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Bayesian neural networks 101

Goal: classifying different types of cats from images

• x : input images; y : output label

• build a neural network (with param. θ):

ŷ = NNθ(x)

"cat"

• find the best parameter θ given a dataset D = {(xn, yn)}Nn=1:

θ∗ = arg max
θ

N∑
n=1

log p(yn|xn,θ) + log p(θ)

Maximum a posteriori (MAP)
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Bayesian neural networks 101

Do you know what 
you don't know?

How confident are you?

"shorthair"

"wirehair"

"Persian"

???
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Bayesian neural networks 101

Bayesian inference: given some function F (θ), want Ep(θ|D) [F (θ)]

• predictive mean

ŷmean = Ep(θ|D) [NNθ(x)]

• predictive distribution

p(y |x ,D) = Ep(θ|D) [p(y |x ,θ)]

• evaluate posterior

p(θ ∈ A|D) = Ep(θ|D) [δA]
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Bayesian neural networks 101

Bayesian inference: given some function F (θ), want Ep(θ|D) [F (θ)]

• Monte Carlo estimation:

Ep(θ|D) [F (θ)] ≈ 1

K

K∑
k=1

F (θk)

θk ∼ p(θ|D) (intractable)

• Stochastic gradient MCMC (SG-MCMC):

efficient ways to (approximately) draw

samples from p(θ|D)
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From SGD to SG-MCMC

• The MAP problem can be rewritten as

θ∗ = arg min
θ

U(θ),

p(θ|D) ∝ exp[−U(θ)], −U(θ) =
N∑

n=1

log p(yn|xn,θ) + log p(θ)
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From SGD to SG-MCMC

• The MAP problem can be rewritten as

θ∗ = arg min
θ

U(θ),

p(θ|D) ∝ exp[−U(θ)], −U(θ) =
N∑

n=1

log p(yn|xn,θ) + log p(θ)

• In the MAP problem, we find θ∗ by gradient descent

θt+1 = θt − η∇θtU(θt),

−∇θU(θ) =
N∑

n=1

∇θ log p(yn|xn,θ)︸ ︷︷ ︸
full gradient of LL

+∇θ log p(θ), {(xm, ym)}Mm=1 ∼ DM
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From SGD to SG-MCMC

• The MAP problem can be rewritten as

θ∗ = arg min
θ

U(θ),

p(θ|D) ∝ exp[−U(θ)], −U(θ) =
N∑

n=1

log p(yn|xn,θ) + log p(θ)

• In the MAP problem, we find θ∗ by stochastic gradient descent (for big data)

θt+1 = θt − η∇θt Ũ(θt),

−∇θŨ(θ) =
N

M

M∑
m=1

∇θ log p(ym|xm,θ)︸ ︷︷ ︸
stochastic gradient of LL

+∇θ log p(θ), {(xm, ym)}Mm=1 ∼ DM
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From SGD to SG-MCMC

• In the Bayesian inference problem, we need to (approximately) draw θ ∼ p(θ|D)

• Big data: Stochastic gradient Langevin dynamics (SGLD)

θt+1 = θt − η∇θt Ũ(θt) +
√

2ηε, ε ∼ N (0, I)

• SGLD = SGD + properly scaled Gaussian noise

• Other optimisation algorithms can be transformed into SG-MCMC samplers:

• SGD + momentum → SGHMC; RMSprop → preconditioned SGLD; Adam → Santa

Welling and Teh (2011), Chen et al. (2014), Li et al. (2016), Chen et al. (2016)
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“I’m bored of tuning my optimiser & sampler”

• Which SG-MCMC algorithm should I use?

• How do I tune the hyper-parameters?

Learn it from data!

• Want a general solution for similar tasks

• Train on low-dim, generalise to high-dim

Salimans et al. (2015), Song et al. (2017), Levy et al. (2018)
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Learning to learn

Meta-learning for optimisers:

• Define an optimiser with parameters φ:

zt+1 = zt − fφ(zt ,H(·))

• Run it on some training objective functions H(z),

provide learning signals to train φ

• Once learned, apply this optimiser to test objective functions

Not quite yet! We need to make sure it is a valid sampler!

Andrychowicz et al. (2016), Li and Malik (2017), Wichrowska et al. (2017), Li and Turner (2018)
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Learning to learn

Meta-learning for SG-MCMC: can we just naively

• Define a sampler with parameters φ:

zt+1 = zt − fφ(zt ,H(·), ε), ε ∼ N (0, I)

• Run it on some training distributions π(z) ∝ exp[−H(z)],

provide learning signals to train φ

• Once learned, apply this sampler to test distributions

Not quite yet! We need to make sure it is a valid sampler!

Andrychowicz et al. (2016), Li and Malik (2017), Wichrowska et al. (2017), Li and Turner (2018)
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The complete framework: Ma et al. NIPS 2015

To sample from π(z) ∝ exp[−H(z)]:

• Let’s take the step-size η → 0 and use exact gradient:

dz = −∇zH(z)dt +
√

2dW (t) (Langevin dynamics)

• W (t) is a Wiener process

(think about dW (t) as some Gaussian noise with variance dt)

• Langevin dynamics is a special case of Itô diffusion

dz = µ(z)dt +
√

2DDD(z)dW (t)
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The complete framework: Ma et al. NIPS 2015

• Itô diffusion

dz = µ(z)dt +
√

2DDD(z)dW (t) (1)

• To make sure π(z) ∝ exp[−H(z)] is a stationary distribution:

µ(z) = −[DDD(z) +QQQ(z)]∇zH(z) + ΓΓΓ(z), ΓΓΓ(z)i =
d∑

j=1

∂

∂zj
[Dij(z) + Qij(z)] (2)

• DDD(z): diffusion matrix, PSD

• QQQ(z): curl matrix, skew-symmetric

• ΓΓΓ(z): correction vector

Ma et al. (2015) completeness result: under some mild conditions

“Any Itô diffusion that has the unique stationary π(z) is governed by (1)+(2)”
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The complete framework: Ma et al. NIPS 2015

Langevin Ma et. al. any SDE

flexibility

"Any better
   solutions?"

"I know how to pick
the best one!"

"Is it a valid 
   sampler?"

• Searching the best sampler within the complete framework:

• Guaranteed to be correct

• Retains the most flexibility

• Only needs to learn how to parameterise DDD(z) and QQQ(z) matrices!
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Our recipe: dynamics design

• Goal: train an SG-MCMC sampler to sample from p(θ|D) ∝ exp[−U(θ)]

• We augment the state space with momentum variable p:

z = (θ,p), π(z) ∝ exp[−H(z)], H(z) = U(θ) +
1

2
pTp

• Recall the complete recipe

dz = −[DDD(z) +QQQ(z)]∇zH(z)dt + ΓΓΓ(z)dt +
√

2dW (t)
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Our recipe: dynamics design

• Our recipe:

QQQ(zzz) =

[
000 −QQQ f (zzz)

QQQ f (zzz) 000

]
, DDD(zzz) =

[
000 000

000 DDD f (zzz)

]
, ΓΓΓ(zzz) =

[
ΓΓΓθ(z)

ΓΓΓp(z)

]
QQQ f (zzz) = diag[fff φQ

(zzz)], DDD f (zzz) = diag[αfff φQ
(zzz)� fff φQ

(zzz) + fff φD
(zzz) + c], α, c > 0

• Resulting update rules (rearrange terms & discretise & stochastic gradient):

θθθt+1 = θθθt +

momentum SGD︷ ︸︸ ︷
ηQQQ f (zzz t)pppt +

correction︷ ︸︸ ︷
ηΓΓΓθθθ(zzz t)

pppt+1 = pppt − ηDDD f (zzz t)pppt︸ ︷︷ ︸
friction

−ηQQQ f (zzz t)∇θθθt Ũ(θθθt) + ηΓΓΓppp(zzz t) +
√

Σ(zt)εεε, ε ∼ N (0, I)

Σ(zt) = 2ηDDD f (zzz t)− η2QQQ f (zzz t)BBB(θt)QQQ f (zzz t), BBB(θt) = V[∇θθθt Ũ(θθθt)]
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Our recipe: dynamics design

Designing fφQ
(z) (responsible for the drift):

the i th element is defined as

fφQ ,i (z) = β + fφQ
(Ũ(θ), pi )

• We want fφQ
(z) to depend on the energy landscape:

• Fast traversal through low-density regions

• Better exploration in high-density regions

• But we don’t want ΓΓΓθ(z) to be too expensive!

(using ∇θU(θ) as input here leads to an extra term 〈∇,∇θU(θ)〉 in ΓΓΓθ(z))
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Our recipe: dynamics design

Designing fφD
(z) (responsible for friction):

the i th element is defined as

fφD ,i (z) = fφD
(Ũ(θ), pi , ∂θi Ũ(θ))

• ΓΓΓp(z) only requires computing ∇pDDD f (z)

• ...so we can use the gradient information ∇θU(θ)

• prevent overshoot by “comparing” p and ∇θU(θ)
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Our recipe: loss function design

Use KL divergence KL[q(θ)||p(θ|D)] to define loss.

Define q(θ) implicitly: run parallel chains for several steps, then

• Cross-chain loss: at time t, collect samples across chains

• In-chain loss: for each chain, collect samples by thinning
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A toy example

• trained on factorised Gaussians, tested on correlated Gaussians

• manually injected Gaussian noise to the gradients

(and assume we don’t know noise variance BBB(θ))
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Bayesian NN on MNIST

Goal: sample from BNN posterior

Training: meta sampler trained to sample from the posterior of a BNN

(1-hidden layer, 20 hidden units, ReLU)

Three generalisation tests:

• to bigger network architecture: 2-hidden layer MLP (40 units, ReLU)

• to different activation function: 1-hidden layer MLP (20 units, Sigmoid)

• to different dataset: train on MNIST 0-4, test on MNIST 5-9

Also consider long-time horizon generalisation
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Bayesian NN on MNIST: speed improvements
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Bayesian NN on MNIST: long-time generalisation
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Bayesian NN on MNIST: understanding the learned sampler

QQQ f (zzz) = diag[fff φQ
(zzz)], DDD f (zzz) = diag[αfff φQ

(zzz)� fff φQ
(zzz) + fff φD

(zzz) + c]

• fφQ
(left): nearly linear wrt. energy (fast traversal, better exploration)

• fφD
(middle): decrease friction around high energy regions

• fφD
(right): increase friction when gradient & momentum “disagree” (prevent overshoot)
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Summary

MCMC and meta-learning can be friends:

• MCMC can be improved using meta-learning

• Meta-learning works better when

searching in a theoretically sound framework

Future work:

• add in tempering, adaptive learning rate...

• meta-learn the Hamiltonian

• improving samplers for discrete variables

Thank you!
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