such as a standard Gaussian. The deter-
ministic mapping can be parameterised by a neural network, in other words
fφ(ε,x) = NNφ(ε,x). Since neural networks are well known to be universal
functional approximators [Hornik et al., 1989], the hope is that the con-
structed neural network is expressive enough to learn how to return a point
in the set of CDF−1

p ◦ CDFπ. This type of distributions is also called vari-
ational programs in [Ranganath et al., 2016a], or implicit generative models
in the generative model context [Mohamed and Lakshminarayanan, 2016].
The density network [Mackay and Gibbs, 1999] further generalises this idea
using “Bayesian” neural networks, by putting a prior distribution on the
neural network parameters. In this case the sampling procedure changes to

z ∼ q(z|x) ⇔ ε ∼ π(ε),W ∼ π(W ), z = NNW (ε,x). (156)

• Hierarchical mixture distributions with implicit conditionals.
Recall the hierarchical approximate posterior with auxiliary variables that
is discussed in ??:

q(z|x) =

∫ T∏
t=1

q(zt|zt−1,x)dz0:T−1, zT := z. (157)

In ?? the conditionals q(zt|zt−1,x) have tractable density, and an auxiliary
variational lower-bound is derived to train this hierarchical approximate pos-
terior. What if q(zt|zt−1,x) is implicit? Following the discussions of neural
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network approximations to the inverse CDF function, generally one can im-
plicitly define the conditional distribution using a neural network taking zt−1

and an extra “nuisance” noise variable εt as the input:

zt ∼ q(zt|zt−1,x) ⇔ zt = ft(zt−1, εt,x). εt ∼ π(εt). (158)

The joint distribution q(z0:T |x) is then parameterised by a stochastic deep
neural network. Again the marginal distribution q(zT |x) does not have a
tractable density, but sampling from this distribution can be done by a
forward pass of the stochastic neural network.

• Dynamics based on stochastic differential equations. MCMC algorithms are
considered as “gold standard” for posterior inference. Stochastic gradient
MCMC (SG-MCMC) methods are a type of popular sampling-based infer-
ence algorithms for Bayesian neural networks. Readers can read related
papers for the detail applications, but in a nutshell, an SG-MCMC algo-
rithm obtains posterior samples by simulating a stochastic dynamic defined
by a stochastic differential equation (SDE) whose stationary distribution is
the exact posterior. Under some mild conditions, Ma et al. [2015] showed
that a stochastic gradient MCMC (SG-MCMC) algorithm within the Itô
diffusion framework follows the SDE below:

dzt = [(D(zt)+Q(zt))∇zt log p(z = zt|x)+Γ(zt)]dt+
√

2D(zt)dWt, (159)

with Wt a Wiener process (or Brownian motion process). In practice one
cannot simulate the diffusion process above for infinite amount of time;
rather one would choose an integrator and numerically compute the inte-
gration/simulation until a given time limit T . Later on one will use zT as
the samples from the approximate posterior, therefore by setting z = zT
this simulation process also implicitly define a q(z|x) distribution.

The quality of the zT samples depends largely on the SDE configurations,
where D(zt) and Q(zt) control the drift and diffusion of the dynamics, and
Γ(zt) is a correction term to ensure asymptotic exactness (with infinites-
imal discretisation step-size). Therefore it would be desirable if one can
optimise these matrix-valued functions to improve the sample quality of the
SG-MCMC algorithm.

9.3 Algorithmic options

Implicit distributions cannot be fitted using traditional approximate inference
methods such as MC-VI. In this section, we discuss algorithmic options for training
these approximations to the posterior.28 In short, I will cover:

• energy approximation: methods to approximate the variational lower-
bound given an implicit q distribution;

28We note here that the discussed options are applicable to tractable q distributions as well.
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• gradient approximation: methods to approximate the gradient of the
variational lower-bound;

• alternative divergence minimisation: two methods using the Stein’s
discrepancy;

• amortising deterministic/stochastic dynamics: training a fast sampler
that can (approximately) produce samples from MCMC or other dynamics.

Most of the approaches covered here assume q to be reparameterisable, i.e. z ∼
q(z|x) ⇔ ε ∼ π(ε), z = fφ(ε,x). It remains a main challenge to extend implicit
distribution fitting to discrete distributions in general.

9.3.1 Energy approximation

Assume q is reparameterisable, then by the chain rule, the gradient ∇φL is com-

puted as ∇fL∇φf . Therefore, if we have an approximation L̂ to the objective

function, then we can approximate the gradient as ∇φL ≈ ∇f L̂∇φf . We refer
this approach as energy/objective approximation.

A popular idea considers density ratio estimation methods [Qin, 1998; Sugiyama
et al., 2009, 2012] for energy approximation, which is concurrently considered in
Li and Liu [2016]; Karaletsos [2016]; Mescheder et al. [2017]; Huszár [2017]; Tran
et al. [2017] and later in Shi et al. [2018a]. This is done by introducing an auxiliary
distribution q̃ and rewrite the variational lower-bound:

LVI(θ, q;x) = Eq
[
log

p0(z)p(x|z;θ)

q̃(z|x)
+ log

q̃(z|x)

q(z|x)

]
. (160)

The auxiliary distribution q̃ is required to have tractable density and is easy to
sample. Then one can use sample-based density ratio estimation methods to fit a
model R̃ for the ratio between q̃ and q. The gradient approximation for general q̃
distributions can be derived similarly as

∇φLVI = Eq
[
∇φ log

p0(z)p(x|z;θ)

q̃(z|x)
+∇zR̃(z,x)∇φf

]
. (161)

In the following we briefly show that the original GAN approach [Goodfellow
et al., 2014] can be applied as a density ratio estimator. Consider a discriminator
D(z,x) which outputs the probability of a sample z coming from the auxiliary
distribution q̃(z|x). Using the same calculation in Goodfellow et al. [2014] one
can easily show that the optimal discriminator is

D∗(z,x) =
q̃(z|x)

p(z|x) + q̃(z|x)
=

1

1 + exp(− log q̃(z|x)
q(z|x)

)
= sigmoid

(
log

q̃(z|x)

q(z|x)

)
.

(162)
As in practice the discriminator is often parameterised using a neural network with
sigmoid activation, we can define D(z,x) = sigmoid(R̃(z,x)) and use R̃(z,x) as
the density-ratio estimator. Using the GAN training this density-ratio estimator
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will get improved towards the exact ratio. Note that this density-ratio estimator
can also be obtained using f -GAN [Nowozin et al., 2016].

An alternative approach in Shi et al. [2018a] applies kernel methods for density
ratio estimation. In short, the authors considers minimising the following objective
to fit an approximation R(z,x) ≈ q̃(z|x)

q(z|x)
:

L(R) = Eq

[(
R(z,x)− q̃(z|x)

q(z|x)

)2
]

= Eq
[
R(z,x)2

]
− 2Eq̃ [R(z,x)] + C

(163)

Then they follow the kernel density ratio estimator method (e.g. see Sugiyama
et al. [2009]), which parameterises R with a kernel machine, and obtains analytical
solutions for the linear coefficients. By doing so, neither discriminator nor double
loop training are required.

Remark (the choice of the auxiliary q̃). A simple example considers q̃ = p0 and
the classification approach for ratio estimation [Karaletsos, 2016; Huszár, 2017;
Tran et al., 2017]. However in practice, density ratio estimation works poorly if
the two distribution in comparison are very different, especially in the case that
the regions contains most of the probability mass have little overlap. Instead
Mescheder et al. [2017] discussed an advanced technique termed as adaptive
contrast, which takes q̃ as a Gaussian approximation to the wild distribution
q. In this case the estimation of q̃ requires many samples from q which can
significantly slow down training. To address this issue, the authors further
constructed a specific type of implicit q distributions, which allows sharing
randomness between different q(zn|xn) distributions and thus reducing the total
number of MC samples computed on a mini-batch of data. This trick improves
the approximation accuracy by a significant margin as density ratio estimation
is accurate when the two distributions are similar to each other.

9.3.2 Direct gradient approximation

The recent development of machine learning algorithms, including VI and SG-
MCMC, rely on advanced optimisation tools such as stochastic gradient descent
with adaptive learning rates. Informally the optimisation procedure works as the
following: given the current mini-batch of data, we first compute the gradients,
then feed them to the optimiser to construct the final update of the training pa-
rameters. In the above energy approximation example, this gradient computation
is done by first approximating the original objective function L̂ ≈ L, then differ-
entiating this approximate energy to obtain an approximate descending direction.
However, even when L̂ approximates L very well at the points from the gradient
descent trajectory, the approximate gradient ∇φL̂ can still be a poor estimator
for the exact gradient ∇φL. We depict this phenomenon in Figure 19.

We see that the energy approximation approach can be problematic if not done
in a correct way, therefore a direct gradient approximation to the exact gradient
might be preferred. To see how the gradient approximation idea applies to the
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true loss

approx. loss approx. loss minima

true minimum

Figure 19: A visualisation of the exact/approximate loss. As one would typically
use a deep neural network to help approximate the exact loss function, without
careful control of its representation power, the deep net can potentially return a
loss function that is accurate at the evaluated points, but has over-complicated
shapes in general. It could result in strongly biased gradient updates of the training
parameters and bad local optimum.

VI case, consider the gradient ∇φLVI using the reparameterisation trick (also see
§ 2.2.1 and § 2.2.2):

∇φLVI = ∇φEπ(ε)[(∇f log p(x, fφ(ε,x))−∇f log qφ(fφ(ε,x)|x))∇φfφ(ε,x)].
(164)

Therefore to perform gradient based optimisation, it remains to approximate
∇z log qφ(z|x), as ∇z log p(x, z) and ∇φfφ(ε,x) are tractable by assumption.
However traditional methods, e.g. Stone [1985]; Zhou and Wolfe [2000]; Ruppert
and Wand [1994]; Fan and Gijbels [1996]; De Brabanter et al. [2013], do not apply
because they require at least a noisy version of ∇z log qφ(z|x), which is intractable
in our case. Instead, we will discuss three gradient approximation methods based
on kernel methods as follows.

• KDE plug-in estimator.
A naive idea would again fit another approximation q̂ using samples from
q, then use ∇z log q̂(z|x) to approximate the gradient. In kernel methods
context, Singh [1977] applied a kernel estimator directly to the first and
higher order derivatives. However this method still approximates the target
gradient function in an indirect way, and depending on the bandwidth se-
lection, the fitted KDE density can be less smooth or too smooth, making
the gradient approximation error high.

• Score matching gradient estimator.
As motivated, it is preferred to directly minimising the approximation er-
ror of the gradient function. Here Sasaki et al. [2014]; Strathmann et al.
[2015] considered the `2 error between the true gradient ∇z log q(z|x) and
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the approximation ĝ(z) = (ĝ1(z), ..., ĝd(z))T:

F(ĝ) = Eq
[
||ĝ(z)−∇z log q(z|x)||22

]
. (165)

Although the `2 error still contains the exact gradient∇z log q(z|x), Hyvärinen
[2005] showed that by using integration by parts and assuming the boundary
condition limz→∞ ĝ(z)q(z|x) = 0, the `2 error can be rewritten as

F(ĝ) = Eq
[
||ĝ(z)||22 + 2〈∇, ĝ(z)〉

]
, 〈∇, ĝ(z)〉 =

d∑
i=1

∇zi ĝi(z). (166)

The above loss is also referred as the score matching objective, and therefore
the optimum of ĝ is also called the score matching gradient estimator. Since
(166) requires computing the gradient of ĝ, Sasaki et al. [2014]; Strathmann
et al. [2015] designed a parametric model

ĝ(z) =
K∑
k=1

ak∇zK(z, zk), zk ∼ q(z|x),

and proposed fitting the linear coefficients ak by minimising (166).

• Stein gradient estimator.
Using the same trick as to derive (166) Stein’s identity [Stein, 1981; Gorham
and Mackey, 2015; Liu et al., 2016] can also be derived (also see § 4.3). Given
a test function h(z) : Rd → Rd′ and assuming the boundary condition again
limz→∞ h(z)q(z|x) = 0, Stein’s identity is the following:

Eq
[
h(z)∇z log q(z|x)T +∇zh(z)

]
= 0. (167)

Observing this, Li and Turner [2018] proposed the Stein gradient estimator,
by inverting Stein’s identity to obtain an estimator of ∇z log q(z|x). They
first approximated (167) with Monte Carlo, and then performed Ridge re-
gression to obtain a non-parametric estimate of the gradient (by noticing
that the MC approximation to (167) is linear in ∇zk log q(zk|x)). The Stein
gradient estimator idea is further improved by Shi et al. [2018b]; Zhou et al.
[2020], with an application to Bayesian neural networks [Sun et al., 2018].

Remark (denoising auto-encoder as a score function estimator). It has been
shown in [Särelä and Valpola, 2005; Alain and Bengio, 2014] that denoising
auto-encoders (DAEs) [Vincent et al., 2008], once trained, can be used to com-
pute the score function approximately. Briefly speaking, a DAE learns to recon-
struct a datum x from a corrupted input x̃ = x+σε, ε ∼ N(0, I) by minimising
the mean square error. Then the optimal DAE can be used to approximate the
score function as ∇x log p(x) ≈ 1

σ2 (DAE∗(x) − x). Sonderby et al. [2017] de-
ployed this idea to train an implicit model for image super-resolutions, providing
some promising results in some metrics. However applying similar ideas to vari-
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ational inference can be very expensive, because the estimation of ∇z log q(z|x)
is a sub-routine for VI which is repeatedly required.

9.3.3 Alternative optimisation objectives

§ 4 discussed alternative divergences for approximate inference. Among many of
these alternatives, one promising direction is to replace the KL divergence with
Stein discrepancy [Stein, 1972; Barbour, 1988; Gorham and Mackey, 2015]:

S[p, q] = sup
g∈Gp
|Eq(z|x)[∇z log p(z,x)g(z) +∇zg(z)]|, (168)

which only requires samples from q and the score function ∇z log p(z,x) thus in-
deed tractable. When applid to approximate inference, Ranganath et al. [2016a]
defined Gp as parametric functions represented by neural networks, and approx-
imate the minimax optimisation with gradient descent in an analogous way to
GAN training [Goodfellow et al., 2014]. This idea is revisited by Grathwohl et al.
[2020] in the context of energy-based models. In contrast, analytic solution of the
supremum exists if Gp is defined as the unit ball in an RKHS, where Liu et al.
[2016] and Chwialkowski et al. [2016] termed the corresponding measure as the
kernelised Stein discrepancy (KSD). Liu and Feng [2016] further developed an ap-
proximate inference algorithm by directly minimising the KSD between the exact
and approximate posterior distributions.

9.3.4 Amortising dynamics

MCMC and particle-based approximate inference methods [Dai et al., 2016a; Liu
and Wang, 2016], though very accurate, become inefficient when inference from
multiple different distributions is repeatedly required. As an example consider
learning a (deep) generative model, where fast (approximate) marginalisation of
latent variables is desirable. Here we consider amortised inference to learn an
inference network to mimic a selected stochastic dynamics. More precisely, the
algorithm works in three steps:

1. We sample z ∼ q(z|x);

2. We improve the sample z to zT by running T -step stochastic/deterministic
dynamics;

3. We use the improved samples zT as targets to improve q(z|x).

Li et al. [2017] considered an MCMC sampler as such a dynamics that we want to
amortise. The theoretical intuition behind this approach is illustrated in Figure
20. Since the MCMC “oracle” always improves the sample quality in terms of
approximating the target distribution,29 by following the MCMC dynamics, the q
distribution will also get improved, until the stage when zT has the same distribu-
tion as z which means q = p. Similar intuition also applies to other deterministic

29We have KL[qt||p] ≥ KL[qt+1||p] iff qt → p for any q0 = q [Cover and Thomas, 1991].
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Figure 20: A cartoon illustration of the amortised MCMC idea in Li et al. [2017].

dynamics as long as they generate particles that are always approaching to the
target distribution. For example, Wang and Liu [2016] used this idea to amortised
a deterministic dynamics called Stein variational gradient descent (SVGD). The
“catch-up” step for q(z|x) can be defined as

φnew = arg min
φ

D[qφ(z|x)||qT (z|x)], qT (z|x) =

∫
TT (z|z′)qφ(z′|x)dz′, (169)

where D denotes any divergence/discrepancy/distance and qT is fixed as the target
and does not get differentiated through. In practice only one gradient step is
performed, i.e.

φnew = φ− η∇φD[qφ(z|x)||qT (z|x)]. (170)

Liu and Wang [2016] used `2 distance in sample space ||z − zT ||22 and therefore
the “catch-up” step is defined by deliberately chaining the gradients φ ← φ +
ηEq[∇φz(zT − z)]. However for stochastic dynamics the `2 distance in sample
space does not work well, and instead Li et al. [2017] proposed using any GAN
idea to match the q distribution (as fake data) to the target qT (as real data).

9.4 Further reading

The energy approximation method depends on adversarial training, therefore I
would recommend reading papers on stable training for GANs, e.g. Salimans
et al. [2016]; Miyato et al. [2018].

MCMC methods implicitly constructed an approximate posterior distribution
which also lacks a tractable density form. Recent work has introduced meta-
learning based approaches to optimise the parameters/configurations of an MCMC
method, see e.g. Wang et al. [2018b]; Gong et al. [2019].

Titsias [2017] proposed a hybrid approach combining invertible transformations
and MCMC to construct an implicit approximate posterior. The key observation is
that, MCMC algorithms often converge much faster on simpler distributions such
as Gaussians. Therefore, if there exists an invertible mapping fφ(ε,x) which trans-
forms the complicated exact posterior p(z|x) to a considerably simpler distribution
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p(ε|x) = p(f(ε,x)|x)|∇εf |, then one can perform MCMC to obtain εk ∼ p(ε|x)
(approximately) then map them back to zk = fφ(ε,x) ∼ p(z|x) (approximately).
Similar observations have been made to improve gradient-based MCMC methods,
e.g. see Song et al. [2017]; Levy et al. [2018]; Hoffman et al. [2019].

Score-matching based approach, as a way to train generative models, has re-
cently attracted (returned) research interest. This round of resurgence is largely
brought by Song and Ermon [2019] who showed that deep generative models
trained by score-matching based approach can generate realistic looking images.
Interested readers can read this paper and the follow-up work in this line.
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Mironov, I. (2017). Rényi differential privacy. In 2017 IEEE 30th Computer
Security Foundations Symposium (CSF), pages 263–275. IEEE.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral nor-
malization for generative adversarial networks. In International Conference on
Learning Representations.

Mnih, A. and Gregor, K. (2014). Neural variational inference and learning in
belief networks. In Proceedings of the 31st International Conference on Machine
Learning, pages 1791–1799.

Mohamed, S. and Lakshminarayanan, B. (2016). Learning in implicit generative
models. arXiv preprint arXiv:1610.03483.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2019). Monte carlo gradient
estimation in machine learning. arXiv preprint arXiv:1906.10652.

Molchanov, D., Ashukha, A., and Vetrov, D. (2017). Variational dropout sparsifies
deep neural networks. In Proceedings of the 34th International Conference on
Machine Learning, pages 2498–2507.

Morimoto, T. (1963). Markov processes and the H-theorem. Journal of the Phys-
ical Society of Japan, 18(3):328–331.

Morris, Q. (2001). Recognition networks for approximate inference in BN20 net-
works. In Proceedings of the Seventeenth conference on Uncertainty in artificial
intelligence, pages 370–377. Morgan Kaufmann Publishers Inc.

106



Yingzhen Li Topics in Approximate Inference

Naesseth, C. A., Linderman, S. W., Ranganath, R., and Blei, D. M. (2017). Vari-
ational sequential Monte Carlo. arXiv preprint arXiv:1705.11140.

Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing,
11(2):125–139.

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov
Chain Monte Carlo, 2:113–162.

Neal, R. M. and Hinton, G. E. (1998). A view of the EM algorithm that justifies
incremental, sparse, and other variants. In Learning in graphical models, pages
355–368. Springer.

Newton, M. A. and Raftery, A. E. (1994). Approximate bayesian inference with the
weighted likelihood bootstrap. Journal of the Royal Statistical Society: Series
B (Methodological), 56(1):3–26.

Nguyen, X., Wainwright, M. J., and Jordan, M. I. (2010). Estimating divergence
functionals and the likelihood ratio by convex risk minimization. IEEE Trans-
actions on Information Theory, 56(11):5847–5861.

Nowozin, S. (2018). Debiasing evidence approximations: On importance-weighted
autoencoders and jackknife variational inference. In International Conference
on Learning Representations.

Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-GAN: Training generative neu-
ral samplers using variational divergence minimization. In Advances in Neural
Information Processing Systems, pages 271–279.

O’Hagan, A. (1991). Bayes-Hermite quadrature. Journal of statistical planning
and inference, 29(3):245–260.

Opper, M. and Archambeau, C. (2009). The variational gaussian approximation
revisited. Neural computation, 21(3):786–792.

Opper, M. and Winther, O. (2005). Expectation consistent approximate inference.
The Journal of Machine Learning Research, 6:2177–2204.

Paisley, J., Blei, D., and Jordan, M. (2012). Variational Bayesian inference with
stochastic search. In Proceedings of the 29th International Conference on Ma-
chine Learning, pages 1363–1370.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshmi-
narayanan, B. (2019). Normalizing flows for probabilistic modeling and infer-
ence. arXiv preprint arXiv:1912.02762.

Parisi, G. (1988). Statistical field theory. Addison-Wesley.

Pearl, J. (1982). Reverend Bayes on inference engines: A distributed hierarchical
approach. In The Second National Conference on Artificial Intelligence (AAAI-
82).

107



Yingzhen Li Topics in Approximate Inference

Peterson, C. and Anderson, J. R. (1987). A mean field theory learning algorithm
for neural networks. Complex Systems, 1:995–1019.

Qin, J. (1998). Inferences for case-control and semiparametric two-sample density
ratio models. Biometrika, 85(3):619–630.

Rainforth, T., Kosiorek, A. R., Le, T. A., Maddison, C. J., Igl, M., Wood, F., and
Teh, Y. W. (2018). Tighter variational bounds are not necessarily better. arXiv
preprint arXiv:1802.04537.

Ranganath, R., Gerrish, S., and Blei, D. (2014). Black box variational inference.
In Proceedings of the Seventeenth International Conference on Artificial Intel-
ligence and Statistics, pages 814–822.

Ranganath, R., Tran, D., Altosaar, J., and Blei, D. (2016a). Operator variational
inference. In Advances in Neural Information Processing Systems, pages 496–
504.

Ranganath, R., Tran, D., and Blei, D. (2016b). Hierarchical variational models. In
Proceedings of the 33rd International Conference on Machine Learning, pages
324–333.

Rao, C. R., Rao, C. R., Statistiker, M., Rao, C. R., and Rao, C. R. (1973). Linear
statistical inference and its applications, volume 2. Wiley New York.
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divergence. Information Theory, IEEE Transactions on, 60(7):3797–3820.

Villani, C. (2008). Optimal transport: old and new. Springer Science & Business
Media.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting
and composing robust features with denoising autoencoders. In Proceedings of
the 25th International Conference on Machine Learning, pages 1096–1103.

Wainwright, M. J., Jaakkola, T., and Willsky, A. S. (2002). Tree-based reparam-
eterization for approximate inference on loopy graphs. In Advances in neural
information processing systems, pages 1001–1008.

Wainwright, M. J., Jaakkola, T. S., and Willsky, A. S. (2005). A new class of
upper bounds on the log partition function. IEEE Transactions on Information
Theory, 51(7):2313–2335.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential fami-
lies, and variational inference. Foundations and Trends® in Machine Learning,
1(1-2):1–305.

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R. (2013). Regularization
of neural networks using dropconnect. In Proceedings of the 30th International
Conference on Machine Learning, pages 1058–1066.

Wang, D., Liu, H., and Liu, Q. (2018a). Variational inference with tail-adaptive
f-divergence. In Advances in Neural Information Processing Systems, pages
5737–5747.

Wang, D. and Liu, Q. (2016). Learning to draw samples: With applica-
tion to amortized MLE for generative adversarial learning. arXiv preprint
arXiv:1611.01722.

Wang, S. and Manning, C. (2013). Fast dropout training. In Proceedings of the
30th International Conference on Machine Learning, pages 118–126.

Wang, T., Wu, Y., Moore, D., and Russell, S. J. (2018b). Meta-learning mcmc
proposals. In Advances in neural information processing systems, pages 4146–
4156.

Webb, S. and Teh, Y. W. (2016). A tighter Monte Carlo objective with Renyi
alpha-divergence measures. In NIPS workshop on Bayesian deep learning.

Wen, Y., Vicol, P., Ba, J., Tran, D., and Grosse, R. (2018). Flipout: Efficient
pseudo-independent weight perturbations on mini-batches. In International
Conference on Learning Representations.

112



Yingzhen Li Topics in Approximate Inference

Wiegerinck, W. and Heskes, T. (2003). Fractional belief propagation. In Advances
in Neural Information Processing Systems, pages 438–445.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8(3-4):229–256.

Wingate, D. and Weber, T. (2013). Automated variational inference in probabilis-
tic programming. arXiv preprint arXiv:1301.1299.

Winn, J. M. and Bishop, C. M. (2005). Variational message passing. In Journal
of Machine Learning Research, pages 661–694.

Wu, Y., Burda, Y., Salakhutdinov, R., and Grosse, R. (2017). On the quantitative
analysis of decoder-based generative models. In International Conference on
Learning Representations.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2001). Bethe free energy, Kikuchi
approximations, and belief propagation algorithms. Advances in Neural Infor-
mation Processing Systems.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2005). Constructing free-energy ap-
proximations and generalized belief propagation algorithms. IEEE Transactions
on Information Theory, 51(7):2282–2312.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun, M.
(2018). Graph neural networks: A review of methods and applications. arXiv
preprint arXiv:1812.08434.

Zhou, S. and Wolfe, D. A. (2000). On derivative estimation in spline regression.
Statistica Sinica, pages 93–108.

Zhou, Y., Shi, J., and Zhu, J. (2020). Nonparametric score estimators. In Pro-
ceedings of the 37th International Conference on Machine Learning.

Zhu, H. and Rohwer, R. (1995). Information geometric measurements of general-
isation. Technical report, Technical Report NCRG/4350. Aston University.

113


	Front Matter
	How to use this document
	Math preparation
	Inference, integration and optimisation
	Exact Bayesian inference as integration
	Approximate Bayesian inference as optimisation


	I Algorithms for fitting approximate distributions
	Variational inference
	Kullback-Leibler (KL) divergence
	Variational free-energy
	A brief history of variational inference

	A mean-field approximation example
	Further reading

	Monte Carlo variational inference
	Monte Carlo estimation of the variational lower-bound
	Computing the MCVI gradients
	LOTUS/reparameterisation trick and path gradients
	Path gradient of the entropy term
	Log derivative trick and REINFORCE

	Variance reduction for MCVI gradients
	Rao-Blackwellization
	Control variate: general idea
	Some notable control variate methods for MCVI gradients

	Further reading

	Amortised inference
	Inference dependencies on observations
	A popular approach: variational auto-encoder
	More examples beyond applications to VI
	Wake-sleep algorithm
	Importance weighted auto-encoder
	Amortising proposal distributions for sequential Monte Carlo

	Adding refinements to amortised inference
	Further reading

	Alternative divergence objectives
	Alpha-divergences
	Alpha-divergence definitions
	Rényi divergence variational inference (RDVI)

	f-divergences
	Integral probability metrics
	Connections between f-divergences and IPMs
	Further reading

	Estimating the marginal likelihood
	Why estimating the marginal likelihood
	Constructing stochastic lower-bounds through sampling
	Stochastic upper-bounds of the marginal log-likelihood
	Variational Rényi bound/ upper-bound
	Harmonic mean estimator

	Further reading

	Message passing algorithms
	The sum rule and the product rule
	Factor graph
	The sum-product algorithm

	Expectation Propagation
	A message passing view of EP
	Linking power EP and -divergence

	Bethe free-energy
	From variational free-energy to Bethe free-energy
	Message passing: dual form optimisation of Bethe free-energy

	Further reading


	II Approximate distribution design
	Invertible transformations and normalising flows
	Change of random variable under invertible transformations
	Defining normalising flows
	Some examples of normalising flow

	Connecting normalising flows to MCMC methods
	Further reading

	Stochastic regularisation techniques
	MC-dropout as variational inference
	Gaussian dropout and the local reparameterisation trick
	Revisiting variance reduction for Monte Carlo VI
	Further reading

	Implicit distributions
	Revisiting tractability issues in approximate inference
	Examples of implicit distributions
	Algorithmic options
	Energy approximation
	Direct gradient approximation
	Alternative optimisation objectives
	Amortising dynamics

	Further reading



