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Abstract

Classical sensing algorithms represent the raw signals in some domain constructed by

basis functions. They sample the original data with the Nyquist rate which guarantees

the exact recovery, and use fast computing processors to reconstruct the signals for

further analysis. However, with the speed on demand, slow sensors become the main

limitation of signal processing, which cannot be solved merely by developing faster

sensing devices. Noticing this obstacle, compressed sensing then came to the research

world and have attracted focuses from mathematicians, statisticians and computer sci-

entists. With better understanding of the sparsity in the dataset, it acquires samples

with a much lower sampling rate than the Nyquist’s, and solves the l1-minimization

problem for signal reconstruction. Significant topics include the sensing method,

number of samples we need and fast reconstruction for l1-optimizations without loss

of stability. By now researchers have introduced theories yielding high-quality re-

coveries as well as better measurement matrix and dictionary constructions, which

are close-related to machine learning: it views the recovery as a kind of prediction

and discusses the optimization problem from the probability perspective. Applica-

tions such as the advanced MRI proved the efficiency of compressed sensing methods,

resulting in the emerging studies of it and related learning techniques.

Keywords: compressed sensing, machine learning, data sparsity, sparse recovery,

l1-minimization
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Chapter 1

Introduction

We humans observe different types of signals, including sound, images, waves and

sensor data, in our daily life. Widespread signal processing technologies combine

researches in systems engineering, electrical engineering and applied mathematics

to analyse these signals to supply various demands. Typical researches of signal

processing include signal sampling, quality improvement (e.g. noise reduction), signal

compression for long-distance transmission and signal reconstruction at the reception

side [29]. Also machine learning people are interested in feature extraction (or feature

learning) from raw signals, such as image understanding in computer vision and speech

recognition in natural language processing.

It is infeasible to process continuous signals directly in polynomial time. No-

tice the need of tractable signal processing, people instead try to deal with sampled

signals that are considered as defined in discrete time spaces, or, represent the con-

tinuous signals with some finite set of basis signals (functions) {φ1, φ2, ..., φk} (e.g.

the Fourier Transformation). Thanks to the Nyquist-Shannon sampling theorem, we

can guarantee the recovery of original signal with band-limit no greater than half

of sampling bandwidth. However, it is still computational expensive when sampling

from high frequency signals like high-resolution images. Especially in some specific

circumstances, such as the MR imaging, signals need to be processed in a relatively

short time, which request for a faster algorithm with good quality preserved.

On the other hand, people have observed the big data explosion with sparsity. The

data set can be sparse itself or after some appropriate transformations. The first type

of sparsity is common in social network datasets, with a lot of missing information

(such as personal info, messages and relationships). Image processing often takes

advantage of the later one, by representing the original image in the frequency domain

and filtering out the secondary informations. This compression works very well and
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benefits the storage and transmission of large images. However, prevailing techniques

of compression handle the image with processors after sensor sampling, and there

exists a conflict between fast processors and slow sensors. Sensors can hardly sample

the raw signals of such high rates, then the compression and recovery performed by

high-speed processors will result in unsatisfactory.

1.1 Emerging Research: Compressed Sensing

To overcome the limit of relatively slow sensors, David L. Donoho raised an idea

of compressed sensing (CS) in 2006 [12], which then became the focus of researches in

signal processing and related fields. Researchers thought that sensors should sample

the requested informations directly from the raw data, i.e. the sampling and com-

pression are performed simultaneously, then the original signal is reconstructed by

relatively few samples. From the mathematical point of view, it is equivalent to solv-

ing an underdetermined linear system, slightly different from the prevailing methods

where the system is overdetermined. This new research topic called for better al-

gorithms of sampling and reconstruction instead of improving the speed of sensors,

hence it attracted mathematics, statistics and computer scientists to work on. Candès

et al. theoretically proved the feasibility of the underdetermined linear system under

the restricted isometry property (RIP) [8].

As introduced the foundation behind compressed sensing methods is to solve an

underdetermined linear system:

y = Φf. (1.1)

It also utilizes techniques of classical signal decomposition that represent the original

signal f by a set of measurement functions (the same as the base functions in Fourier

transform and other methods) Φ and coefficients y we observed. Different from direct

recovery by the pseudo-inverse approach, researchers defined an optimization problem

’Basis Pursuit’ to get the best recovery indicating sparsity. Fast algorithms to find

solutions are also discussed, including the converts to linear programming and LASSO

problems.

One may wonder if it is also applicable to the dataset with latent sparsity even

though CS methods work well in order to achieve a sparse recovery. In fact we do not

know whether there exists a sparse representation at a glance, and it is also with low

probability that we can just pick one of the common-used bases such as wavelets and

curvelets then observe that sparsity over it. But after the development of ’dictionary’
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theory we surprisingly see that with the assumption of latent sparsity, compressed

sensing techniques also helps recover the original signal, which makes the research of

CS more valuable. People also investigate in the construction of dictionaries, aiming

at better recoveries.

1.2 Machine Learning: Heuristic Processing of Data

The concept of machine learning appeared in about 1959, by Arthur Samuel’s

definition that ”Machine learning is a field of study that allows computers to learn

without being explicitly programmed”. As a branch of artificial intelligence studies,

it emphasizes more on the construction of systems (or algorithms) to process (to learn

from) data. Since 1980s machine learning has become a research focus of the AI field,

aiming at processing datasets for recognition, classification and generalization tasks

with proper algorithms, where their efficiencies have been theoretically proved.

When observing the explosion of data, people began to notice that it’s intractable

and time-wasting to process such large datasets by hand. Hence mathematicians,

statisticians and computer science people are interested in seeking an automatic ap-

proach to handle them, with fast computers in which the capability of their computa-

tion is still emerging. Data mining as the main application world of machine learning

techniques helps analysts extracting useful and meaningful informations from the sea

of data, especially that of the internet which has billions of people access to. This

two areas of research utilize many same algorithms and has a lot of topics overlapped,

however the slightly difference is that machine learning focuses on the prediction side

more, while data mining emphasizes on the knowledge discovery from the dataset

(and there exists another term ’knowledge discovery and data mining’ abbreviated as

KDD). Since machine learning and data mining people interact and perform research

together frequently, here we tend to focus on the machine learning algorithms which

are also well-applied in data mining works. Furthermore, in the next chapters we

show that the term ’recovery’ in compressed sensing can be viewed as ’prediction’ in

machine learning, which implies close relationship between these two fields.

1.3 Organization of the Thesis

This thesis contains 5 chapters and is organized as follows. Other than the first

chapter which gives an introduction, Chapter 2 reviews the background of signal pro-

cessing, including the classical sensing theories, definition of sparsity and applications
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we are familiar with. Chapter 3 discusses the theories, properties and algorithms of

compressed sensing, as well as advanced CS techniques applied to image processing.

Chapter 4 focuses on the learning problems in compressed sensing such as the con-

struction of the measurement matrix, dictionary theories, looking the optimization

problem from the probabilistic perspective and some machine learning techniques to

solve the underdetermined system. Finally Chapter 5 concludes the thesis and points

out some probable future researches.
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Chapter 2

Background

Signal processing is among the hotspots of the AI studies. It contains topics

of sampling, representation, compression, reconstruction and so on, and becomes

an interdisciplinary study with overlaps of biology, medical researches and natural

language processing. We give a brief review of these researches by introducing the

classical sampling theorem and illustrating the signal decomposition tasks. In practise

we are interested in the rich informations contained in the original signals, so we

expect to recover the signal with better representation of those informations.

Sparsity attracts focuses from both the researchers and engineers. We live in a

world filled with lots of data which are sparse (according to our need). Analysis with-

out pre-processing of the sparsity causes the waste of time and storage, furthermore it

may return worse results when the important information is masked by some noises.

How to treat with the sparsity then becomes another crucial issue in the studies of

datasets, aiming at better learning from them with less expenses.

2.1 Classical Sampling Theories

In signal processing, sampling reduces the continuous signals into discrete signals,

which are represented by a discrete set of points in the time-value or space-value plane.

Previous researches in sampling theories tried to figure out some better methods

for discrete signal transformation which can avoid information loss. Also for faster

transmission and less storage, signal compression is beyond the most important topics

in signal processing researches. Applications based on these classical theories have

brought the prosperity of modern technologies, such as magnetic resonance imaging

(MRI) in medical use and pop MPEG coding designation.
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2.1.1 Nyquist-Shannon Sampling Theorem

A significant results presented by Claude Shannon pointed out the best sampling

rate when applying undersampling methods in certain circumstances [26]:

Theorem 2.1.1. (Nyquist-Shannon Sampling Theorem) Suppose a signal f = f(t)

contains no frequencies higher than the bandlimit fc, to perfectly reconstruct the orig-

inal signal f(t), the sampling rate fs should be at least twice of the bandlimit, i.e.

fs ≥ 2fc. (2.1)

In Shannon’s proof of Theorem 2.1.1, he raised an example of signal reconstruction

by sinc functions, which then derived as

f(t) =
∞∑

n=−∞

xn
sinπ(2Wt− n)

π(2Wt− n)
(2.2)

where xn indicates the sample value. Theorem 2.1.1 provides a sufficient condition

for band-limited signal’s sampling and reconstruction.

2.1.2 Signal Decomposition

A main research field in signal processing is signal decomposition, which aims

at decomposing an original signal into combinations of basis signals (e.g. triangle

functions) then performing operations on the coefficients. Fourier analysis has become

the common method of signal decomposition since the mid 20th century, especially

the discrete version is widely applied in audio and image processing. For instance,

the 2-dimensions Fourier Transform in image processing is defined as:

F (u, v) =
1

n

n−1∑
x=0

n−1∑
y=0

f(x, y)exp[
−2πi(ux+ vy)

n
]. (2.3)

With the inverse transform defined similar as (2.3), it can recover the decomposed

image with acceptable loss. Also several techniques like edge detection utilize the

Fourier transform, which operates on the frequency domain then reconstruct the

image with edges shown. In recent years Fourier analysis has been supplemented by

other approaches, such as the most notable wavelets analysis, but it still contributes

to the theoretical evaluation of the new tools as well as continuing in applications.
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2.1.3 Signal Compression

Signal compression is the key technology for file storage and transmission. With

lossless compression, a signal is compressed by some method which guarantees a

perfect recovery. However, in many circumstances the loss of some secondary infor-

mations is acceptable, such as the compression of x-ray signal which is continuous.

Lossy compression algorithms are important for the rapid transmission of voice and

image data. In previous years researchers and engineers worked on revising exist-

ing methods of signal compressions, and excellent technologies such as the HDTV

standard have been successfully applied in television signal transmissions.

2.1.4 MRI & MPEG: Well-known Applications

Magnetic Resonance Imaging (MRI) is a medical imaging technique which can

visualize internal structures of the human body. It samples resonance signals produced

by aligned protons in the water molecules. Magnetic field causes protons at different

locations to generate signals in different frequencies, which allow spatial structures to

be reconstructed using Fourier analysis [19]:

I(ω1, ω2) =
∑

all sample points (t1,t2)

f(t1, t2)exp[−2πi(ω1t1 + ω2t2)]. (2.4)

The output I(ω1, ω2) represents the reconstructed image, which is expected to be

identical to the original one. The coefficients f(t1, t2) stands for the image in the fre-

quency domain, which implies the important structures and knowledges for recovery.

The Moving Picture Experts Group (MPEG) [22] works on standards for audio

and video compression and transmission. They released the MPEG-1 standard in

1993, which coded moving pictures with audio associated for file storage. During

these years, they revised the old MPEG standards and released new versions, for

example the MPEG-4, by adding technologies and interfaces to deal with multimedia

and interactions.

2.2 Disabilities of Classical Sampling

Significant problems impact the application of the Nyquist-Shannon sampling the-

orem. In many situations we do not know the bandlimit fc in advance (we often

sample from raw signals then measure it), then to reduce distortions the sampling

rate fs is set to be large, which is defined as oversampling that samples many points
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unnecessary for the reconstruction. Also the frequencies of signals are not consistent,

then sampling at the same rate caused the waste of time and storage: it gets too

much samples for a perfect recovery. Sampling with adaptive rate helps deal with

this problem, however the adaptation still needs improvements for better reconstruc-

tion of the original signal. The third problem comes from the increase in data to

sample. In MRI sampling (2.4) if the number of sample points (t1, t2) is too small,

the reconstruction of the original image I(ω1, ω2) is impossible. Solutions include

sampling of large coefficients in the frequency domain, but previously there’s little

prior knowledge to indicate the positions of them hence we do not know how to assign

(t1, t2).

In the state-of-the-art methods of signal compression, fast processors embedded

in computers can easily analyse and pick out the constitutes with important informa-

tions. However, the development of sensor’s computation can hardly catch up with

the processor’s, so it’s still computational expensive to collect raw signals, especially

with high sampling rates. Also due to the limitation of the sensor, there exists some

distortion when sampling from raw data. Hence the computer processing and recovery

are not as accurate as the compression theory proved.

2.3 Data with Sparsity

The original concept of sparsity comes from matrix analysis, in which a matrix

is called sparse if only few of its elements hold non-zero values. In modern data

analysis researchers often view or handle the collected data in matrix structures, with

a lot of unknown (or unavailable) data setted as zeros. From this perspective, we can

observe the sparsity from various datasets, especially from the social network with

large amount of informations remain unknown. Twitter and microblog platforms

collect and save their users’ data, and their analysts construct matrices populated

primarily with zeros to represent non-provided contents.

In signal processing researchers also look into the sparsity with some operations

revealing it. Discrete Fourier transform is often used to process and compress images

(e.g. the JPEG format of image), and after transformation people can observe the

sparsity of large element if viewing the image of the frequency domain as a matrix.

To compress the image with good recovery or improve the quality of the original

one, small coefficients (sometimes a threshold is set to pick them out) or secondary

elements are filtered out then substituted by zero, i.e. the data are expressed by a

sparse matrix (see Figure 2.1).
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(a) original (b) spectrum (c) filtered spec-
trum

(d) recovery

Figure 2.1: Fourier transform and recovery after filtering [28]. The original image
(a) is transformed and expressed in the frequency domain (represented in Figure
(b)). The low-pass filter cuts off all the high-frequency signals containing secondary
informations (c) to reconstruct the image (d), which looks smoother.

Also in many circumstance the signal we sampled is sparse itself. Suppose we

have a photo of the sky which was took in a sunny day, in which a large part of it is

coloured in blue. When storing this photo as a BMP format image file (which store a

matrix containing all the pixels of the image) lots of elements are assigned the same

value that indicates the blue color when showed on the screen. MRI image comes

as another instance, for that in practical use the image of human internal body also

indicates sparsity. Especially, doctors often focus on the pathological regions and

neglect other healthy plants in order to reach a more precise diagnose.

In short, sparsity helps people understand the structure and extract the main

information from raw data. We can see in many circumstances only a small amount

of data indicate useful informations for human use, or the data can be transformed to a

sparse structure that represents the message more efficiently. From many applications

in machine learning and data mining we know that it’s crucial to develop related

techniques dealing with sparse dataset, especially when the time of ’Big Data’ comes

with the size of dataset growing up exponentially.
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Chapter 3

Compressed Sensing

Compressed sensing (compressive sensing, compressive sampling, or sparse sam-

pling) provides new approaches to sample and recover a signal, which is sparse or

compressed in some domain after transformation. It advocates for the simultaneous

sampling and compression, which also allow the entire signal to be represented by

relatively few measurement functions (basis signals) and coefficients. The quality of

its recovery is commendable or even better than previous techniques to some extent,

with very high probabilities.

3.1 Basic Idea: Theories for Sparsity

In classical sampling methods as Theorem 2.1.1 shows, sensors sample the raw

signal (which is continuous) with high rates. However, the bandlimit fc tends to be

large in practical use, hence the sampling rate fs should be increased, which challenges

nowadays sensors enormously. Instead, we obtain the idea from Fourier analysis1:

f =
∑
k

ykφk. (3.1)

φk is called the measurement function. In Fourier transform φk is the sinusoid

function, which is orthogonal to other measurement functions with different sub-

scripts. From orthogonal measurement functions the measurement yk is computed by

yk = 〈f, φk〉.
In general, we write a m× n matrix Φ = (φ1, φ2, ..., φn) to represent the measure-

ment matrix (or sensing matrix). We can also represent the measurement yk by linear

1In the remain content we denote f as the raw signal and only consider the discrete circumstance.
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transformation and solve that linear system to recover the original signal f :

y = Φf. (3.2)

The measurement matrix Φ is a m × n matrix, and the linear system (3.2) is

underdetermined since m < n, so recovering f with (3.1) doesn’t work. Instead of

solving the linear system directly, it is better to solve an optimization problem

f ∗ = arg min
f
||f ||p s.t. y = Φf. (3.3)

Here the lp-norm is defined as ||x||p = (
∑

i |xi|p)
1
p (when p ≥ 1) , and normally we

set 0 ≤ p ≤ 2.

3.1.1 Disabilities of l2-Norm and l0-Norm

Equation (3.2) defines a solution plane P in which the solution of (3.3) lies on. In

previous practises researchers used the Euclid Norm (p = 2) in (3.3). However, the

l2-norm doesn’t work well with the observation of data sparsity, since the ball often

touches the solution plane at some point containing dense elements.

It is straightforward that the l0-norm indicates sparsity directly:

||x||0 = |{xi|xi 6= 0}|. (3.4)

But solving the optimization problem (3.3) with l0-norm is NP-hard, which means

that we cannot get the precise solution in polynomial time2. To illustrate this we

introduce a formal definition of k-sparse vectors:

Definition 3.1.1. For an arbitrary k ∈ N, a vector x = (x1, x2, ..., xn) (k � n) is

said to be k-sparse if it satisfies

||x||0 ≤ k. (3.5)

Then solving the optimization problem includes two major missions – figuring out

the positions of non-zero elements, as well as the values of them (notice that we do

not suppose an order here). Finding positions of k non-zero elements in a n-vector

requires O(nk) computation, and finding the solution in the second step needs non-

polynomial time. Moreover, the solution (if assign p = 0) is not unique, so it has a

risk that we recover a totally different signal without any notifications.

2Suppose there’s a NP-complete problem Q which can be reduced to (3.3) in polynomial time,
we cannot guarantee that solution also satisfies (3.3) too.
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To deal with the sparsity problem in less time and get stable recovery, in [11] the

l1-norm was called into use (Basis Pursuit). Section 3.1.2 explains why solving (3.3)

with l1-norm is equivalent to optimizing the l0-norm under some conditions. Also

we consider other norms with 0 < p < 1, which is called the Focal Underdetermined

System Solver (FOCUSS). We can easily figure out that although its similarity of

true sparsity is better, the optimization problem may be non-convex then result in

local-minima. Furthermore, when 1 < p < 2 the ball also touches the solution plane

at non-sparse points.

(a) p = 2 (b) p = 1 (c) p = 0

Figure 3.1: Balls with different norms. The original signal f is sparse (red line) which
lies on the solution plane P . The optimization is equivalent to find the ball which
the plane P is tangent to. In (a) the solution f ∗ (the tangent point) is different from
f evidently, while in (b) and (c) they return perfect recoveries.

3.1.2 Why l1-norm Indicates Sparsity?

In Definition 3.1.1 we expand the definition of sparsity by using the l0-norm.

However as Section 3.1.1 indicated, solving the optimization problem (3.3) with p = 0

is NP-hard. Instead we use the l1-norm and guarantee the same solution as l0-norm

minimization by introducing the concept of mutual incoherence:

Definition 3.1.2. Suppose the matrices Γ = (γ1, γ2, ..., γn) and Γ′ = (γ′1, γ
′
2, ..., γ

′
n)

satisfy ||γi||2 = ||γ′i||2 = 1 for any i. Then the mutual incoherence of Γ is computed

by

M(Γ,Γ′) = max
i,j
|γTi γ′j|. (3.6)

For convenience we call the optimization problem (3.3) with p = 0 the problem

(P0) and that with p = 1 the problem (P1). If the solutions of these two problems

coincides, then the l1-norm indicates sparsity and can be used to accelerate the re-

covery. In practice the sensing matrix Φ is not orthogonal, and here we assume the
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matrix Φ = [Γ,Γ′] is composed by two orthgonal system in Rn/2 (n is an even num-

ber). Fortunately, in [13] David L. Donoho and X. Huo proved the coincidence with

the restriction:

Theorem 3.1.1. (Donoho and Huo) Solving the optimization problem (P0) is equiv-

alent to solve (P1) if the solution f ∗ satisfies

||f ∗||0 ≤
1

2
(1 +

1

M(Γ,Γ′)
). (3.7)

Here the solution satisfies y = [Γ,Γ′]f ∗.

Proof. Assume y = Γf = Γ′g, i.e. y is the sparse representations of signals f and g

over the m× n
2

measurement matrix Γ and Γ′ respectively. Without loss of generality

we assume both Γ and Γ′ are orthogonal and yTy = 1, then

1 = yTy = fTΓTΓ′g =

n/2∑
i=1

n/2∑
j=1

fi(γ
T
i γ
′
j)gj ≤

n/2∑
i=1

n/2∑
j=1

fiM(Γ,Γ′)gj.

From the orthogonality of the measurement matrix Γ and using the Parseval Equality

1 = yTy =

n/2∑
i=1

f 2
i =

n/2∑
j=1

g2
j .

Now assume that f and g are sparse, and denote the index sets of non-zero elements

as I = {i|fi 6= 0} and J = {j|gj 6= 0} respectively (also called the support), we can

represent yTy by

yTy =
∑
i∈I

∑
j∈J

fi(γ
T
i γ
′
j)fj

≤
∑
i∈I

∑
j∈J

|fi|M(Γ,Γ′)|fj|

=M(Γ,Γ′)
∑
i∈I

|fi|
∑
j∈J

|gj|.

To indicate the upper bound let’s instead solve these optimization problems

arg max
f

∑
i∈I

fi s.t.fi > 0, ||f ||2 = 1,

arg max
g

∑
j∈J

gj s.t.gj > 0, ||g||2 = 1.
(3.8)
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Using the Lagrange multiplier we can solve (3.8) as

fi =
1√
||f ||0

(∀i ∈ I),
∑
i∈I

fi =
√
||f ||0,

gj =
1√
||g||0

(∀j ∈ J),
∑
j∈J

gj =
√
||g||0.

Returning to the inequality we have

1

M(Γ,Γ′)
≤
∑
i∈I

∑
j∈J

|fi||gj| ≤
√
||f ||0||g||0,

and by the arithmetic means inequality and M(Γ,Γ′) ≤ 1

||f ||0 + ||g||0 ≥
2

M(Γ,Γ′)
≥ 1 +

1

M(Γ,Γ′)
.

Now consider the unique recovery of y. If there exist another solutions f ∗
′

=

[f ′T , g′T ]T , then we have Γ(f − f ′) = Γ′(g′ − g) = y′, where y′ is some vector. So we

can also obtain

||f − f ′||0 + ||g − g′||0 ≥
2

M(Γ,Γ′)
.

Without loss of generality we assume the l0-norm of f ∗ and f ∗
′

are bounded by F :

2

M(Γ,Γ′)
≤ ||f − f ′||0 + ||g − g′||0 = ||f ∗ − f ∗′||0 < 2F.

Hence we achieve a looser restriction of uniqueness (M(Γ,Γ′) ≤ 1):

||f ∗||0 ≤
1

M(Γ,Γ′)
(3.9)

(otherwise there may exits non-unique solutions of the optimization problem), and

we complete the proof.

Corollary 3.1.2. (Elad and Brunkstein [14]) The solutions of (P0) and (P1) still

coincide if

||f ∗||0 ≤
√

2− 1
2

M(Γ,Γ′)
. (3.10)

The proof of Corollary 3.1.2 is not provided here, which can be found in the

original paper. By the restriction of the l0-norm we guarantee the coincidence of the

solutions of (P0) and (P1).
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3.1.3 Combination Methods: the LASSO

Though we have observed a large amount of sparse signals in practical use, there

still exist some signals without evident sparsity. Especially we take the image as an

example, it may be dense in one or some small regions. For these images the lower

bound of the raw signal’s l0-norm in Theorem 3.1.1 and Theorem 3.1.2 need to be

augmented, hence we advocate for a random measurement matrix (details in Section

3.2 and the next chapter) to reduceM(Γ,Γ′). Also it costs more expensive computa-

tion as previously indicated. In the meanwhile there are amount of polluted signals

containing large elements that do no good to the recovery (details in Section 3.3).

To address these problems we introduce the Least Absolute Shrinkage and Selection

Operator (LASSO), which can help reduce the energy (or the noise) of the signal and

restrict the solution to be sparse [6]:

f ∗ = arg min
f
||y− Φf ||2 + λ||f ||1 (3.11)

where λ indicates the proportion of the l1-constraints. Or we can perform this by

giving an upper bound k of the l1-norm

f ∗ = arg min
f
||y− Φf ||2 s.t.||f ||1 ≤ k. (3.12)

The LASSO can better solve the recovery of polluted signal, which is discussed in

Section 3.3.3.

LASSO techniques can be viewed as the l2-optimization with l1-penalty, for ex-

ample, minimizing the error ||y − Φf ||2 such that ||f ||1 is with the upper bound

of some constant C. In the next sections we will see that under some constraints

the l2-minimization problem intend to choose the optimal solution indicating sparse

representations, and here we give a geometric view as Figure 3.2 shows.

3.2 Algorithms of Compressed Sensing

Since the heuristic behind compressed sensing is to solve an underdetermined

linear system, one may suspect that if there exists a unique and stable recovery of

the original signal. From linear algebra we know that since Rank Φ < dim(f), if

no other restrictions there will exist a subspace in which all its vectors satisfy the

underdetermined system. Fortunately, the unique (and also stable or even exact)

recovery is achievable with some restrictions of the sensing matrix Φ. We introduce
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Figure 3.2: The geometry of the LASSO methods. The contours of the target function
||y−Φf ||2 (in red) intersect with the regularizer ||f ||1 contours (in blue), and we pick
the intersection point (lies on the axis which indicates sparsity) as the solution f ∗.

these restrictions in this section, and surprisingly they’re so weak that even some

measurement matrix with random entries could satisfy them, in which details will be

explained in the next chapter. Here we focus on the theories with a given sensing

matrix Φ satisfying them as well as the algorithms of recovery computation, while

the construction of Φ (related to learning) will be also discussed later.

3.2.1 Restricted Isometry Property

In (3.2) researchers focused on the construction of the measurement matrix Φ,

which may be not orthogonal. To gain the equivalence of problem (P0) and (P1) with

weak restrictions, [9] introduced the definition of the restricted isometry constant :

Definition 3.2.1. (Restricted Isometry Constant) Let Φ be the m× n measurement

matrix. For any integer 1 ≤ S ≤ n, we define the S-restricted isometry constant

δS be the smallest real number such that for all k ≤ S and k-sparse f with support

T ⊂ {1, 2, ..., n},
(1− δS)||f ||22 ≤ ||ΦTfT ||22 ≤ (1 + δS)||f ||22. (3.13)

Here ΦT stands for the matrix formed by the column vectors with indexes in T .

Similarly we define the S, S ′-restricted isometry constant θS,S′ for S +S ′ ≤ n that

θS,S′ is the smallest number satisfying

|〈ΦTfT ,ΦT ′f
′
T ′〉| ≤ θS,S′ ||f ||2||f ′||2 (3.14)

for all k ≤ S, k′ ≤ S ′ and k-sparse vector f , k’-sparse f ′ with disjoint supports T and
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T ′, respectively.

The numbers δS and θS indicate how close the measurement system Φ behaves like

an orthonormal system when picking out vectors without no greater than S non-zero

elements randomly, from the original space Rn. Also without loss of generality it is

straightforward to deduce that

|〈ΦTfT ,ΦT ′f
′
T ′〉| ≤ δS+S′ ||f ||2||f ′||2 (3.15)

by assuming ||f ||2 = ||f ′||2 = 1 and applying the definition of the S + S ′-restricted

isometry constant.

With the definition of the restricted isometry constant the restricted isometry

property (RIP) goes like this:

Definition 3.2.2. (Restricted Isometry Property) The measurement matrix Φ is

said to obey the restricted isometry property of order S if there exists a S-restricted

isometry constant δS ∈ (0, 1).

Here we introduce the uniqueness of recovery then discuss the equivalence of two

optimization problems with restrictions of the RIP.

Theorem 3.2.1. (Uniqueness of Reconstruction) Suppose δ2S < 1, then for all k-

sparse (k < S) signal f with support T (i.e. |T | = k < S), the index set T and signal

f can be reconstructed uniquely from the measurement y and measurement matrix Φ.

Proof. If invalid, suppose there’s a different representation of y = ΦT ′f
′ in which f ′

has support T ′ satisfying |T ′| < S and T ∩ T ′ = ∅. Then from (3.13) we have

(1− δ2S)||(f − f ′)||22 ≤ ||ΦT∪T ′(f − f ′)T∪T ′ ||22 = 0.

Since δ2S < 1 we have f = f ′, T = T ′ and reach a contradiction.

Now we assume T ∩ T ′ 6= ∅, then we have some vector y′ satisfying

y′ = ΦT (f − f ′T ′∩T )T = ΦT ′\Tf
′
T ′\T

where f − f ′T ′∩T has support T and f ′T ′\T has support T ′ \ T respectively. So with

similar manner we have f = f ′, T = T ′, also a contradiction.

Before discussing the equivalence problem we first introduce Lemma 3.2.2:
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Lemma 3.2.2. Suppose H(Φ) = span({φ1, φ2, ..., φn}) is the Hilbert space spanned

by the measurement vectors, then if δ2S < 1, for any f with support T there exists a

vector w such that
〈w, φj〉H(Φ) = sgn(fj), ∀j ∈ T,

|〈w, φj〉H(Φ)| < 1,∀j /∈ T.
(3.16)

Theorem 3.2.3. (Equivalence of Problem (P0) and (P1)) Suppose S ≥ 1 and δS +

θS + θS,2S < 1, Then for any f and its support T satisfying |T | ≤ S, f is the unique

solution of the optimization problem

f ∗ = arg min
x
||x||1 s.t. y = Φx (3.17)

for any measurement matrix Φ and the measurement y = Φf .

Proof. δS + θS + θS,2S < 1 implies δ2S < 1. We can apply Lemma 3.2.2 then gain

the vector w. Suppose one of the solution of (3.17) is f ′, since f also satisfies y = Φf

we have ||f ′||1 ≤ ||f ||1. Now we prove the l1-norm of f ′ is no lower than ||f ||1:

||f ′||1 =
∑
j∈T

|fj + (f ′j − fj)|+
∑
j /∈T

|f ′j|

≥
∑
j∈T

sgn(fj)(fj + f ′j − fj) +
∑
j /∈T

f ′j〈w, φj〉H(Φ)

=
∑
j∈T

|fj|+
∑
j∈T

〈w, φj〉H(Φ)(f
′
j − fj) +

∑
j /∈T

〈w, φj〉H(Φ)f
′
j

=
∑
j∈T

|fj|+ 〈w,
n∑
j=1

f ′jφj −
∑
j∈T

fjφj〉H(Φ)

=
∑
j∈T

|fj|+ 〈w,y− y〉H(Φ)

= ||f ||1.

Also we have |〈w, φj〉| < 1 for all j /∈ T , then f ′j = 0 (∀j /∈ T ) to guarantee that

||f ′||1 = ||f ||1. Finally we apply Theorem 3.2.1 (δ2S < 1) and get f ′ = f , i.e.

solving (P1) is equivalent to solve (P0).

Corollary 3.2.4. (Noiseless Recovery [4]) The conclusion of Theorem 3.2.3 still

holds if δ2S ≤
√

2− 1.

We do not provide the proof here since it’s similar to that of the noisy circum-

stance, which is more general and will be discussed in Section 3.3.1.
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Figure 3.3: The geometry of the RIP. In the left figure x and y are some arbitrary
S-sparse vectors, and after projection Φ which obeys RIP with RIC δ2S < 1 the
transformed x′ and y′ keep the Euclid distance ||x′−y′||2 ≈ ||x−y||2 (red dashed line).
Note that x′−y′ is at most 2S-sparse in which δ2S < 1 guarantees the preservation of
dataset geometry to some extent. Also the crucial notice is that this good condition
of ’geometry preservation’ only validates for S-sparse vectors in Rn.

Remark. (of Corollary 3.2.4) In practise we often extract the S-largest elements of

f and eliminate others (substituted by zero). For convenience we denote this vector

as fS. Then the recovery indeed contains bounded errors:

||f ∗ − f ||1 ≤ C0||f ∗S − f ||1,

||f ∗ − f ||2 ≤ C0S
− 1

2 ||f ∗S − f ||2.
(3.18)

For those S-sparse vectors the recovery is exact as Corollary 3.2.4 described.

3.2.2 Stable Recovery

In this section we introduce that the RIP indicates the Uniform Uncertainty Prin-

ciple (UUP), and combining with the Exact Reconstruction Principle (ERP) we can

figure out how stable the recovery is. We skip the discussion of the construction of

measurement matrix Φ, which is presented in Chapter 4.

Given an n-dimensional Hilbert space H with basis functions {φi ∈ Rn}, we want

to form a matrix by randomly selecting n basis functions φi (denoted as [φ1, φ2, ..., φn])

then picking out m rows of that matrix with index set Ω and denote it as ΦΩ:

Ω = {i|Xi = 1}, Xi ∼ Bernoulli(τ) i.i.d.

in which τ satisfies E(|Ω|) = nτ = m. Note that in previous sections Φ was the m×n
measurement matrix, which can be viewed that the index set Ω is given in advance

then assign Φ := ΦΩ. In Section 3.2.2, Section 3.2.3 and the MP algorithm in Section
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3.2.4 we use the symbol ΦΩ to indicate the constructed measurement matrix and Φ

the matrix formed by vectors in H, while in other sections we still use Φ to represent

the sensing matrix.

Definition 3.2.3. (Uniform Uncertainty Principle [10]) A measurement matrix ΦΩ

obeys the uniform uncertainty principle with oversampling factor λ if for every suffi-

ciently small value α > 0, there exists a fixed constant p > 0 such that the statement

following is true with probability no less then 1 − O(n−p/α): for any support T of f

which obeys

|T | = k ≤ α× m

λ
, (3.19)

the matrix ΦΩ satisfies

1

2

m

n
||f ||22 ≤ ||ΦΩf ||22 ≤

3

2

m

n
||f ||22. (3.20)

Remark. In [10] it provided the explanation why Definition 3.2.3 is referred as the

’uniform uncertainty principle’. The ’uncertainty’ illustrates that ’(with overwhelm-

ing probability) a sparse signal f cannot be concentrated in frequency on Ω regardless

of T , unless m is comparable to n.’ On the other hand, terminology ’uniform’ stands

for that ’with overwhelming probability, we obtain the estimate (3.20) for all sets T

obeying (3.19)’.

Also the constants (1
2
, 3

2
) can be replaced by any pair (a, b) with a > 0 and b <∞.

In fact it is equivalent to the RIP expression by setting a = n
m

(1− δS), b = n
m

(1 + δS)

with δS < 1.

Definition 3.2.4. (Exact Reconstruction Principle [10]) We say the measurement

matrix ΦΩ satisfies the exact reconstruction principle with oversampling factor λ if

for all sufficiently small α > 0, each fixed T satisfying (3.19) and each ’sign’ vector

σ on T that |σ(i)| = 1, there exists a vector p at least with the same probability in

Definition 3.2.3 such that

(1) pi = σi, ∀i ∈ T ;

(2) ∃v s.t. p = (ΦΩ)Tv;

(3) |pi| ≤ 1
2
,∀i /∈ T .

The stable recovery of the original signal is guaranteed by the UUP and the ERP

in the meaning of minimizing the error level in l2-norm. We introduce the theorem as

well as lemmas needed for proof here, and the proofs are provided in [10] (so we do

not discuss here). In fact Lemma 3.2.4 is another version of Lemma 3.2.5, so the

proof of l1-norm stability is similar by proving the coincidence of the original signal’s
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and optimal signal’s l1-norms then the coincidence of their supports and elements.

Note that if without noises then the recovery is exact.

Lemma 3.2.5. (Extension) Assume ΦΩ obeys the UUP, then with probability no less

then 1−O(n−p/α), for all index set T obeying (3.19) and signal f which support is T

(i.e. f ∈ l2(Ω)), there exists another signal f ′ such that:

(1) f ′i = fi, ∀i ∈ T ;

(2) ∃w ∈ l2(Ω) s.t. f ′ = (ΦΩ)Tw;

(3) ∀T ′ ⊂ {1, 2, ..., n}, ||f ′T ′ ||2 ≤ C(1 + λ|T ′|
αm

)
1
2 ||f ||2.

In (3) f ′T ′ represents the vector composed by the elements of f ′ indexed in T ′ with

order preserved.

Lemma 3.2.6. (ERP Recovery) Assume ΦΩ obeys the ERP, then for all f = f0+h in

which f0 has the support T obeying the assumption of the UUP (3.19), with probability

no less then 1−O(n−p/α) the optimal solution f ∗ of (P1) satisfies

||(f ∗)T1T c ||1 ≤ 4||h||1 (3.21)

Here we consider the distortion h as a kind of ’structural noises’, which is different

from the random noises common in the sampling procedure. We will discuss the

sampling with random noises in the next section and now focus on the stable recovery

guaranteed by the sensing matrix which obeys the UUP and the ERP.

Theorem 3.2.7. (Recovery with UUP and ERP) Assume ΦΩ satisfies the UUP and

the ERP with oversampling factors λ1 and λ2 respectively. Let λ = max(λ1, λ2)

and m ≥ λ. Then given a constant R, suppose a signal f in which the nth-largest

coefficient of |ΦΩf | (denoted as |ΦΩf |(n))satisfies

(1) |ΦΩf |(n) ≤ R · n−1/p for a fixed 0 < p < 1

(2) or ||f ||1 ≤ R when p = 1.

Assign r := 1/p− 1/2. Then for all sufficiently small α, the solution f ∗ of (P1) (with

sensing matrix ΦΩ) satisfies

||f − f ∗|| ≤ Cp,α ·R · (
m

λ
)−r (3.22)

with probability no less then 1 − O(n−p/α). Here the constant Cp,α depends on the

choices of those parameters.
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How to interpret the relationship between the RIP and the UUP? Actually the

RIP is a more abstract version of the UUP, i.e. those matrices ΦΩ satisfying the RIP

also satisfy the UUP with probability almost one. Also ΦΩ will also satisfies the ERP

if we have δS + θS,2S < 1 and the typical vector w in Lemma 3.2.2 obeying

|〈w, φj〉| ≤
θS

1− δS − θS,2S
√
S
||f ||2, (3.23)

which is automatically satisfied in Theorem 3.2.3 [9]. So with the RIP (or the

UUP+ERP) and the assumption in Theorem 3.2.3, the error level of reconstruction

can be controlled as Theorem 3.2.7 described.

3.2.3 Number of Samples for Stable Recovery

Compressed sensing algorithms aims at recovering the original signals from few

collected data, i.e. the measurement matrix Φ has dimensions m � n. But how to

assign m in order to ensure the stable recovery given n and assumed f is k-sparse?

Surprisingly, the measurement matrix Φ works well if it is randomly constructed. To

explain this, we introduce the coherence parameter with the assumption that Φ is

composed by n vectors randomly selected from some basis set (population), and we

denote such a set as B(Φ)3

µ(Φ) = supp
a∈B(Φ)

(max
j
|aj|2) (3.24)

and the restriction of isotropy property

E[aaT ] = I, ∀a ∈ B(Φ), (3.25)

then we have the theorem:

Theorem 3.2.8. (Noiseless incoherent sampling) If the signal f is k-sparse and the

basis population B(Φ) satisfies the isotropy property, then for any β > 0, with proba-

bility at least 1− 5/n− e−β the signal can be perfectly recovered if

m ≥ C(1 + β)µ(Φ)k log n. (3.26)

where C is some positive constant.

3There may exist several sets satisfying this definition.
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Some simple interpretation of Theorem 3.2.8 goes like this. Assume n is known

and intuitively k is related to the empirical distribution of such a kind of signals,

the only method to decrease the lower bound of m is by modifying µ(Φ) (actually β

implies the accuracy of the recovery). In fact Φ is composed by the basis functions

randomly sampled from B(Φ), hence Φ indicates the structure and distribution of that

basis population. The theorem clarifies the effectiveness of random sensing matrix,

which relieves us from the burden of feature selection. Detailed proof of the theorem

can be found in [6], another explanation of this is also available in Section 4.1.1.

3.2.4 Solving the Underdetermined Linear System

While the exact recovery of the original signal is guaranteed by the RIP, another

mission in the research of compressed sensing is to find a fast algorithm to solve (P0).

Although previous techniques like the simplex method can work, recently the Match-

ing Pursuit (MP) emerges as the state-of-the-art approach. MP aims at finding the

’best matching’ measurements of high-dimensional data over an over-complete dictio-

nary4, where in compressed sensing the dictionary is exactly the measurement matrix

ΦΩ. The crucial points are finding the set Ω then figuring out the measurements y

under ΦΩ, which can be solved by the greedy algorithm implied by the MP methods.

Notice that this method does not guarantee the exact reconstruction as previously ex-

plained. In practice, the prevailing methods of reconstruction include the orthogonal

matching pursuit (OMP) algorithm [21]:

Problems of the OMP include the disability to yield accurate (or with acceptable

error level ε) recoveries (see the last 5 lines in Algorithm 1). To deal with this

researchers instead focus on the fast algorithms of Basis Pursuit (BP) which is exactly

the (P1) problem. In [11] it proved that (P1) can be solved by linear programming

(LP). Consider the formal expression of LP

g∗ = arg min
g

cTg s.t. Ag = b

ci(gi) ≤ 0, i = 1, 2, ..., q

gi ≥ 0, g ∈ Rs;

(3.27)

in which the inequality constraint ci() is linear. Hence we can convert the BP problem

4The concept of dictionary will be discussed in Chapter 4.
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Algorithm 1 Orthogonal Matching Pursuit for Compressed Sensing

1: initialize Φ, k, y, ε
2: t← 1, r0 ← y, Ω = ∅
3: while t ≤ k do
4: λt ← arg max

j
|〈φj, rt−1〉|

5: Ω← Ω ∪ {λt}
6: f ∗(t)← arg min

f
||y− ΦΩf ||2

7: y(t)← ΦΩf ∗(t)
8: r(t)← y− y(t)
9: t← t+ 1

10: end while
11: if ||r(t)||2 ≤ ε then
12: return f ∗(t)
13: else
14: return ’No solution found.’
15: end if

into the style of LP by assigning

s := 2m, A := (Φ,−Φ), b := y, c = (1n,1n), g := (u,v), (3.28)

then solve (P1) by f = u − v. The ’l1-Magic’ software [7] provided a primal-dual

log-barrier LP algorithm to solve (3.27) with parameters (3.28). By utilizing the

Karush-Kuhn-Tucker conditions in which the optimal solution g of LP and that of

its dual problem v∗ should satisfy:

c + ATv∗ +
∑
i

λ∗i 5 ci(g
∗) = 0

λ∗i ci(g
∗) = 0

Ag∗ = b

ci(g
∗) ≤ 0

(3.29)

where λ∗i are the Lagrange multipliers (in fact KKT is a kind of generalized Lagrange

multipliers methods). In practise we loose the equality condition λ∗i ci(g
∗) = 0 to

λ∗i ci(g
∗) = −1/τ t in the tth iteration and compute (g∗,v∗, λ∗) by newton methods.

Denote (g∗(t),v∗(t), λ∗(t)) as the solution in the tth iteration and we have the Algo-

rithm 2.

The trick is to obtain (∆g,∆v,∆λ) which yields rτ (g
∗(t)+∆g,v∗(t)+∆v, λ∗(t)+

∆λ) = 0. We use the gradient methods and approximate (∆g,∆v,∆λ) with the
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Algorithm 2 Primal-Dual Log-Barrier LP Algorithm

1: initialize t← 1, (g∗(t),v∗(t), λ∗(t)), s
2: while stop(g∗(t),v∗(t), λ∗(t)) = False do
3: compute the residual column vector rτ (g

∗(t),v∗(t), λ∗(t)) = (rdual, rcent, rpri)
T :

rdual ← c + ATv∗(t) +
∑
i

(λ∗(t))i∇ci(g∗(t))

rcent ← −
∑
i

(λ∗(t))ici(g
∗(t))− (1/τ)1

rpri ← Ag∗(t)− b

4: compute the Jacobian matrix Jrτ (g
∗(t),v∗(t), λ∗(t))

5: compute (∆g,∆v,∆λ) by solving

Jrτ (g
∗(t),v∗(t), λ∗(t))(∆g,∆v,∆λ)T = −rτ (g∗(t),v∗(t), λ∗(t))

6: update: (g∗(t+ 1),v∗(t+ 1), λ∗(t+ 1))← (g∗(t),v∗(t), λ∗(t)) + s(∆g,∆v,∆λ)
7: if ∃i s.t. (λ∗(t+ 1))i < 0 or ci(g

∗(t+ 1)) > 0 then
8: adjust s s.t. ∀i (λ∗(t+ 1))i ≥ 0, ci(g

∗(t+ 1)) ≤ 0
9: revise (g∗(t+ 1),v∗(t+ 1), λ∗(t+ 1))← (g∗(t),v∗(t), λ∗(t)) + s(∆g,∆v,∆λ)

10: end if
11: t← t+ 1
12: end while
13: return (g∗(t),v∗(t), λ∗(t))
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Taylor expansion

rτ (g
∗(t) + ∆g,v∗(t) + ∆v, λ∗(t) + ∆λ)

≈ rτ (g
∗(t),v∗(t), λ∗(t)) + Jrτ (g

∗(t),v∗(t), λ∗(t))(∆g,∆v,∆λ)T .

(3.30)

Since the constraints are linear we have the Jacobian matrix

Jrτ (g
∗(t),v∗(t), λ∗(t)) =

 0 AT CT

−Λ(t)C 0 −C ′(t)
A 0 0


where C = (∇c1(),∇c2(), ...,∇cq())T , C ′(t) = diag(c1(g∗(t)), c2(g∗(t)), ..., cq(g

∗(t)))

and Λ(t) = diag((λ∗(t))1, (λ
∗(t))2, ..., (λ

∗(t))q). The function stop(g∗(t),v∗(t), λ∗(t))

indicates the termination condition such as the requirement of the recovery satisfying

||y− Φf ||2 ≤ ε, where ε is some threshold indicating the acceptable error level. The

step length (or the learning rate) s ∈ (0, 1] should guarantee the fulfilment of the

constraints in (3.27) as well as the efficient decrease of the residuals, i.e. for some

constant α

||rτ (g∗(t) + s∆g,v∗(t) + s∆v, λ∗(t) + s∆λ)||2 ≤ (1− αs)||rτ (g∗(t),v∗(t), λ∗(t))||2.

Figure 3.4 illustrates the comparison of the accuracy between BP and energy mini-

mization methods.

There exists some other algorithms to solve BP problems fast and smoothly. These

include (cite). Also some improvement of OMP aiming at solving (P0) include StOMP,

ROMP and CoSaMP.

3.3 Recovery of Polluted Sampling

In the application of compressed sensing, we sample the signal in which the noise

cannot be filtered out perfectly. Hence our goal now is to expand the result in

Section 3.2 to this more practical situation. We revise (3.2) to represent the polluted

measurements as

y = Φf + z (3.31)
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(a) original

(b) recovery (p = 1) (c) recovery (p = 2)

(d) error (p = 1) (e) error (p = 2)

Figure 3.4: Comparing l1 and l2 recoveries. By running the matlab code [7] we test
the accuracy of l1-recovery compared to l2-optimization. The original signal (black
spikes) in (a) has 512 elements with only 20 spikes ranging from 0 to 1. Blue spikes
in (b) and (d) stand for the recovery from sparse measurements with m = 120 and
randomly generated Φ according to the Gaussian distribution. Red spikes in (c) and
(e) represent the reconstructed signal with minimized energy (in l2-norm). We can
easily see that the recovery minimizing the energy runs far away from the original
that the error level ||f ∗ − f || = 3.7739, while with l1-norm minimization it returns
nearly perfect reconstruction and ||f ∗ − f ||2 = 2.5061e−5.
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where z is the noise we sampled and dim(y) = dim(z). Then the optimization

problem should be revised as

f ∗ = arg min
f
||f ||p s.t. ||y− Φf ||2 ≤ ε. (3.32)

We denote the problem (3.32) as (P ′1) with p = 1 and (P ′0) with p = 0.

Fortunately, with revision adding the noise, the 3 properties introduced before

still hold then with random sensing matrix they also guarantee the equivalence of

(P ′0) and (P ′1) as well as the recovery with acceptable error.

3.3.1 Noisy Recovery

With the RIP holds we introduce the recovery from a signal with noise:

Theorem 3.3.1. (Noisy Recovery [4]) Assume δ2k <
√

2− 1 and ||z||2 ≤ ε, then the

solution of (3.32) satisfies

||f ∗ − f ||2 ≤ C0k
− 1

2 ||f − fk||2 + C1ε (3.33)

with C0 the same as that of the Remark of Corollary 3.2.4 and another constant

C1.

We give the abbreviated proof here and detailed version is available in [8]. Figure

3.5 illustrates the geometry of l1 noisy recovery.

Proof. Denote h = f ∗−f , then we can divide the set {1, 2, ..., n} into subsets T0, T1, ...

of size at most k s.t. h =
∑

i hTi , T0 contains indexes of the k-largest coefficients of

f and Ti contains locations of the k-largest coefficients of h(T0∪T1∪...∪Ti−1)c . Then we

can proof this 3 statement (see [4]) that∑
i≥2

||hTi||2 ≤ k−1/2||hT c0 ||1 (3.34)

||hT c0 ||1 ≤ ||hT0||1 + 2||fT c0 ||1, (3.35)

||h(T0∪T1)c ||2 ≤ ||hT0||2 + 2k−1/2||f − fk||1. (3.36)

Then we apply the RIP to hT0∪T1 and from the inequality ||Φh||2 ≤ ||Φ(f ∗ − y)||2 +

34



||Φ(y− f)||2 we have

||ΦhT0∪T1||22 = 〈ΦhT0∪T1 ,Φh〉 − 〈ΦhT0∪T1 ,
∑
i≥2

ΦhTi〉

≤ ||ΦhT0∪T1||2||Φh||2 − 〈ΦhT0∪T1 ,
∑
i≥2

ΦhTi〉

≤ 2ε
√

1 + δ2k||hT0∪T1||2 − 〈ΦhT0∪T1 ,
∑
i≥2

ΦhTi〉.

(3.37)

Moreover from (3.15) we know that |〈ΦhTi ,ΦhTj〉| ≤ δ2k||hTi ||2||hTj ||2. Note that

hT0∪T1 = hT0 + hT1 since T0 ∩ T1 = ∅, and the inequality ||hT0||2 + ||hT1||2 ≤√
2||hT0∪T1||2 also holds. We apply the RIP to hT0∪T1 and the inequality (3.34)

(1− δ2k)||hT0∪T1||22 ≤ ||ΦhT0∪T1||22
= 〈ΦhT0∪T1 ,Φh〉 − 〈Φ(hT0 + hT1),

∑
i≥2

ΦhTi〉

≤ 2ε
√

1 + δ2k||hT0∪T1||2 + δ2k

∑
i≥2

||hT0||2||hTi ||2 + δ2k

∑
i≥2

||hT1||2||hTi||2

≤ (2ε
√

1 + δ2k +
√

2δ2k

∑
i≥2

||hTi ||2)||hT0∪T1||2

≤ (2ε
√

1 + δ2k +
√

2δ2kk
−1/2||hT c0 ||1)||hT0∪T1||2.

So we can get the upper bound of ||hT0∪T1||2 by applying (3.35) that

||hT0∪T1||2 ≤ αε+ ρk−1/2||hT c0 ||1
≤ αε+ ρk−1/2||hT0∪T1||2 + 2ρk−1/2||f − fk||1
≤ (1− ρ)−1(αε+ ρk−1/2||f − fk||1),

α =
2
√

1 + δ2k

1− δ2k

, ρ =

√
2δ2k

1− δ2k

.

Finally we conclude our proof by applying (3.36)

||h||2 ≤ ||hT0∪T1||2 + ||h(T0∪T1)c ||2
≤ 2||hT0∪T1||2 + 2k−1/2||f − fk||1

≤ 2
1 + ρ

1− ρ
k−1/2||f − fk||1 +

2α

1− ρ
ε,

which is we want to show (C0 := 21+ρ
1−ρ and C1 := 2α

1−ρ).

35



Figure 3.5: Ball touches the solution plane with noises. P is the solution plane (the
center line), and the shaded region represents the drift of P controlled by z. Solutions
lie in the intersection of the vertical axis and the shaded region, which are not far
away from the original signal f .

3.3.2 Weak Restricted Isometry Property

In the definition of the coherence parameter (lower bound) µ(Φ) (see Section

3.2.1), the uniformly bound may not be deterministic (i.e. µ(Φ) = ∞), so we raise

the definition and denote the smallest value µ as the ’near bound’ which satisfies

E[n−1||φi||221Ac ] ≤
1

20
n−

3
2 ,

P (Ac) ≤ (mn)−1

in which A is the event ’µ(Φ) = µ’. Notice that even µ(Φ) exists the definition of

µ is still valid, so with this definition we can introduce the weak restricted isometry

property [6]:

Theorem 3.3.2. (Weak RIP [6]) Let T an index set as before with |T | = k. Then

given δ > 0 and k′ ∈ N, if

m ≥ Cδβµ(Φ) max(k log(kµ), k′ log n log2 k′ log(k′µ log n)) (3.38)

then with probability at least 1 − 5e−β, for any index set |T ′| < k′ and signal f with

support T ∪ T ′ the statement below is true:

(1− δ)||f ||22 ≤ ||Φf ||22 ≤ (1 + δ)||f ||22. (3.39)
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3.3.3 LASSO Methods Guaranteed by the Weak RIP

In Section 3.2.4 we introduced the primal-dual methods to solve (P1). The prob-

lem (P ′1) is slightly different from (P1) since the noisy observation y is sampled from

the signal f , so we consider the LASSO method (see Section 3.1.3). We raise the ex-

ample of signals polluted by Gaussian noises then discuss the recoveries using LASSO

methods, which are guaranteed by the weak RIP. Our goal is to recover f which sat-

isfies

y = Φf + σz, (3.40)

where z is a vector containing standard Gaussian entries (i.e. z ∼ N (0, I)) and

σ indicates the ’amplitude’ of the noises. Then the l2-minimization problem with

l1-regularizer goes like this:

f ∗ = arg min
f

1

2
||Φf − y||22 + λσ||f ||1, (3.41)

where λ implicates the ratio of the l1-regularizer effects. In practise we restrict the

sensing matrix to be ’nearly normalized’ by dividing the observation y and parame-

ters Φ and sigma with
√
m, then solve (3.41) with these updated factors. Now we

introduce the stable recovery theorem of the LASSO algorithm [6].

Theorem 3.3.3. Given β > 0, with probability at least 1− 6
n
− 6e−β, the solution f ∗

of (3.41) with λ = 10
√

log n satisfies

||f ∗ − f ||2 ≤ min
1≤k≤k̄

C(1 + α)[
||f − fk||1√

k
+ σ

√
k log n

m
],

||f ∗ − f ||1 ≤ min
1≤k≤k̄

C(1 + α)[||f − fk||1 + kσ

√
log n

m
],

(3.42)

where m satisfying Theorem 3.2.8 with respected to all k̄-sparse vectors. Here

α =

√
(1+β)kµ logn logm log2 k

m
and k̄ indicates the upper bound on allowable sparsity

levels k that still lead to stable recovery.

Proofs of the weak RIP and Theorem 3.3.3 are also available in [6] so we skip

them and instead focus on the algorithms solving LASSO analysis, e.g. an online

learning algorithm utilizing the homotopy [16]. Here we give an abbreviated descrip-

tion of it.

The key feature of the online algorithm is to compute the support of the optimal

solution f ∗(t) ∈ Rn. To explain this we denote Φt = Φ(1, 2, ..., t; ·) which contains the
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1st to the tth rows of Φ, and with similar definition we have the notation yt. Also we

notice that since the number of samples sensed varies, we need to adjust σt = σ/
√
t

in each iteration. Now we rewrite the problem (3.41) as

f ∗(t) = arg min
f

1

2
||Φtf − yt||22 + λσt||f ||1. (3.43)

It can be solved by the gradient methods. Since we have the optimal solution f ∗(t)

satisfying

(Φt)T (Φtf ∗(t)− yt) + λσtsgn(f∗(t)) = 0,

we rewrite [f ∗(t)]T = ([f ∗Tt(t)]
T ,0T )T and compute the solution of (3.43) in the tth

iteration by

f ∗Tt(t) = [(Φt
Tt)

TΦt
Tt ]
−1[(Φt

Tt)
Tyt − λσtsgn(f ∗Tt(t))]. (3.44)

One may ask that how to compute sgn(f ∗Tt(t)) in (3.44) without revealing of f ∗Tt(t).

In fact, online learning provides knowledges about the optimal solution since f ∗(t−1)

and f ∗(t) are co-related. We define the function

f ∗(r, µ) = arg min
g

1

2
||

(
Φt

r(Φ(t+ 1, ·))T

)
g −

(
yt

ryt+1

)
||22 + λµ||g||1 (3.45)

then it is straightforward that f ∗(t) = f ∗(0, σt) and f ∗(t+1) = f ∗(1, σt+1). The func-

tion f ∗(r, µ) behaves smoothly in the r-domain ([0, 1]), and surprisingly we can define

the concept of transition point set {r′} such that for any r′1 and the next transition

point r′2, they satisfy that ∀r ∈ [r′1, r
′
2), f ∗(r, µ) has support and sign coincide with

those of f ∗(r′1, µ) but different from those of f ∗(r′2, µ). With this observation we have

the Algorithm 3 computing f ∗(t+ 1) from f ∗(t), with complexity O(km2).

Details of the update of T and sign can be find in the original paper of the

algorithm [16] (Reclasso), also the computation of temp in it is nearly the same as

(3.44) of step t + 1 except the substitution of σt+1 with some constant µ, which is

determined by t. We test the algorithm by adjusting its source code and show the

results in Figure 3.6, with comparison of the least angle regression (LARS), another

homotopy algorithm.
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Algorithm 3 A Homotopy Online Algorithm of LASSO Optimization

1: initialize Φ, k, y
2: t← 1, compute f ∗(t) and support T // T := Tt
3: while t ≤ m do
4: temp← f ∗(0, σt+1) and update T
5: sign← sgn(f ∗(0, σt+1))T
6: find the first transition point r′ > 0
7: while r′ ≤ 1 do
8: temp← f ∗(r′, σt+1)
9: update T and sign← sgn(temp)T

10: r′ ← the next transition point
11: end while // now we get Tt+1 = T and sgn(f ∗(t+ 1)) = sign
12: f ∗T (t+ 1)← [(Φt+1

T )TΦt+1
T ]−1[(Φt+1

T )Tyt+1 − λσt+1sign] // f ∗(1, σt+1)
13: t← t+ 1
14: end while
15: return f ∗(t)

(a) running time of each yt (b) #transition points of each iteration

Figure 3.6: Comparing the Reclasso algorithm with LARS. By inputting 250 mea-
surements yt (t ≤ 250), though the reconstruction of both algorithms are the same,
the Reclasso returned the recovery much faster than the LARS. This is resulted from
the less transition points in each iteration.
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3.4 Applications

3.4.1 Single-Pixel Camera

The most promising applications of compressed sensing is the single-pixel camera

(Compressive Imaging (CI) camera) invented by researchers at Rice University [27]. It

incorporated a mirror array controlled by ’pseudorandom’ measurement bases gener-

ated by some algorithm with a random seed, as well as a single or multiple photodiode

optical sensor. The optical processor detects incoherent image measurements y, then

the computing device reconstructs the original image f as the compressed sensing

theory presents. Figure 3.7 shows the structure of the single-pixel camera and Figure

3.8 presents the result of a simple experiment performed by the researchers.

Figure 3.7: Compressive Imaging camera block diagram [27]. Image is reflected off
a digital micro-mirror device (DMD) array controlled by the pseudorandom pattern
Φ generated by the random number generators (RNG). These pattern produce volt-
ages at the single photodiode (PD) that corresponds to y. After transmission we
can reconstruct a sparse approximation to the desired image from received y with
algorithms described before.

3.4.2 Improving MRI detection of Pathological Regions

Several medical imaging researchers have proposed approaches to boost the speed

of MRI. However, they can hardly break the major obstacle of classical methods that

the sampling rate obeys the restriction of the Nyquist-Shannon Sampling Theorem,

thus with at least the Nyquist rate sampling still costs a relatively long time. For-

tunately, recent compressed sensing techniques take advantage of the sparsity in the
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Figure 3.8: Compressed sensing v.s. wavelet decomposition [27]. Random matrices are
generated for measurements of the DMD image (d), then the sparse reconstructions
are obtained (see (e) and (f)). It is computational expensive of the standard method
even though it only picks a small set of the largest wavelets to compute high-quality
recoveries ((b) and (c)).

MR images, in which the sampling rate is much lower.

In [19] a compressed sensing MRI is introduced (CS-MRI). Designing a CS scheme

for MRI requests for finding an easily-sampled subset of the frequency domain that

is incoherent and reveals the sparsity. Though CS theory advocates for a completely

random subset of k-space (very low coherence), sampling that subset is generally

impractical with observation of the hardware and physiological constraints. But for-

tunately, most energy in MR imagery is concentrated close to the center of the k-space

with very high density. Hence this new technique samples raw signals randomly but

concentrated near that center, which is fast and incoherent. The reconstruction ap-

plies l1-analysis methods which minimize the l1-norm of the sparse representation

over some dictionary (see Chapter 4), and gains nearly as precise as the recovery of

Nyquist sampling. It clearly captures the dominating informations, and improves the

quality of MR images by filtering out secondary noises (Figure 3.9).

CS-MRI is still in its infancy with a lot of crucial problems unsolved. The opti-

mization of sampling trajectories, sparse and incoherent transforms of that trajecto-

ries as well as fast and accurate reconstructions still call for further studies. Signal

processing and medical study communities have a major opportunity to develop theo-

retical and practical techniques improving or accompanying the CS-MRI, which shows
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Figure 3.9: Applying CS techniques to MRI. CS methods are applied to a 3-D Carte-
sian contrast-enhanced angiography, the most common scheme in clinical practise.
The classical approach acquires equispaced parallel lines in the k-space, while CS
takes a pseudo-random subset (here approx. 10%) of those lines. Even that CS
can recover most blood vessel information revealed by Nyquist sampling, and achieve
better noise reduction and higher resolution.

a promising future of medical diagnoses in clinics.
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Chapter 4

Learning from Sparsity

Machine Learning aims at processing datasets for recognition, classification and

generalization tasks with proper algorithms. It focuses on known properties learned

from the training data then utilizes them for prediction. Usually the training data

outnumbers the known features (both in number of samples and dimensions), hence

obtaining a low-dimensional representation of a dataset becomes an important com-

ponent of the machine learning process. In this way machine learning and compressed

sensing is co-related, since compressed sensing algorithms ’predict’ the original signals

from relatively few ’known features’ – measurement y.

Improvements of feature extraction are among the main researches in machine

learning, and so does the measurement matrix construction with respect to com-

pressed sensing. Also researchers discuss other topics such as local/global feature de-

tection and faster machine learning algorithms for reconstructions. Especially, here

we consider the learning problems of high-dimensional dataset with observation of

sparsity (or latent sparsity, see Section 4.1.2), which is common in signal processing

problems.

4.1 Best Measurement Matrices for Recovery

Exponentially growth of dataset dimensions calls for better algorithms to process

high-dimensional data, in which the majority of them include projections to low-

dimensional spaces. The goal of related research is to construct the projector (i.e. the

sensing matrix) Φ that can preserve local and global features of the original dataset

then guarantee a better reconstruction. Approaches includes adaptive projections

and random projections, and in compressed sensing the latter method is often used
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that for example with Gaussian entries

Φij ∼ N (0,
1

n
). (4.1)

4.1.1 Why Random Projections Work?

The measurement matrix Φ in compressed sensing is equivalent to the projector

in dimension reduction, and surprisingly researchers have figured out that using ran-

dom matrices as the projector works well with some restrictions of projected space

dimension m, which is briefly explained in Section 3.2.3. We describe the Johnson-

Lindenstrauss Lemma [18] that helps understand the claim in general circumstance.

Lemma 4.1.1. (Johnson-Lindenstrauss) Assume ε ∈ (0, 1), then for every set Q, if

m & O(ln |Q|/ε2), there exists a Lipschitz mapping F : Rn → Rm such that for any

u, v ∈ Q,

(1− ε)||u− v||22 ≤ ||F(u)−F(v)||22 ≤ (1 + ε)||u− v||22. (4.2)

In [1] it proved that the projector F can be the m×n random matrix Φ. Summary

of the proof includes establishing

E(||Φx||22) = ||x||22
P (||Φx||22 − ||x||22 ≥ ε||x||22) ≤ 2e−mCε

(4.3)

then applying these two results to complete the proof by assuming ||u − v||2 ≤ 1

without loss of generality. The second equation of (4.3) is called the concentration

inequality.

With the random projector Φ satisfying Lemma 4.1.1 we can illustrate the ef-

fectiveness of random measurement matrix in compressed sensing by introducing the

theorem below [3].

Lemma 4.1.2. Let Φ be a m × n matrix generated by some arbitrary distribution

that satisfies the concentration inequality (4.3). Then for all k-sparse signal f

and δ ∈ (0, 1) we have

(1− δ)||f ||2 ≤ ||Φf ||2 ≤ (1 + δ)||f ||2 (4.4)

with overwhelm probability at least 1− 2(12/δ)ke−mCδ/2.

Proof. Without loss of generality we can assume ||f ||2 = 1 since Φ is a linear projector.

Then for any δ < 1 we can construct the δ-net Q of {f |||f ||2 = 1, ||f ||0 = k} in which
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|Q| ≤ (12/δ)k. By assigning ε in Lemma 4.1.1 with δ/2 and applying the union bound

of difference in Q and (4.3) we have the RIP

(1− δ/2)||fQ||2 ≤ ||ΦfQ||22 ≤ (1 + δ/2)||fQ||2,∀fQ ∈ Q

with probability 1− 2(12/δ)ke−mCδ/2 .

Now we assume a lower bound A as the smallest value satisfying

||Φf ||2 ≤ (1 + A)||f ||2

for any k-sparse signal f , and the goal is to prove A ≤ δ. From the property of the

ε-net in functional analysis and ||fQ|| = 1 we know

||Φf ||2 ≤ ||ΦfQ||2 + ||Φ(f − fQ)||2 ≤ (1 + δ/2) + (1 + A)δ/4.

Since A is the smallest value (the lower bound) we have (1+A) ≤ (1+δ/2)+(1+A)δ/4,

then it is sufficient to get A ≤ 3δ
4(1−δ/4)

≤ δ. Also since A ≤ δ we have

||Φf ||2 ≥ ||ΦfQ||2 − ||Φ(f − fQ)||2 ≥ (1− δ/2)− (1 + δ)δ/4 ≥ 1− δ

and complete the proof.

Theorem 4.1.3. If given n, m, 0 < δ < 1 and the m×n random matrix Φ satisfying

(4.3), then there exists some constants cδ and c′δ such that the RIP holds for Φ when

k ≤ cδm/ log(n/k) with probability 1− 2emc
′
δ .

Proof. With Lemma 4.1.2 holds the proof is intuitive by noticing that there are Ck
n

subspaces of k−sparse vectors in f and Ck
n ≤ (en/k)k. Given a positive value cδ and

k ≤ cδm/ log(n/k), the overwhelm probability of the conclusion validation is

probability ≥ 1− 2(en/k)k(12/δ)ke−mCδ/2

= 1− 2exp[−mCδ/2 + k(log(en/k) + log(12/δ))]

≥ 1− 2exp[−mCδ/2 + cδm(1 + (1 +
log(12/δ))

log(n/k)
)],

and by assigning c′δ ≤ Cδ/2 − cδ(1 + 1+log(12/δ)
log(n/k)

) we complete the proof.

The proofs of Lemma 4.1.2 and Theorem 4.1.3 clearly indicate that the RIP

and the Johnson-Lindenstrauss Lemma is equivalent: the RIP is a straightforward

consequence of the Johnson-Lindenstrauss Lemma, in which any random matrix Φ
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obeying (4.3) will also satisfies the RIP with very high probability. The Johnson-

Lindenstrauss Lemma then can be used as a simple verification of a random matrix

satisfying the RIP and benefiting the measurements. Furthermore, random matrix

satisfying the concentration inequality tends to obey the RIP with overwhelm

probability, and Lemma 4.1.2 shows the probability of perfect recovery with respect

to the restricted isometry constant δ. Combined with Corollary 3.2.4, if δ ≤
√

2−1,

then all k satisfying

k ≤ 1

2
cδm/ log(n/2k)

will return perfect recoveries with high probability. Also if we have some prior knowl-

edge of k, we can figure out the approximate number of samples we need:

m & kC(δ) log(n/k)

where C(δ) is a constant controlled by δ, and it indicates the probability of stable (or

even perfect) recovery. Figure 4.1 provides an example of 1-D signal sensing.

Figure 4.1: Pseudo-random sensing of 1-D signals [19]. A signal (a) is transformed
into some domain (b) indicating sparse structures. If sensing from this domain with
equispaced undersampling (the down red point line in (b)) it will return alias recon-
struction (d). On the other hand, pseudo-random sampling (the top red point line
in (b)) will return recovery with acceptable noises (c). By picking out signals with
overwhelm amplitudes ((e) and (f)) then filtering out their noises (h), we can reach
the separation of the sparse signals ((f) and (g)) as we want.

4.1.2 Dictionary for Latent Sparsity

We often pay attention to find the structures implicating the sparsity of datasets,

which is better for representation, storage and processing. In general, the original

signal, f , is not sparse at a glance. However, there may exist a sparse representation
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over the dictionary Ψ such that the coefficient vector x is k-sparse:

f = Ψx. (4.5)

The idea of using dictionaries is popular in recent machine learning researches,

which advocates for better representations of the original data. Also the n×d matrix

Ψ is often overcomplete (d > n). Since the best orthogonal base matrix indicating

data sparsity can hardly be found in some practical tasks, working with overcomplete

dictionary provides flexibility and convenience to construct relatively ’sparse’ repre-

sentations. Section 4.3 discusses the construction of such dictionaries and here we

assume Ψ is given and fixed. Then the measurement y given by (3.2) is revised as

y = ΦΨx, (4.6)

where ΦΨ has d columns and x ∈ Rd.

To apply compressed sensing algorithms we want the matrix ΦΨ ∈ Rm×d to satisfy

the RIP. Since the dictionary is pre-designed the structure of Φ determines whether

ΦΨ satisfies the RIP or not. Lemma 4.1.2 and Theorem 4.1.3 also provides im-

plications of such structure. With the assumption that Ψ is orthogonal and preserves

the l2-norm of x (i.e. ||f ||2 = ||x||2), we can construct the δ-net of f (see the proof of

Lemma 4.1.2) by the points in span(ψi1 , ψi2 , ..., ψik) in which ψij is a randomly picked

column vector of Ψ. Then the validation of the proof still holds and by revising the

inequality we have

(1− δ)||x||2 ≤ ||ΦΨx||2 ≤ (1 + δ)||x||2 (4.7)

which is what we want.

Another change of CS methods with respected to x is the number of samples

we need for reconstruction. In Theorem 3.2.8 we have the evaluation of sampling

numbers m. Here we also have a similar conclusion with respect to the representation

x that the number of samples needed for x’s recovery is

m ≥ C(1 + β)µ(ΦΨ)k log d (4.8)

if x is k-sparse. Here the coherence µ(ΦΨ) is computed by searching vectors in some

basis set B(ΦΨ) in which ΦΨ is generated from, and with the knowledge of Ψ we can

suppose such a basis population in advance. Also We do not propose a lower bound

of m but just claim the warranty of recovery with such enough samples. Noticing

the effectiveness of random projectors (see Section 4.1.1), without loss of generality
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we assume the measurement matrix Φ has i.i.d. Gaussian entries. We specify the

preciseness of recovery with the theorem as follows:

Theorem 4.1.4. If Φ is a Gaussian matrix with m & k log(d/k), then the solution

f ∗ of (P1) yields

||f ∗ − f || ≤ C
||Ψ+f ∗ − (Ψ+f ∗)k||1√

k
(4.9)

with constant C. (Ψ+f ∗)k represents the vector of zeros except the k-largest elements.

If x = Ψ+f is itself k-sparse the recovery is exact.

Details will be discussed by introducing similar theorems with respect to the

noisy recovery (we can view the noiseless situation as a special case of it in which

||z||2 = 0). In general Φ is driven by distributions other than Gaussian or even not

randomly generated. Section 4.1.3 describes a detailed version of the RIP adaptive

to Ψ, where this restriction of the measurement matrix also guarantees the recovery

with less level of error.

Remark. We assume the dictionary Ψ to be orthonomal in order to prove the preser-

vation of the RIP. However, the incoherence of the column vectors is unnecessary even

though this will violate the exact recovery of x, since the ultimate goal is to reach

the reconstruction of f = Ψx. Also the claim of the increase of #measurements m

above may not hold since we do not care the precise computation of x seriously.

4.1.3 Measurement Matrix Adaptive to the Dictionary

To illustrate the reconstruction problem in detail we first look into the optimiza-

tion task with respect to x and still abbreviated as (P1) (l1-analysis):

f ∗ = arg min
f
||Ψ+f ||1 s.t. ||y− Φf ||2 ≤ ε. (4.10)

As previously indicated we do not concern about the exact value of x = Ψ+f and

instead we compute the original signal directly. Here ε is an upper bound of the noise

level ||z||2, if y = Φf+z is the polluted measurements. The noise level ||z||2 = 0 means

that the measurements are noiseless then it is possible to achieve exact recovery.

Then we specify the restricted isometry property adaptive to the dictionary Ψ [5]:

Definition 4.1.1. (D-RIP) Let Σk be the union of all subspaces spanned by all subsets
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of k column vectors of Ψ, i.e.

Σk =
⋃
|T |=k

H(ΨT ), T ⊂ {1, 2, 3, ..., d}.

We say the matrix Φ obeys the restricted isometry property adaptive to Ψ with pa-

rameter δk if for any f ∈ Σk the following statement holds:

(1− δk)||f ||22 ≤ ||Φf ||22 ≤ (1 + δk)||f ||22. (4.11)

The D-RIP indicates a natural extension of the RIP by adding descriptions of f ,

which we want to recover. Since f varies in the ’union space’ Σk determined by the

dictionary, proper choice of Ψ is fundamental for the perfect reconstruction. We will

discuss how to set Ψ later and focus on the general case of Theorem 4.1.4.

How to select measurement matrix Φ adaptive to Ψ is the main concern of this

section. Fortunately we can easily figure out that many random compressed sensing

matrices satisfying the D-RIP with very high probability. We describe this observation

by proving the Lemma as follows.

Lemma 4.1.5. ([25]) Assume Φ a random matrix satisfying the RIP with constant

δk and the concentration inequality

P (||Φf ||22 − ||f ||22 ≥ ε||f ||22) ≤ 2e−c
m
2
ε2 (4.12)

for all f ∈ Rn and constants c and 0 < ε < 1/3. Then for any T ⊂ {1, 2, 3, ..., d} of

size k, if given a constant δ ∈ (0, 1) and we set ν := δ + δk + δkδ, the claim

(1− ν)||x||22 ≤ ||ΦΨTx||22 ≤ (1− ν)||x||22 (4.13)

holds with overwhelm probability

1− 2(1 +
12

δ
)ke−

c
9
δ2m

The proof is similar as that of Lemma 4.1.2. We construct an ε-net of x, obtain

ν satisfying (4.13) for all points in that ε-net, then expand this result to x and

complete the proof by comparing the lower bound of ν and δ + δk + δkδ. Examples

of random matrix satisfying D-RIP include those with Gaussian, subgaussian, or

Bernoulli entries, which also yield m & k log(d/k).
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Theorem 4.1.6. Let Ψ be an arbitrary tight dictionary such that Ψ+Ψ = Id and Φ

be the measurement matrix satisfying the restricted isometry property adaptive to Ψ

with δ2k < 0.08, then the solution f ∗ of (P1) also satisfies

||f ∗ − f || ≤ C1ε+ C2
||Ψ+f ∗ − (Ψ+f ∗)k||1√

k
(4.14)

for some constant C1 and C2 only depends of δ2k.

The proof is nearly the same as that of Theorem 3.3.1 (can be found in [5]). It

indicates that the recovery with l1-analysis is accurate if x = Ψ+f is sparse. However,

it also provides a warning that if not the case it may not guarantee the perfect

recovery. In many practical circumstances we can hardly find a good dictionary such

that there exists a sparse representation of f over Ψ. However, it is easier to find a

set of dictionaries {Ψ1,Ψ2, ...Ψl} in which they can help decompose the original signal

and get the sparse representations, i.e.

f = f1 + f2 + ...+ fl,

xi = ΨT
i fi (ki − sparse),

k = max
i

ki.

Then the l1-optimization problem (4.10) is revised as

(f ∗1 , f
∗
2 , ..., f

∗
l ) = arg min

(f1,f2,...,fl)

∑
i

||ΨT
i fi||1 s.t. ||y− Φ

∑
i

fi||2 ≤ ε. (4.15)

Examples includes the mixed data of wavelets, curvelets and other signals.

Though in the Remark of Section 4.1.2 we mentioned that it is no need to recover

the sparse representation, the Basis Pursuit method modelling x directly also works

for the reconstruction of f = Ψx, which is called the l1-synthesis:

x∗ = arg min
x
||x||1 s.t. ||y− ΦΨx||2 ≤ ε. (4.16)

The heuristic behind the Basis Pursuit here is totally different from that of (4.10),

which models f instead. When enlarging the size of Ψ, solving (4.10) takes more time

since the searching space Σk grows exponentially. However, if that size is relatively

small, the risk of assigning a wrong non-zero coefficient to x also increases because

the significance of each elements grows enormously [15].
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4.2 Learning for Sparse Coding

Machine learning people study probabilistic methods for prediction tasks since

they believe that the output prediction function is equivalent some probability. While

few of them take advantages from the frequentist probability, a lot of researchers focus

on the Bayesian statistics or inferences. We give a review of the fundamental Bayes’

theorem for introduction.

Theorem 4.2.1. (Bayes’ Theorem) For events A and B, the conditional probability

P (A|B) is given as follows:

P (A|B) =
P (A)P (B|A)

P (B)
. (4.17)

Here comes a brief interpretation from Bayesian’s view. The event A is called

the proposition, e.g. the happening of pneumonia. In clinical studies, one who is sick

with pneumonia often suffers from fever, which can be understood as an evidence

B. The prior P (A) and likelihood P (B|A) are easy to compute by doing statistics.

Then we may be interested in the probability that if the fever is caused by pneumonia,

which, in the mathematical expression, is the posterior P (A|B). Thanks to the Bayes’

theorem we can easily figure out this probability, and in practice machine learning

people apply the condition as follows more often:

P (A|B) ∝ P (A)P (B|A). (4.18)

4.2.1 Maximizing the Posteriori

We can consider the recovery from the probabilistic perspective that the solution

maximizes the posterior. Take the noisy recovery as example: with the sensing matrix

Φ fixed, we can observe the samples y = Φf + z as previously indicated. Hence

we can consider the original signal f as the proposition and have the prior P (f).

Straightforwardly y is the evidence, and with the linear projection Φ as well as the

noise z obeying some distribution, the likelihood P (y|f) can be evaluated. Having

these assumptions, we can gain the recovery with maximum a posteriori techniques

(MAP, a standard approach in machine learning), and we often take the log form

f ∗ = arg max
f

logP (f |y; Φ)

= arg max
f

(logP (y|f ; Φ) + logP (f)).
(4.19)
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Now we claim that the optimization problem (4.19) is equivalent to the initial

problem (3.3) and provide a brief proof with assumption of independent Gaussian

noises, i.e. z ∼ N (0, σ2) (if consider the noisy version). Since the measurement

matrix Φ is known, with the assumption of f we can easily figure out that

logP (y|f ; Φ) = logP (y− Φf |f ; Φ)

= logP (z|f ; Φ)

= logP (z)

∝ −||z||22
= −||y− Φf ||22,

(4.20)

which is exactly the error level of reconstruction. On the other hand, we can define a

function dp(f) which tend to measure the sparsity of f , with p indicating the lp-norm.

Without loss of generality the prior of f is assumed as

P (f) =
1

Z
e−λpdp(f) (4.21)

where Z is some normalization factor ensuring P (·) a valid probability function. A

common choice of dp(f) is just the lp-norm of f , i.e. dp(f) = ||f ||p [23]. Then (4.19)

can be rewrote as
f ∗ = arg max

f
(logP (y|f ; Φ) + logP (f))

= arg min
f
||y− Φf ||22 + λ||f ||p

(4.22)

with the constant λ ∝ λp. This is equivalent to the two optimization problems as

follows, with some constant ε:

f ∗ = arg min
f
||f ||p s.t. ||y− Φf ||2 ≤ ε, (4.23)

f ∗ = arg min
f
||y− Φf ||2 s.t. ||f ||p ≤ ε. (4.24)

Intuitively if ε → 0 (4.23) is exactly the lp-norm optimization problem (3.3). Also

consider the factor p, (4.23) is problem (P ′0) (or (P0) with ε→ 0) if p = 0, as well as

problem (P ′1) and (P1) with p = 1 respectively. Furthermore, (4.24) is the standard

LASSO task if p = 1. These minimizations reveal sparsity if Φ obeys the RIP, hence

the understanding of sparse recovery from MAP perspective helps connect compressed

sensing theories with machine learning methods.
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4.2.2 Maximizing the Likelihood

Choosing a good dictionary for data representation can also be solved with proba-

bilistic methods. Given the raw signals f , sparse representation problem requests for

a better representation x of it to reveal the latent sparsity. Unlike the MAP approach

described before we want to solve this problem by maximum likelihood techniques.

Assume we have the sparse vector x, the likelihood of f ’s appearance is P (f |x,Ψ).

In practise x is what we want to compute then the likelihood with respect to the

dictionary Ψ is

P (f |Ψ) =

∫
x∈Rd

P (f,x|Ψ)

=

∫
x∈Rd

P (f |x,Ψ)P (x).

(4.25)

Also consider the noisy version of (4.5)

f = Ψx + v (4.26)

where v is also some independent Gaussian noise that v ∼ N (0, σ′2). Similarly by

assuming Ψ is given we have

P (f |x,Ψ) =
1

Z
e−

1
2σ′2
||f−Ψx||22 , (4.27)

which clearly shows the relationship between the likelihood and the error level of

sparse recovery. In order to indicate the sparsity we still obtain the same assumption

of the prior P (x) ∝ e−λ1||x||1 as P (f) in Section 4.2.1, then (4.25) is computed by

P (f |Ψ) =

∫
x∈Rd

P (f |x,Ψ)P (x)

=
1

Z

∫
x∈Rd

e−
1

2σ′2
||f−Ψx||22−λ1||x||1 ,

(4.28)

again it contains structures indicating the LASSO optimization. Inspired by the

standard LASSO problem that l1-norm is constrained by some upper bound ε, we can

then restrict the domain of x to a d-dimensional ball of l1-norm B1(0, ε) = {x|||x||1 ≤
ε}. With these assumptions we introduce the construction of dictionary Ψ which
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maximize the sum of likelihoods given a set of signals {f}

Ψ∗ = arg max
Ψ

∑
f

P (f |Ψ)

= arg max
Ψ

∑
f

∫
x∈B1(0,ε)

e−
1

2σ′2
||f−Ψx||22−λ1||x||1 .

(4.29)

Furthermore, to reduce the computation in [24] the integration of the representation

x in B1(0, ε) is substituted by the search of some x ∈ B1(0, ε) with respect to each

f which maximize P (f,x|Ψ) in the l1-ball. We denote the searching result as xf

then have a much more simple computation as follows, resulting in the largest log-

likelihood:
Ψ∗ = arg max

Ψ

∑
f

e−
1

2σ′2
||f−Ψxf ||22−λ1||xf ||1

= arg min
Ψ

∑
f

||f −Ψxf ||22 + λ||xf ||1
(4.30)

with constant λ indicating how ’strict’ the l1-penalty is. We can also transform (4.30)

into the standard LASSO problem, which omitted the part of l1-norm in the target

function since we have already introduced the bound of it:

Ψ∗ = arg min
Ψ

∑
f

||f −Ψxf ||22 s.t.||xf ||1 ≤ ε. (4.31)

A simple approach to solve (4.31) is again an online method. Assume the signal set

{f} = {f1, f2, ..., fN} and we denote Ψ∗(t) the optimal solution in the tth step. Similar

to the LASSO Algorithm 3 described before we have the online learning Algorithm

4.

Algorithm 4 Online Learning for Likelihood Maximization

1: initialize Ψ∗(1), ε, P (x), t← 1
2: while t ≤ N do
3: i← 1
4: while i ≤ t do
5: xfi ← arg max

x∈B1(0,ε)
P (fi,x|Ψ∗(t))

6: i← i+ 1
7: end while
8: Ψ∗(t+ 1)← arg min

Ψ

∑t
i=1 ||fi −Ψxfi ||22

9: t← t+ 1
10: end while
11: return Ψ∗(t)
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Also we can use gradient descent methods to compute xfi and Ψ∗(t+1) [2]. Assume

the prior P (x) is smooth in B1(0, ε), then P (f,x|Ψ∗(t)) is derivable with respect to x

so we can catch the poles and get xfi . In addition we claim that the object function

(4.30) is smooth, so the update with some learning rate η is straightforward:

Ψ∗(t+ 1) = Ψ∗(t)− η
t∑
i=1

(Ψ∗(t)xfi − fi)xTfi . (4.32)

In fact with this type of update Algorithm 4 is exactly the stochastic gradient de-

scent methods common in machine learning, which again shows the close relationship

between machine learning and sparse representation.

In standard tests we assume that the dictionary is composed by uniform vectors.

However, this constraints can even be stricter to rich good sparse coding with also

sparse dictionary. In [20] it introduced two kinds of constraints that

D = {Ψ|||ψi||22 + γ||ψi||1 ≤ 1} (4.33)

D = {Ψ|(1− γ)||ψi||22 + γ||ψi||1 ≤ 1} (4.34)

where γ represented the proportion of the l1-penalty. In Figure 4.2 we compare the

test results of Algorithm 4 with/without these dictionary constraints and figure out

that they reach nearly the same performance.

4.3 Constructing Dictionaries for Sparse Repre-

sentations

Recent activities in sparse representation research focus on the construction of the

overcomplete dictionary for the sake of achieving better descriptions of sparsity. This

dictionary can be set as a pre-specified set of basis functions, or adaptively designed

to fit the features and structures of a certain dataset. Choosing the former one (pre-

specified dictionary) is appealing because it is simpler to construct if with a lot of

prior knowledges. If properly designed, this simple dictionary can benefit the speed

up of representation computing as well as the recovery by pseudo-invert techniques.

Examples include wavelets, curvelets and sinc functions. However, such dictionaries

can only fit a few types of signals, in which we need to figure out the best one for

processing given different sets of signal data. Hence in this section we consider the

latter approach based on learning algorithms.
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(a) original (b) standard, target = 0.425630

(c) left-half, target = 0.426019 (d) right-half, target = 0.4257720

(e) constraint (4.33), target =
0.470179

(f) constraint (4.34), target =
0.467948

Figure 4.2: Maximum likelihood learning of the dictionary. We used related functions
of the INRIA’s ’SPAM-python’ package [17] when coding for this test. The target
function of (4.31) takes values around 0.42 if without the dictionary constraints, and
we notice that using only half of the image achieves (see (c) and (d)) nearly the same
results. Learning with those constraints (4.33) and (4.34) achieve a slightly worse
performance, but the sparsity of the dictionary are significantly improved.
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Researchers have raised approaches to learn the dictionary Ψ that yields sparse

representations for the training signals. These approaches save time of looking for

suited dictionaries for dataset – the analysis itself reveals specific informations of the

dataset – which can also be viewed as a part of learning. Even the computational

complexity will be higher, with growing computing capabilities we believe that the

adaptive dictionary will outperform the pre-determined one.

4.3.1 K-SVD: Decomposition with Sparsity Restrictions

In [2] another method utilized the singular vector decomposition (SVD) techniques

to learn the dictionary. We rewrite the (P0) task to reveal its details. Consider the

matrix Y with N column vectors {yi} and assume Φ is fixed, we want to obtain the

best dictionary such that all the sparse representation are at most k-sparse:

Ψ∗ = arg min
Ψ,X
||Y− ΦΨX||2F s.t. ∀i ||xi||0 ≤ k, (4.35)

where X = (x1,x2, ...xN) represents some possible sparse coding of Y. From the

knowledge of linear algebra we can rewrite the target function of (4.35)

||Y− ΦΨX||2F = ||Y− Φ
d∑
i=1

Ψ(i)X
i||2F

= ||(Y− Φ
∑
i 6=j

Ψ(i)X
i)− ΦΨ(j)X

j||2F
(4.36)

where we use Xi to denote the ith row vector of X, and Ψ =
∑d

i=1 Ψ(i). Define

Ej := Y − Φ
∑

i 6=j Ψ(i)X
i, then we have our goal of minimizing ||Ej − ΦΨ(j)X

j||2F ,

which is easy to achieve by performing SVD decomposition of Ej. However, it cannot

yield the k-sparsity of the updated Xj since it may return some dense vectors. A

remedy is to discard all the zero-valued elements of Xj and gain a shortened vector

X̃
j

with no non-zero entries. By adjusting Ej by eliminating all column vectors except

those with indices of non-zero elements in Xj (denoted as Ẽj) we get an equivalent

target function

Ψ∗ = arg min
Ψ
||Ẽj − ΦΨ(j)X̃

j||2F (4.37)

then solving it by SVD returns satisfying decomposition Ẽj = UΣV T . We define the

update Ψ∗(j) := Φ+U1 in which Φ+ is the pseudo-inverse matrix and X̃
j∗

:= Σ11V1,

by applying this method we get a part of optimal dictionary in one iteration (see

Algorithm 5).
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Algorithm 5 K-Singular Vector Decomposition for Dictionary Learning

1: initialize Y , Φ, Ψ∗(1), ε, k, t← 1, error > ε
2: while error > ε do
3: recover X from Y over Ψ∗(t) // xi is at most k-sparse
4: j ← 1
5: while j ≤ d do
6: Ej ← Y− Φ

∑
i 6=j Ψ(i)X

i

7: compute Ẽj, X̃
j

8: perform SVD and gain Ẽj = UΣV T

9: Ψ∗(t+ 1)(j) ← Φ+U1, X̃
j∗ ← Σ11V1

10: j ← j + 1
11: end while
12: t← t+ 1
13: error ← ||Ẽj − ΦΨ∗(t)(j)X̃j||22
14: end while
15: return Ψ∗(t)

Remark. One may question about the choice of sparse representations since in each

iteration the algorithm keeps sgn(X) unchanged. However, in the reconstruction step

we apply some MP or BP algorithms such as those we introduced before, so X varies

according to the change of Ψ∗(t). Further more, with t grows sgn(X) tends to converge

in order to achieve smaller error level.

4.3.2 Can EM algorithms Work?

We may concern about the stability of the methods introduced as above since

they acquire only one sample with the largest probability in each step. In general,

expectation provides a stable evaluation, and it’s reasonable that this indicates the

structure of the parameters roundly. Actually we can view the reconstruction problem

as the expectation task then compute the optimal dictionary (given a fixed sensing

matrix Φ)

Ψ∗ = arg max
Ψ
Ey[1y′=y|Ψ]

= arg min
Ψ
Ey[||y− y′||22|Ψ].

(4.38)

This learning problem can be addressed by the expectation-maximization algorithm,

a standard approach in machine learning. Abbreviated as the EM algorithm, it

provides an iterative method for finding the optimal solution of the MAP or likelihood

maximization tasks. Different from taking the hidden variables yielding the maximum

probability, it averages the computation over the whole probability space. Generally
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speaking, each iteration alternates between performing an expectation (E) step, which

computes the expectation of the loss function (or the target function we proposed)

using the current estimate for the parameters, and a maximization (M) step, which

computes parameters optimizing that function (in a probabilistic view it maximizes

the expected likelihood or posterior) gained in the E step.

We briefly introduce the computation in each iteration. Assume in tth epoch the

result of last epoch Ψ∗(t) is ready:

• first we compute the average ȳt+1 = 1
t+1

∑t+1
i=1 yi

• E-step: compute the average sparse representation x̄t+1 = recovery(ȳt+1,Φ,Ψ
∗(t));

• M-step: compute Ψ∗ to minimize ||ȳt+1 − y′||22, here y′ = ΦΨx̄t+1 and the

optimal Ψ is what we want. Then assign Ψ∗(t+ 1) := Ψ∗.

Here we notice that, in the E-step, since the dictionary is assigned as Ψ∗(t) (and

fixed), the computation figures out the expectation of recovery x̄t is straight forward

(e.g. by pseudo-inverse methods). The idea behind these EM algorithm is to minimize

the average reconstruction error, and we utilize the average sparse representation to

help estimate it. Moreover, this algorithm is also applicable if we apply the noise v to

the M-step, by stochastically adding a noise vector or taking its expectation as well.

In [20] it presented a similar algorithm except that the E-step computed the sparse

representation xt+1 of the new observation yt+1 over the dictionary Ψ∗(t) gained in

the last M-step. Taking advantage of the previously proved equivalence of the LASSO

and the maximum likelihood, it drove the M-step by solving the l2-minimization with

l1-penalize, which is more tractable and computed by some fast algorithms like LARS.
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Chapter 5

Conclusion & Future Research

The purpose of this thesis is to present a review of compressed sensing researches

as well as its related learning works. We have proposed the classical sampling theory

briefly and pointed out its disabilities, especially facing the increasing demands for

fast processing. Compressed sensing techniques aims at overcoming these obstacles

by raising a brand new theory of sampling, which was discussed in this thesis with

proofs of the main results. Also fast algorithms for signal recovery were introduced

with mathematical details, as well as some successful applications in the real world.

On the other hand, CS studies also presents opportunities of machine learning re-

searches, and these were discussed in the previous chapters too. We have viewed the

recovery as a kind of prediction work, and discussed the optimization problems from

the probabilistic perspective. Learning models for the construction of dictionary were

also introduced, and we have presented the simulation results of some algorithms in

this thesis.

Traditional signal sensing methods take advantage of the Nyquist-Shannon sam-

pling theorem, which guarantees the perfect recovery with high-enough sampling rate.

However, the request of faster processing severely challenges the speed of sensors,

which are relatively slower than the computing advices for further analysis. Due to

the limitations of cost and design, sensors can hardly be improved to sample high-

rate signals with the Nyquist rate. But there exists another approach: why not try to

figure out the smallest number of samples we need that ’with overwhelm probability’

these samples can return a perfect recovery? Then it comes to the compressed sensing

research, which discusses advanced methods to reconstruct the original signals from

a relatively few samples with random sensing matrices and appropriate dictionaries.

These ideas are so revolutionary that catch the eyes of mathematicians, statisticians

and computer scientists, as well as the other people such as medical researchers since
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its successful application of MR imaging systems.

Sparsity is also a main research topic in machine learning, which aims at extracting

knowledges from the training data and returning precise predictions. Researchers have

discussed the equivalence between the CS recovery and the ML prediction, showing

the connections between machine learning and compressed sensing. With this claim,

classical algorithms such as maximum a posteriori (MAP) or likelihood maximization

can be applied to the recovery tasks. Also online learning methods, e.g. the stochastic

gradient descent algorithm, speed up the computation of the optimal solutions, which

as well provide approaches of dictionary constructions.

5.1 Benefiting from Sparsity

Why compressed sensing methods work so well? This is based on the assumption

of signal sparsity, which can be discovered directly or over a specific dictionary. It

states that signals can be compressed and sensed at the same time, using linear

projections to convert the raw signals into a low-dimensional subspace. The restricted

isometry property then proposes constraints on the sensing matrices (the projectors),

which yields little distortion of the geometric structure of the k-sparse raw signals.

This restriction can be weakened with a little decrease of perfect-recovery probability

(even though the RIP is not so strict in practise), and surprisingly we find out that

many random matrices such as those with Gaussian entries satisfy both. A brief

explanation of it goes like that random sensing matrices tends to get less coherence

of the constructed dictionary, then the quality of reconstruction becomes better with

the same numbers of samples. The brilliant theoretical results also show that the

Basis Pursuit (l1-optimization) is equivalent to the l0-optimization problems under

some restrictions, which is more tractable then the NP-hard minimization (P0).

In a nutshell, a successful compressed sensing application has 3 requirement:

• Transform sparsity. The signal has a sparse representation in some known

domain. Or we can assume the existence of latent sparsity then figure out some

appropriate dictionaries to reveal it. The key point of sparsity discovery is

the proper choice of dictionaries, however in practise that sparse representation

itself is no need to compute.

• Incoherence sensing. The sampling from k-sparse signal f should be ’noise like’,

i.e. measurement matrix with random entries can achieve better representation

of the sparsity in the transform domain. From the mathematical point of view,
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small coherence µ(ΦΨ) indicates the incoherence of the sensing matrix to the

dictionary, which can result in fewer samples we need for recovery.

• ’Non-linear’ recovery. A reconstruction should yield the sparsity of signal rep-

resentation as well as its consistency simultaneously. Since directly modelling

(P0) is NP-hard (the MP algorithm cannot guarantee the recovery), (P1) is con-

sidered as substitution, which is ’non-linear’ at a glance: in some cases it can

be addressed by linear programming.

Other important topics in compressed sensing research include the fast algorithms

for Basis Pursuit and the construction of the dictionaries, calling for the ideas from

other perspectives.

5.2 Learning for Better Reconstructions

One can hardly apply random dictionaries to the raw signals in order to reveal

the latent sparsity, which invokes machine learning researches. Sparsity itself is a

significant research topic in the machine learning world. Since compressed sensing

takes advantage of sparsity, it also presents connections between these two fields. More

than the construction of dictionaries, online learning methods such as the stochastic

gradient descent algorithms also benefits the acceleration of computations. In this

thesis we have shown the online methods and explained the mathematics behind

them, from the perspective of probability.

• We have re-introduced the problem (P0) and (P1) with the concept of dictionary.

Then the D-RIP was discussed, which showed the constraints of the sensing

matrix Φ with dictionary Ψ given. Also we have given another view of the

random matrix’s effectiveness inspired by the Johnson-Lindenstrauss Lemma.

• In machine learning tasks the prediction can be interpreted as computing some

value proportional to some likelihood with respect to the given input. Hence

one can learn the parameters behind the probability by maximizing that like-

lihood (generative) or applying the MAP algorithm (discriminative). We have

proposed an analogy between recovery and prediction by showing that these

two types of learning have the same target functions as that of (P1).

• We have shown algorithms for dictionary construction. These included the

formal matrix decomposition methods with the restriction of k non-zero entries
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(K-SVD), as well as the EM algorithm. Both of them are iterative methods, one

returns part of the solution then sums up as the result, while another one takes

in the observations one by one and updates the dictionary to be temporally

optimal.

5.3 Future Researches

Compressed sensing is an emerging field of research with beautiful theories and

successful applications. Some open questions still require further researches, which

include as follows.

• Can the algorithms proposed keep high performance when dealing with high-

dimensional data? Images (or even 3-D images) with higher resolution and

other high-dimensional signals present difficulties for lossless compressions, and

we do care about if researchers can find out any advanced CS methods to process

them.

• Can the distribution which drives the random sensing matrix Φ be learned from

the dataset? The coherence parameter µ(Φ) (or µ(ΦΨ)) controls the lower

bound of the number of samples m. Since smaller m results in more satisfactory

in practical uses, we are wondering if we can figure out the better distribution

of Φ with respect to a specific dataset.

• Are there any restrictions equivalent to the RIP, or even weaker than it (except

the weak RIP)? The RIP in fact indicates that the linear transformation of

the k-sparse vector is nearly orthogonal, and we do not know if and to which

extent this constraint can be loosed. Besides we are also interested in other

explanations of the RIP.

• Are there any other approaches of dictionary learning, except the MAP, EM

algorithms and their combination methods? Recently there’s a new topic (deep

learning) of machine learning which advocates for feature learning, relieving the

researchers from devoting lot of time on the design of measurements. This new

approach works well in computer vision applications as well as the speech pro-

cessing, which are also related to signal processing researches. Also Bayesian

nonparametrics views the distributions on an infinite-dimensional space of func-

tions, which may provide a generalized method for CS recovery (since Φ is

randomly generated we may prefer not to assume a prior in advance).
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We are looking forward to seeing the researchers of compressed sensing, machine

learning and related application fields interact with each other, and confident of the

success of their collaborations.
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