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Tractability in approximate inference

• Bayesian inference: integrating out the unobserved variables in your model

• latent variables in a generative model

• weight matrices in a Bayesian neural network

• “We do approximate inference because exact inference is intractable.”

What does “tractability” really mean for

an approximate inference algorithm?
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Tractability in approximate inference

• In Bayesian modelling, we specify the model:

prior: p(z), likelihood: p(x |z)

• We want to compute the exact posterior

exact posterior: p(z |x) =
p(z)p(x |z)

p(x)

• Inference: given some function F (z) in interest, want Ep(z|x) [F (z)]

• predictive distribution p(y |x ,D) = Ep(z|D) [p(y |x , z)]

• evaluate posterior p(z ∈ A|x) = Ep(z|x) [δA]

• In this talk we assume F (z) is cheap to compute given z
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Tractability in approximate inference

• In most of the time we cannot compute p(z |x) efficiently

• Approximate inference: find q(z |x) in some family Q such that q(z |x) ≈ p(z |x)

• and in inference time, approximate

Ep(z|x) [F (z)] ≈ Eq(z|x) [F (z)]

Tractability: fast computation of the RHS term
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Tractability in approximate inference

Optimisation-based methods, e.g. variational inference:

• Optimise a (usually parametric) q distribution to approximate the exact posterior

q∗(z |x) = arg min
q∈Q

KL[q(z |x)||p(z |x)] = arg max
q∈Q

Eq[log p(z , x)] + H[q(z |x)]

• When q or p is complicated, usually approximate the expectation by Monte Carlo

LMC
VI (q) =

1

K

K∑
k=1

log p(x , zk)− log q(zk |x), zk ∼ q(z |x)

• With Monte Carlo approximation methods, inference is done by

Ep(z|x) [F (z)] ≈ 1

K

K∑
k=1

F (zk), zk ∼ q(z |x)

Tractability requirement: fast sampling
and fast density (ratio) evaluation (only for optimisation!)
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Is it necessary to evaluate the (approximate) posterior density?

Three reasons why I think it is not necessary:

• if yes, might restrict the approximation accuracy

• if yes, visualising distributions in high dimensions is still an open research question;

• most importantly, MC integration do not require density evaluation!
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Wild approximate inference: Why

Research for wild approximate inference:

Can we design efficient approximate inference

algorithms that enables fast inference,

without adding more constraints to q?

Why this research problem is interesting:

• Having the best from both MCMC and VI

• Allowing exciting new applications
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Wild approximate inference: Why

VI

• Need fast density (ratio) evaluation

• Less accurate

• Fast inference

• Easy to amortise (memory efficient)

MCMC

• Just need to do sampling

• Very accurate

• Need large T thus slow (MCMC)

• Not re-usable when p is updated

We want to have the best from both worlds!
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Wild approximate inference: Why

Meta learning for approximate inference:

• Currently we handcraft the MCMC algorithms and/or

approximate inference optimisation objectives

• Can we learn them?
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Wild approximate inference: How

We have seen/described/developed 4 categories of approaches:

• Variational lower-bound approximation (based on density ratio estimation)

Li and Liu (2016), Karaletsos (2016); Huszár (2017); Tran et al. (2017); Mescheder et al.

(2017); Shi et al. (2017)

• Alternative objectives other than minimising KL

Ranganath et al. (2016); Liu and Feng (2016)

• Gradient approximations

Huszár (2017); Li and Turner (2017)

• Amortising deterministic/stochastic dynamics

Wang and Liu (2016); Li, Turner and Liu (2017); Chen et al. (2017); Pu et al. (2017)

See Chapter 5 of my draft thesis for a discussion

Also see Liu and Lee (2017), Titsias (2017)
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Variational lower-bound approximation via density ratio estimation

Recall the variational lower-bound

LVI(q) = Eq

[
log

p(x |z)p(z)

q(z |x)

]

• let’s assume p(x |z) is tractable

• then it only remains to estimate the density ratio p(z)
q(z|x)

• classifier-based GAN (Goodfellow et al. 2014): the optimal discriminator satisfies

D∗(z , x) =

[
1 + exp

[
− log

p(z)

q(z |x)

]]−1
Therefore,

LVI(q) ≈ Eq

[
log p(x |z) + log

D(z , x)

1− D(z , x)

]
.

In practice need to do “adaptive contrast” (Mescheder et al. 2017)

Can extend this to IS/SMC (NIPS workshop)

10



Alternative objectives other than minimising KL

Minimising Stein’s discrepancy

S2(p(z |x), q(z |x)) =

(
sup
h∈H

Eq [∇z log p(z , x)h(z) + 〈∇, h(z)〉]
)2

• this is nice: only need samples from q and evaluate the joint distribution p(z , x)

• OPVI (Ranganath et al. 2016): H is a set of neural network functions

• Wild VI via KSD minimisation (Liu and Feng 2016): H is the unit ball in an RKHS
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Gradient Approximations
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Alternative idea: approximate the gradient

Variational lower-bound: assume z ∼ qφ ⇔ ε ∼ π(ε), z = fφ(ε)

LVI(qφ) = Eπ [log p(x , fφ(ε, x))] + H[q(z |x)]

During optimisation we only care about the gradients!

The gradient of the variational lower-bound:

∇φLVI(qφ) = Eπ

[
∇f log p(x , fφ(ε, x))T∇φfφ(ε, x)

]
+∇φH[q(z |x)]

The gradient of the entropy term:

∇φH[q(z |x)] = −Eπ

[
∇f log q(fφ(ε, x)|x)T∇φfφ(ε, x)]

]
−(((((((((hhhhhhhhhEq [∇φ log qφ(z |x)]

this term is 0

It remains to approximate ∇z log q(z |x)!

(in a cheap way)
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Gradient estimators (kernel based)

KDE plug-in gradient estimator for ∇x log q(x) for x ∈ Rd :

• first approximate q(x) using kernel density estimator q̂(x):

q̂(x) =
1

K

K∑
k=1

K(x , xk), xk ∼ q(x)

• then approximate ∇x log q(x) ≈ ∇x log q̂(x)
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Gradient estimators (kernel based)

Score matching gradient estimators: find ĝ(x) to minimise the `2 error

F(ĝ) := Eq

[
||ĝ(x)−∇x log q(x)||22

]
Using integration by parts we can rewrite: (Hyvärinen 2005)

F(ĝ) = Eq

||ĝ(x)||22 + 2
d∑

j=1

∇xj ĝj(x)

+ C

Sasaki et al. (2014) and Strathmann et al. (2015): define

ĝ(x) =
K∑

k=1

ak∇xK(x , xk), xk ∼ q(x)

and find the best a = (a1, ..., aK ) by minimising the `2 error.
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Stein gradient estimator (kernel based)

Define h(x): a (column vector) test function satisfying the boundary condition

lim
x→∞

q(x)h(x) = 0.

Then we can derive Stein’s identity using integration by parts:

Eq[h(x)∇x log q(x)T +∇xh(x)] = 0

Invert Stein’s identity to obtain ∇x log q(x)!

15



Stein gradient estimator (kernel based)

Define h(x): a (column vector) test function satisfying the boundary condition

lim
x→∞

q(x)h(x) = 0.

Then we can derive Stein’s identity using integration by parts:

Eq[h(x)∇x log q(x)T +∇xh(x)] = 0

Invert Stein’s identity to obtain ∇x log q(x)!

15



Stein gradient estimator (kernel based)

Main idea: invert Stein’s identity:

Eq[h(x)∇x log q(x)T +∇xh(x)] = 0

1. MC approximation to Stein’s identity:

1

K

K∑
k=1

−h(xk)∇xk log q(xk)T + err =
1

K

K∑
k=1

∇xkh(xk), xk ∼ q(xk),
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1

K

K∑
k=1

−h(xk)∇xk log q(xk)T + err =
1

K

K∑
k=1

∇xkh(xk), xk ∼ q(xk),

2. Rewrite the MC equations in matrix forms: denoting

H =
(
h(x1), · · · ,h(xK )

)
, ∇xh =

1

K

K∑
k=1

∇xkh(xk),

G :=
(
∇x1 log q(x1), · · · ,∇xK log q(xK )

)T
,

Then − 1
K HG + err = ∇xh.
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Stein gradient estimator (kernel based)
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V := arg min

Ĝ∈RK×d

||∇xh +
1

K
HĜ||2F +

η

K 2
||Ĝ||2F ,

Analytic solution: ĜStein
V = −(K + ηI )−1〈∇,K〉,

with

K := HTH, Kij = K(x i , x j) := h(x i )Th(x j),

〈∇,K〉 := KHT∇xh, 〈∇,K〉ij =
∑K

k=1∇xk
j
K(x i , xk).
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Gradient estimators: comparisons

Comparing KDE plugin gradient estimator and Stein gradient estimator:

for translation invariant kernels:

ĜKDE = −diag(K1)−1〈∇,K〉

ĜStein
V = −(K + ηI )−1〈∇,K〉

When approximating ∇xk log q(xk):

• KDE: only use K(x j , xk)

• Stein: use all K(x j , x i ) even for those i 6= k

more sample efficient!
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Gradient estimators: comparisons

Compare to the score matching gradient estimator:

Score matching

• Min. expected `2 error

(a stronger divergence)

• Parametric approx.

(introduce approx. error)

• Repeated derivations for

different kernels

Stein

• Min. KSD

(a weaker divergence)

• Non-parametric approx.

(no approx. error)

• Ubiquitous solution for

any kernel

Complexity: both need matrix inversion, O(K 3 + K 2d)

KSD: Kernelised Stein discrepancy (Liu et al. 2016; Chwialkowski et al. 2016)
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Adding predictive power

Use Stein gradient estimator at unseen locations y :

• non-parametric predictive model:

• compute ĜStein
V on {y} ∪ {xk}Kk=1

• retrieve the row corresponding to the approximation of log q(y)

• parametric predictive model:

• define ĝ(x) =
∑K

k=1 ak∇xK(x , xk), xk ∼ q(x)

• find the best a = (a1, ..., aK ) by minimising KSD

• compute ĝ(y) using the fitted a and the stored samples {xk}Kk=1
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Example: meta-learning for approximate inference

• learn an approx. posterior sampler for NN weights

θt+1 = θt + ζ∆φ(θt ,∇t) + σφ(θt ,∇t)� εt , εt ∼ N (ε; 0, I),

∇t = ∇θt

[
N

M

M∑
m=1

log p(ym|xm,θt) + log p0(θt)

]
.

• coordinates of ∆φ(θt ,∇t) and σφ(θt ,∇t) are parameterised by MLPs

• training objective: an MC approximation of∑
t

LVI(qt), qt is the marginal distribution of θt

• see whether it generalises to diff. architectures and datasets:

• train: 1-hidden-layer BNN with 20 hidden units + ReLU, on crabs dataset

• test: 1-hidden-layer BNN with 50 hidden units + sigmoid, on other datasets
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Example: meta-learning for approximate inference
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Example: entropy regularised GANs

• Addressing mode collapse: train your generator using entropy regularisation:

min Lgen(pgen)−H[pgen]

• Lgen(pgen) is the generator loss of your favourite GAN method

• Again the gradient of H[pgen] is approximated by the gradient estimators

• We pick BEGAN because it has severe mode collapse problem
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Example: entropy regularised GANs
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Example: training implicit generative models

• training a generative model qθ(x) by minimising

min
θ

KL[qθ(x)||pD(x)]

• the gradient of KL: say x ∼ q ⇔ ε ∼ π(ε), x = fθ(ε)

∇θKL = Eπ[(∇x log qθ(x)−∇x log pD(x))|x=fθ(ε)∇θf ]

• Use the gradient estimator for both ∇x log qθ(x) and ∇x log pD(x)!
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Example: training implicit generative models
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Amortised MCMC
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Recap: from Variational EM to VAE

inferparam.

Variational EM

(For simplicity we omit the model parameter θ but it would be trained by approx. MLE)
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Recap: from Variational EM to VAE

inferparam. inferparam.

input

Variational EM VAE

Amortised inference: memory efficient & no need to run VI optimisation in test time!
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New: from MCMC-EM to amortised MCMC

inferMCMC

MCMC-EM

For every xn, need to simulate MCMC for T >> 0 steps (slow!)
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New: from MCMC-EM to amortised MCMC

inferMCMC

MCMC-EM persistent MCMC

inferMCMC

from last
iteration

Need to store all samples from the previous iteration, memory cost O(NKD).

For a new datapoint, still need to run MCMC with T >> 0 starting from p0 (slow!)
24



New: from MCMC-EM to amortised MCMC

inferMCMC inferMCMCparam.

input

MCMC-EM Amortise initial distribution

This method essentially cares about qT only, so no need for q(z |x) ≈ p(z |x).

In test time still need to run MCMC to obtain samples from qT (slow!)
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New: from MCMC-EM to amortised MCMC

inferMCMC

MCMC-EM Amortised MCMC

inferMCMCparam.

input

distil

infer (test time)

Distillation happens at the same time during training (thus also improving qT ),

and now q(z |x) ≈ p(z |x) – no need to run MCMC in test time!
24



Understanding “distillation during training”
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Understanding “distillation during training”

Sampling-based methods, e.g. Markov chain Monte Carlo:

• Define a transition kernel K(zt |zt−1) that leaves p(z |x) invariant

• Pick an initial distribution q0(z0|x), and run T -step transitions

zk
T ∼ qT (zT |x) =

∫
q0(z0|x)

T∏
t=1

K(zT |zt−1)dz0:T−1, k = 1, 2, ...,K

• We rely on two assumptions:

• K(zt |zt−1) has a unique stationary distribution p(z |x)

• when T → +∞ the Markov chain converges to the stationary

• Then for all T > 0, q0(z |x) = qT (z |x) iff. q0(z |x) = p(z |x)
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Summarising amortised MCMC in one slide!

Three main ingredients of the framework:

• “Student”: an architecture of q(z |x)

• “Teacher”: a transition kernel K invariant

to p(z |x), which produces qT (z |x)

• “Feedback”: an update rule to match

q(z |x) to qT (z |x)

(say divergence minimisation)

After looping, q(z |x) ≈ p(z |x),

and use q(z |x) for inference!

27



Connections to deep RL

• TD-learning and Q-learning:

also tries to update the current V- or Q-value to using T-step roll-out

• Can borrow RL ideas for convergence proof:

TD/Q-learning can show convergence when using linear approximations

• using NNs as q0 ↔ using DQNs

• Can borrow deep RL tricks to design distillation rules!

28



Amortised MCMC: distillation rules

We want q to be implicit!

(i.e. can sample from q but cannot evaluate density)

idea: match samples {zk
0 } ∼ q to samples {zk

T} ∼ qT !

• We tested the original GAN idea 1

• In general, any GAN-like technique is applicable!

1Goodfellow et al. Generative Adversarial Networks. NIPS 2014.
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Training generative models with implicit q distributions

Generative model: a small convolutional decoder

• VAE training:

• Gaussian encoder: a symmetric flip of the

decoder

• Amortised MCMC (AMC) training:

• CNN-G encoder: z = MLP([CNN(x), ε]),

ε ∼ N (0, I )

• CNN-B encoder: z = MLP([CNN(x)� ε]),

ε ∼ Bern(0.5)

• MCMC: Langevin Dynamics w/out rejection

data Gaussian encoder + VAE

CNN-G + AMC CNN-B + AMC
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An open question for test-LL evaluation

Table 1: Average Test LL and effective sample size (ESS). η as the stepsize for Langevin dynamics.

Encoder Method IW-LL IW-ESS HAIS-LL HAIS-ESS

Gaussian VAE -81.31 104.11 -80.64 91.59

MCMC-VI, T = 5, η = 0.2 -90.06 110.58 -89.79 85.63

AMC, T = 5, η = 0.2 -90.71 49.02 -89.64 87.93

CNN-G AMC, T = 5, η = 0.2 -90.84 31.60 -89.35 87.49

AMC, T = 50, η = 0.02 -83.30 6.84 -78.23 77.78

AVB -94.97 11.30 -85.92 57.21

CNN-B AMC, T = 5, η = 0.2 -90.75 34.17 -89.42 88.10

AMC, T = 50, η = 0.02 -83.62 8.88 -80.03 80.71

AVB -89.47 8.98 -82.66 76.90

N/A persistent MCMC, T = 50, η = 0.02 -84.43 9.14 -78.88 77.29

• HAIS seems to be more reliable (K = 100), compared to importance sampling (IS, K = 5000)

• The best case (CNN-G) is better than persistent MCMC
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Missing data imputation

• Given an image x = [xo , xm] with missing

values, repeat the following for T steps:

• sample z ∼ q(z |xo , xm)

• sample x∗ ∼ p(x |z) and set xm ← x∗m

Table 2: Label entropy on nearest neighbours. The l1

distance is divided by the number of pixels.

Dataset VAE CNN-G CNN-B

Entropy 0.411±0.0389 0.701±0.0476 0.933±0.0491

l1-norm 0.061±0.0002 0.059±0.0001 0.064±0.0002

Gaussian encoder + VAE

CNN-G + AMC

CNN-B + AMC
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Amortised MCMC: distillation rules (cont.)

We want q to be implicit!

If you don’t like discriminators/minimax optimisation: do moment matching!

• Simply match the first M moments (not minimising a divergence)

• How to choose M and how to reweigh the importance of them?

• We propose energy matching:

min
φ

∣∣EqT [log p(x , zT )]− Eqφ [log p(x , z)]
∣∣2

• Let the log-joint distribution tell you which moments you want to match

• Related to Contrastive Divergence (CD-T ), works well with small T
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Bayesian neural network classification

Table 3: BNN classification experiment results. MALA = Langevin dynamics with rejection

Average Test Log-likelihood Average Test Error

Dataset VI+Gaussian AMC MALA VI+Gaussian AMC MALA

australian -0.633±0.008 -0.666±0.015 -0.636±0.010 0.315±0.014 0.360±0.011 0.344±0.013

breast -0.096±0.010 -0.091±0.008 -0.094±0.010 0.029±0.003 0.030±0.004 0.037±0.004

colon -0.799±0.246 -0.491±0.104 -0.420±0.027 0.125±0.023 0.167±0.031 0.167±0.026

crabs -0.221±0.012 -0.115±0.011 -0.179±0.010 0.070±0.013 0.040±0.010 0.035±0.010

ionosphere -0.241±0.019 -0.230±0.031 -0.179±0.013 0.099±0.011 0.077±0.013 0.064±0.010

pima -0.503±0.010 -0.506±0.013 -0.498±0.012 0.262±0.008 0.245±0.008 0.247±0.008

sonar -0.389±0.025 -0.347±0.030 -0.366±0.021 0.179±0.014 0.150±0.016 0.171±0.020

34



Summary

What we covered today:

• Is density evaluation really necessary for inference tasks?

• Fitting implicit approx. posterior:

• objective approximation via density ratio estimation

• minimising Stein’s discrepancy

• gradient approximations

• amortise MCMC/SVGD

• Designing implicit posterior approximations: big challenge

Thank you!
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