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Background

Background

Signal processing everywhere.

Entertainment: music, videos, images...
Engineering: telecommunication, medical use...
Recognition: speech, face, moving object...

Limitation of the Nyquist-Shannon Sampling Theorem

Era of the big data.

Daily life accompanied with data.
Knowledge discovery from data.

Any fast algorithms?
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Compressed Sensing Norms Indicating Sparsity

Why use l1-Norm?

(a) p = 2 (b) p = 1 (c) p = 0

Recovery of the signal f ∈ Rn from y ∈ Rm:

f ∗ = arg min
f
||f ||p s.t. y = Φf . (1)

(P0) f ∗ = arg min
f
||f ||0 s.t. y = Φf (Matching Pursuit)

(P1) f ∗ = arg min
f
||f ||1 s.t. y = Φf (Basis Pursuit)
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Compressed Sensing Restricted Isometry Property (RIP)

Restricted Isometry Property

Definition (Restricted Isometry Property [CT05])

The sensing matrix Φ is said to obey the restricted isometry property
of order S if ∃δS s.t. ∀ k-sparse f such that k ≤ S , and f ’s support
T ⊂ {1, 2, ..., n}(|T | = k),

(1− δS)||f ||22 ≤ ||ΦT f ||22 ≤ (1 + δS)||f ||22. (2)
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Compressed Sensing Restricted Isometry Property (RIP)

Sampling Constraints

Theorem (Equivalence of problem (P0) and (P1))

Suppose S ≥ 1 and δ2S < 1, the solutions of (P0) and (P1) coincides
if that solution f has its support T satisfying |T | ≤ S.

Theorem (Noiseless incoherent sampling [CT06])

If f is k-sparse, then for any β > 0, with probability at least
1− 5/n− e−β the signal can be perfectly recovered if m & O(k log n)

Random sensing matrix works better.
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Compressed Sensing Recovery Algorithms

Simulations: solving BP by LP

(d) recovery (p = 1) (e) recovery (p = 2)

(f) error (p = 1) (g) error (p = 2)

Figure: Recovery compared to the raw signal.
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Compressed Sensing Recovery Algorithms

Noisy Recovery

(a) noiseless (b) noisy

In practise y = Φf + σz.

LASSO: l2-minimization with l1-penalty.

f ∗ = arg min
f

1

2
||Φf − y||22 + λσm||f ||1 (3)

Similar (weak) RIP guarantees the recovery.
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Compressed Sensing Applications

Single-Pixel Camera

Figure: Compressed sensing v.s. wavelet decomposition [TLW+06].
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Compressed Sensing Applications

CS-MRI

Figure: Applying CS techniques to MRI [LDSP08].
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Learning Methods Probabilistic Methods

MAP

f ∗ = arg max
f

(log P(y|f ; Φ) + log P(f )). (4)

y− Φf = z ∼ N (0, σ2)

Prior P(f ) = 1
Z

e−λp ||f ||p

⇒ f = arg min
f
||y− Φf ||22 + λ||f ||p

⇒ f = arg min
f
||f ||p s.t. ||y− Φf ||2 ≤ ε

(5)

p = 1: standard LASSO

ε→ 0: perfect recovery.

Yingzhen Li (Dept. of Mathematics, Sun Yat-sen University)Compressed Sensing and Related Learning Problems
Advisor: Prof. Haizhang Zhang 11 /

16



Learning Methods Dictionary Learning

Dictionary Learning

Finding the dictionary minimizing the error of representation:

Ψ∗ = arg min
Ψ
||Y− ΦΨX||2F (6)

X is supposed to be sparse.

K-SVD [AEB06].

Expectation-Maximization.
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Learning Methods Dictionary Learning

Maximum Likelihood

Signal can be represented by some fixed codes from an
over-complete dictionary:

f = Ψx + v, v ∼ N (0, σ′2) (7)

Best dictionary gives sparse representations ||x||1 ≤ ε:

Ψ∗ = arg max
Ψ

∑
f

∫
||x||1≤ε

e−
1

2σ′2 ||f−Ψx||22−λ1||x||1 (8)

Trick: fast online methods.
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Conclusion

Conclusion

Revolutionary sensing theories without Nyquist rate constraints.

Benefited from data sparsity.

The RIP helps yield perfect recovery with high probability.

Random sensing matrix works better.

Learning algorithms benefits CS methods.
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Conclusion

Future Research

Can the algorithms keep high performance when n grows?

Can P(Φ) be learned?

Can we loose the restriction of (weak) RIP?

Any other learning approaches?
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